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PRODUCT FORMULA FOR RESOLVENTS OF NORMAL OPERATORS 
AND THE MODIFIED FEYNMAN INTEGRAL 

ANTONIO DE BIVAR-WEINHOLTZ AND MICHEL L. LAPIDUS 

(Communicated by Palle E. T. Jorgensen) 

ABSTRACT. We extend the theory of the "modified Feynman integal" developed 
by the second author by extending his product formula for the imaginary resol- 
vents of selfadjoint (unbounded) operators to those of normal operators. This 
enables us to establish the convergence of the "modified Feynman integral" for 
Hamiltonians with highly singular complex (instead of real) potentials. Such 
Hamiltonians arise naturally in the study of the Schrodinger equation associ- 
ated with dissipative quantum mechanical systems. 

By slightly altering the proof of our results, we also give a very general 
(operator-theoretic) interpretation of Nelson's "Feynman integral by analytic 
continuation in the mass parameter" that is valid for singular potentials with 
an arbitrary sign. 

An interesting aspect of our "product formula for the imaginary resolvents 
of normal operators" is that it extends, and in some sense unifies, the above two 
approaches to the Feynman integral. 

0. INTRODUCTION 

In [LI, L2], a Trotter-like product formula was shown to converge to the 
unitary group generated by the generalized sum of nonnegative selfadjoint op- 
erators, using the imaginary resolvents of the intervening operators; in [L5], this 
result was generalized to the case where one of the operators has a negative part, 
relatively form bounded with respect to the other operator (with relative bound 
strictly less than one). This applies to a "modified Feynman integral" [L2-L7] 
when one specializes the intervening operators to be the usual L2 Laplacian 
-A and the operator of multiplication by a real L' function q, with some 
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supplementary condition on its negative part (cf. [L5, ?4]); in this manner, 
the second author has established in [L5] the existence of the "modified Feyn- 
man integral" (which he had introduced in [L2]) in the most general case for 
which the Schrodinger equation (with a real potential) can be solved without 
ambiguity. 

In the present paper, we first show how the abstract formula can be extended 
to normal operators with sign conditions on their real and imaginary parts and 
relative form-boundedness of the negative real part of one of the operators with 
respect to the real part of the other. In the second and third sections, we consider 
the application to Schr6dinger operators (hence, in particular, to a modified 
Feynman integral) in two distinct situations not contained in previously known 
results: 

(1) The case of the Schrodinger equation with a highly singular complex 
potential (a magnetic vector potential is also allowed), which corresponds to the 
pseudo-Hamiltonians treated, for instance, in [E]. Formally, it is the operator 

1 = -(V - ia)2 + V; 
2 .1 + - where a E L10 (Q; Ri), V = q - iq = q - q - iq, and q, q ,q are 

real nonnegative functions in L o(?), q is relatively form bounded with 
respect to -A, with relative bound less than 1, and Q is a nonempty arbitrary 
open subset of R N. The new point is that one can consider a highly singular 
imaginary part in the potential V; in general, however, due to the term - iq' 
e is no longer a group but only a semigroup. Physically, this corresponds 
to the fact that a quantum mechanical system with (nonreal) complex potential 
is dissipative (or "open," in the sense of [E]), rather than conservative. 

Just as in [L2-L5], one can then establish the existence of the "modified 
Feynman integral" for Schrodinger operators with a highly singular complex 
potential. 

(2) The case of the semigroup e -t generated by an operator ,V' corre- 
sponding to the formal expression 

-0 .2 
-(V-iad) -p+i(q-iq), 

p a nonnegative real function With some adequate relative form-boundedness 
and local Lp conditions, a, q, q' with the same hypotheses as in (1), but with- 
out any restriction on q other than L1l0(Q) (or, alternatively, q E L 0+ (C) 
E > 0, depending on the restrictions on p ). In this case, the proof has to be 
slightly modified, as the abstract result does not apply directly. The semigroup 
corresponds to a "Schr6dinger equation with imaginary mass" and potential 
q + i(p - q'). The application to the Feynman integral for a real mass can be 
obtained (at least when p _ 0) by analytic continuation in the "mass parame- 
ter," a device introduced by E. Nelson (cf. [N]). 

