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Abstract

We construct spectral triples and, in particular, Dirac operators, for the algebra of continuous functions
on certain compact metric spaces. The triples are countable sums of triples where each summand is based
on a curve in the space. Several fractals, like a finitely summable infinite tree and the Sierpinski gasket, fit
naturally within our framework. In these cases, we show that our spectral triples do describe the geodesic
distance and the Minkowski dimension as well as, more generally, the complex fractal dimensions of the
space. Furthermore, in the case of the Sierpinski gasket, the associated Dixmier-type trace coincides with
the normalized Hausdorff measure of dimension log 3/ log 2.
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0. Introduction

Consider a smooth compact spin Riemannian manifold M and the Dirac operator ∂M associ-
ated with a fixed Riemannian connexion over the spinor bundle S. Let D denote the extension of
∂M to H , the Hilbert space of square-integrable sections (or spinors) of S. Then Alain Connes
showed that the geodesic distance, the dimension of M and the Riemannian volume measure
can all be described via the operator D and its associated Dixmier trace. This observation makes
it possible to reformulate the geometry of a manifold in terms of a representation of the alge-
bra of continuous functions as operators on a Hilbert space on which an unbounded self-adjoint
operator D acts. The geometric structures are thus described in