The theorem in (2) partially generalizes Theorem 4.1 of [B2] (detailed in [B3]; 
see also [N, K, and BP] for related results); we note that the product formula 



MODIFIED FEYNMAN INTEGRAL WITH SINGULAR COMPLEX POTENTIAL 451 

considered here holds for a scalar potential with the hypotheses of [BK] in their 
full generality, and a vector potential with optimal restrictions, which was not 
the case in [B2, B3], where, nevertheless, other formulae were considered. 

1. THE ABSTRACT RESULT 

Let T be a (not necessarily bounded) normal operator in a (complex) Hilbert 
space H with inner product (-, ) and norm 11 11 (i.e., T is a densely defined 
closed operator on H such that T* T = TT*) . Then one can write 

T= T1 - iT2, 

with T1, T2 selfadjoint operators on H, where T1, T2 are respectively the 
real and minus the imaginary parts of T, which can be defined by using the 
operational calculus given by the spectral theorem for normal operators, with 
the functions 9(z) and -3(z) defined on the spectrum v(T) c C. (For all 
the elementary facts about unbounded normal operators, see, e.g., [R, pp. 348- 
355].) Since D(T) = D(T*), it easily follows that 

T* = T1 + iT2. 

If one supposes T1, T2 to be nonnegative, then iT is seen to be m-accretive 
(i.e., iT generates a contraction semigroup on H); this follows from the ob- 
vious fact that iT and (iT)* are both accretive (see, e.g., [P, Corollary 4.4, p. 
15]). We shall denote by 

Q(T) =D(JTJ 1,2) =D T,l n D T2) 

the form domain of T; T 112 and T (j = 1, 2) can also be defined by 
means of the spectral theorem. 

If now A = A1 - iA2, B=B1 - iB2 are normal operators on H with A1 , 
B1 nonnegative (j = 1, 2) and 

Q = Q(A) n Q(B) dense in H, 

one can define the form sum A-+B as the operator in H associated with the 
sesquilinear form 

s:QxQcHxH -C 

(u,v) K Alu, Aiv)-i A2u, A2v) 

+ B1u, Biv) - i B2u, B2v); 

i.e., u E D(A+-B) iff v I-, s(u, v) is continuous on Q for the H-topology, 
(A+-B)u being the unique vector of H, given by the Riesz representation the- 
orem, such that 

((A-+B)u, v) = s(u, v), lv E Q. 
i(A+-B) is obviously accretive, and using the Lax-Milgram lemma, one can 
easily show that it is in fact m-accretive. The same conclusions still hold if 
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one replaces the hypothesis " B1 nonnegative" by a weaker assumption on its 
negative part B_ . (Note that B1 = B+ - B_, where B+, B are respectively 
the positive and negative parts of B, given by the spectral theorem.) Namely, 
we shall assume, as in [L5], that B_ is relatively form bounded with respect to 
A1, with relative bound < 1, i.e., 

(l.i) Q(B_) D Q(Al), 

and there exist positive constants y < 1 and J such that: 
2 2 

(l.ii) llAu|Bu ?Y A1u +(51U12, Vu D(A1). 

In this case, in the definition of the sesquilinear form s, one has of course 
to replace the term ( B1u, /Bv) by ( B\ u, IBv) - ( B_ u, B_v) . 

We can now state the following abstract result, which extends from selfadjoint 
to normal operators the "product formula for imaginary resolvents" obtained 
in [L5, Theorem 1, p. 263]. 

Theorem 1. Under the above hypotheses, 

([I + i(t/n)A] '[I + i(t/n)B]- )nu e-it(A+B)u 
n 

for all u E H, uniformly in t on bounded subsets of [0, +oo). 
Proof. The proof parallels that of Theorem 1 in [L5], and we shall only indicate 
the changes to be made in the argument. Fix A > 0, v E H; for t > 0, set 

Ut = [I + t(A + iA)]1 Vt = [I + itB] 
and 

Wt, = t[Uv1 -/], wt =W t,v. 

Let us show that wt [A+ iC] 1v, as t - ) 0+, where C = A?B. One has 
Wt E D(A) c Q(A) c Q(B_), and, by definition, 

(2) v = Awt + A2wt + iAlwt + t (I - Vt)Wt. 

By using the spectral theorem for normal operators, one obtains 

t (I-Vt) = RB + IB/ + ?i(IB, -IB-) 

where RB I B' IB+, and IB- are nonnegative bounded selfadjoint operators 
given by 

RB =tIBl [(I +tB2)2 + t2B1] , IB =B2[(I + tB2) + t2B1 ] 

and 

IB =B ,[(I+ tB2)2 + t2B,] 1. 

Taking the inner product of (2) against wt, one then has easily 

llwtII < A- H Ii I; 
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hence, also A1A-2wt11 I H RBWtJJ, and IB:Wtll are bounded independently 
of t. This, along with the observation (made in [L5], just before Equation (12), 
p. 266) that 

11X-1< 1B , V8 E Q(B_), 

(a consequence of the spectral theorem), allows us to apply hypothesis (1) to 
deduce, as in [L5, p. 266], that 11B?wtll and A1/4wtll are also bounded 
independently of t. We can then pass to the limit, weakly in H, along a 
sequence tn ? 0; wt tends to a certain w, and to identify the limits of the 
other bounded sequences, one can use the spectral and Lebesgue theorems. We 
first obtain, in particular, that w E Q(A) n Q(B) = Q. Note also that by the 
m-accretiveness of iB, one has 

5(B) c {z E C: 3(z) < 0}; 

so that, for z = x + iy E C(B), we obtain 

t,Z,2[(l _ ty)2 + t2x2]-l tlZ= - lZ_ 
2 222 

(f1 -ty)2 ?tx2 (f1 -ty)2?+t2x2 

(3) < *K r lzl = lz 

Hence, in fact, 

11 R , 1 t 0, V? E Q(B) 

from which one easily deduces now that, along tn n 

RBwt 0, weakly. 

Now, let y E Q = Q(A) n Q(B); the inner product of (2) with y gives, upon 
passing to the limit in the second member, 

(V,y)= (wt y)?K 4 A2wt A2Y)+K RBWt, RBY)?K IBWt IB;Y) 

+ i A(4wt Aly + B+Wt Bt SY B- (A Wt Sy) 

=A(w, y) + is(w, y); 

so that, by definition of C = A+-B, w e D(C), and 

(A + ic)w = v, 

i.e., wt tends weakly to w= ( + iC)1 Iv . 
The remainder of the proof can be carried out just as in [L5, pp. 267-268], 

and we omit it. o 

Remark 1. (a) A corollary analogous to [L5, Corollary 1, p. 269]-in which the 
form domain Q(C) is not necessarily densely defined in H-is also available. 
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(b) Even in the case of nonnegative selfadjoint operators [LI, L2], let alone 
in the case studied in [L5] or the present situation of normal operators, it is not 
known whether one can replace the "imaginary resolvents" by the corresponding 
semigroups in the statement of Theorem 1. See [L2-L7], especially [L2], for a 
discussion of this very difficult and intriguing problem. 

2. APPLICATION TO A MODIFIED FEYNMAN INTEGRAL 
2 N We specialize now to H = L (Q), Q a nonempty open subset of R 

N > 1. Let A = -A be the nonnegative Laplacian in H, and B the maximal 
multiplication operator by a function V = q - - iq', where q+, q, q' 
are real nonnegative functions in LIl(Q), q relatively form bounded with 
respect to -A, with relative bound less than 1. In this case, the form sum 
A+-iB extends, hence coincides with, the natural realization F of -A + V(x), 
with domain 

D(Zf) = {uE Ho (): Vu E Ljl(c(Q), -Au + Vu E H}. 

In fact, F + A is known to be m-accretive for some A > 0 (see, e.g., [BK]). 
In the case Q = R N, with some supplementary assumptions on q , one can 
even replace " u E Ho (Q) " by " u E L2(Q) " in the definition of the domain (see 
[BK]). (The hypothesis q' > 0 is not required for the results of [BK] to hold and 
a somewhat stronger hypothesis is assumed on q , but then it is the closure of 
the operator F + A that is known to be m-accretive. In the case when q' has 
a sign, however, even with the stated hypothesis on q , the methods of [BK] 
easily adapt to show that F + A itself is m-accretive with D(Z) c D(A -B) .) 

We can then apply Theorem 1 to A and B, which gives us a representation 
of the solutions of the Schrodinger equation 

jOT = T (t>0) 

corresponding to the pseudo-Hamiltonian F. (See [E] for a description of 
the properties and physical relevance of such operators to the study of "open", 
i.e., nonisolated, quantum systems.) When Q = RN, this gives us an explicit 
representation of e'ie as a limit of iterated integral operators that generalizes 
the modified Feynman path integral introduced by the second author [L2-L7] 
to the case of a complex potential with a highly singular (merely L' ) negative 
imaginary part. (See [L2, ?6.B], as well as [L5, ?4, in particular Theorem 2, 
p. 270], and [L6, ?4c] or [L7, Part I] for the definition and properties of the 
modified Feynman integral in the case of real potentials.) 

We can also replace -A by a more general elliptic operator L with a vector 
potential, formally, 

N 

(4) L = L(d)=- Z (Ok-iak)[bjk(01-iaj)], 
j,k=i 



MODIFIED FEYNMAN INTEGRAL WITH SINGULAR COMPLEX POTENTIAL 455 

where the blk form a symmetric uniformly elliptic matrix of real-bounded 
measurable functions on Q and a is an N-dimensional vector of L 2 real 
functions on Q. L is the nonnegative selfadjoint operator associated with the 
closure of the minimal energy form corresponding to (4) (i.e., the closure h of 
the form defined on C(?(Q)). The form domain of L is 

Q(h) = Q(L) = {u E L2() u Ho (0), Vu - ia'u EL L(Q)}, 
and L is the maximal restriction, as an operator on H, of the operator 

L: Q(h) - Q(h)' c 9/'(Q) 
N 

u I- Lu = h(u,) =- E J bjkI( ;- iaj)u][(Ok- iak)-] dx. 
j,k=l 

See [B1-B3] for the definition of such operators and for the properties that 
enable us to apply Theorem 1 in this case. 

Remark 2. It would be interesting to extend to normal operators the abstract 
perturbation theorem established in [L6, Theorem 3.1, p. 43] in order to ex- 
tend to singular complex potentials the "dominated convergence theorem" for 
Feynman integrals obtained in [L6, Theorem 4.1, p. 52, and Corollary 4.1, 
p. 57]. 

3. THE CASE OF IMAGINARY MASS 

With the notation of the preceding section, we can also take A = -iA2 = iA, 
and B as in ?2. If one wanted to apply Theorem 1 directly, hypothesis (1) 
would impose that q is essentially bounded, as now A1 = 0. In this case, 
however, we can modify the proof of Theorem 1 to obtain the analogous result 
by assuming only that q E L1 c (Q); i.e., the real part of the potential can be 
any locally summable function on Q0. We can also add a nonnegative imaginary 
part p to the potential with some boundedness hypothesis relatively to -A, 
provided that, in the product formula, p appears in the same resolvent factor 
as -A. (Otherwise, the resolvent associated with the potential would, in general, 
be unbounded.) Finally, as above, we can replace -A by the general operator 
L. Under these general hypotheses, one can no longer define " A + B " as a 
form sum in a suitable way, but we can consider an m-accretive realization of 
" i(A +B) ", defined in [BK] for the case A = iA and in [B1, B3], for A = -iL. 
We shall consider the following set of hypotheses, exactly the same as in [BK]: 

(5.i) V EL'o(Q V = q + i(p - q ) 

(5.ii) q, p, q real-valued functions, p, q > 0, 

(P= N when N> 3 
(5.iii) p E L(Q) + LP(Q), with p > I when N = 2 

p = I when N= 1, 
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and 

(5.iv) either q E L'j+ (0) or p E L (NI2)+(Q 

when N > 2, for some arbitrarily small E> 0. 

We note that hypothesis (5.iii) can be replaced by the weaker assumption that 
p E L c(Q) is infinitesimally form bounded with respect to -A, i.e., V(5 > 0, 
there exists A > 0 such that 

(5.v) fX p 2 + lul, Vu EHo. 

Since 
1Vlull < (V - id)ul, Vu E Q(L) 

(cf. [LS] or [B3]), this hypothesis implies, in particular, that we can define the 
form sum L-+(-p + A) = L-p + A, as a positive selfadjoint operator with 
form domain Q(L), a being the ellipticity constant of [bjk], Aa given by 
(5.v). (L p + ,a is the maximal restriction to an operator on H of 

L - p + A e Y(Q(L), Q(L)'), 

see [B3, II, ?2].) 
Then it is known that the operator iC such that 

D(C) = {u E Q(L): Vu E L'(i) Lu + iVu E H}, 

Cu = -iLu + Vu, Vu E D(C), 

is closable, its closure iC being such that iC + Aa is m-accretive. See [BK] for 
the case L = -A and [B3] for the general case. In the adaptation of the proof 
in [BK] to a general L, the following lemma plays a crucial role and it will also 
be used later. 

Lemma 1. Under the above hypotheses, let g E L??(Q) with a nonnegative real 
part, and let u E H; then, for A > A: 

(L(a-) -p + g + A) u I < (L(O) 'p + A)- u .. n1 

Proof of Lemma 1. This lemma is closely related to Lemma 6 of [LS], whose 
proof can be easily adapted to this situation (see [B3, Lemma 2.1, p. 28]). We 
just note that in [LS], although g is taken nonnegative and p 0 O, g is only 
supposed L 1 . Since we suppose that g E Lo?(Q), we do not need to start 
with u in L?? and the proof does not require the use of Lemma 4 in [LS]. o 

The solution of the general Schrodinger equation with imaginary mass and 
complex potential V: 

jOt = (-iL(a) + V)T, (t > 0) 

is given by the semigroup el"tC, for which one has the following product 
formula. 
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Theorem 2. Under the above hypotheses, 

([I + (t/n)(L'p +A )] [I + i(t/n)(q-iq')]-) nu e 

for all u E H, uniformly in t on bounded subsets of [0, +oo). 

Proof of Theorem 2. We shall use the notation of the proof of Theorem 1, with 

A =-iA2 =2-(L P + Aj' B = q-iq . 

We now take v E L2 (Q) n L??(Q), and we first show that: 

I'Vt 
- 

[A + i(C - iAu Iv1 

along a sequence tn -? 0, weakly in H. 
n 

One has 

Wt E D(A) = D(L p) c Q(L), 

but now wt is the solution of the following elliptic equation: 

(6) v = (L-p + AJ)wt + Awt + Rtwt + Iq W t + iIq,Wt, 

with 

Rt = t(q2 + q 2)[(, + tqi)2 + t2q2]-l Iq q [(I + tq')2 + t2q2]- 

and 
'2 2 2-1I Iq =q[(I + tq) + tq] 

As in the proof of Theorem 1, one can easily bound 

llwl Wt, || \/ w , ||, ||'/ Rtwt , and I| qw| 

independently of t; and so we can justify that for a sequence tn -? 0, wt n 
converges weakly in H to 

(7) w E Q(A2) = Q(L), 

with 

(8) q lwl 2 L1 (Q). 

In particular, q'w E L I (Q). If we multiply (6) by a test function 

,E CO(Q) c Q(A2) n L(2 qdx) nL2 ( 2+ q2dx) 

and integrate on Q , we can pass to the limit in the right-hand side of the 
equation obtained in this fashion, much as in the proof of Theorem 1. We 
point out the differences in the argument. For the term in Rt, one has to use 

R 
Bt t 

0, V? E CO (Q), 
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a consequence of Lebesgue theorem, and estimate (3), combined with the hy- 
pothesis V E L ,(Q) . For the last term, 

(9) jiIqtwt( 

we notice that, by the Lebesgue theorem, 

Iqt (p - q (p, 

either in L1 (Q), or in L1 (), according to the hypotheses on q (cf. (5.iv)). 
To pass to the limit in this term, it is then sufficient to obtain a bound on wt 
either in L("+e) (supp (p) or in L' (supp q), independently of t. This can be 
achieved by using Lemma 1 with g Rt ?Iq; + iIq 

Combining with (6), one obtains: 

wtl< V, a.e. in , 

where w is the unique Ho (Q) solution of 

(10) L )%/-p/ + (A + AJ / = I 

But now, hypothesis (5.v) and an easy generalization of Theorem 2.3 of [BK] 
ensure that 

V/ E n Lp (Q). 
2<p<oo 

Hence, in particular, wt is uniformly bounded in L(l+e) (Q), which allows to 
conclude in the case q E L +j (0 ). 

In the alternative hypothesis p E Loc/2)+ (Q), we can apply standard elliptic 
local regularity to equation (10) to conclude that vy E L' (Q). Hence wt is 
uniformly bounded in L?'(supp p); so, once again we can pass to the limit in 
(9), which guarantees, f E CO' (Q) being arbitrary, that 

(l l) qw E ~~~~~~~~~~l1oc(f) 
From (5.v), (8), and ( 11), we deduce that 

( 12) Vw (E L'o() 

We can then pass to the limit in (6) in the sense of distributions, which gives 

fv v= ( ) + L p?+ q + iq)w vw 

(13) = h(w, p ) - A ? wfo + J(A + q' + iq)wp, 

F( E CO (Q), and by definition of L, we obtain from (13), in 9'(Q): 

v = Lw - pw + A? w + (A + q + iq)w = Lw + iVw + (A + A)w. 
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We thus have, in particular, 

(14) Lw + iVw = v - (+ ji)w E H; 

(12) and (14) now imply 

w E D(C), [A + i(C - iA)]jw = v. 

We have concluded that along a sequence tn tending to 0+, wt tends weakly 
to 

w = [A + i(C- iA)J]-v. 
Using the same argument as in the proof of Theorem 1 of [L5], we can easily 
conclude that we have strong convergence as t - 0+. The density of L 2(Q) n 
L?' (Q) in L 2(Q), and the boundedness of the operators involved, now allow 
us to reach the same conclusion for a general v E L 2(Q) . The remainder of the 
proof can be performed exactly as in [L5]. El 

Remark 3. (a) The above results in ?3 allow more general conditions on the 
complex (time independent) potential than those allowed by probabilistic meth- 
ods about the "analytic operator-valued Feynman integral." (See e.g. [J, ?3] and 
the references therein, especially [C, N, and H].) 

(b) Assume that Q = IRN\F as in [N], where F is a closed set of capacity 
zero. Then, as was noted in [K, Remark 2.5 and Lemma 2.6, p. 107], we 

2 2 N 1 1 N) have L (Q) = L (R1 ) and Ho (Q) = H (JR . Hence, the results of ?3 can be 
applied to potentials that are arbitrarily singular on F (and, in particular, are 
more general than those in [N], [H], or [J]). 
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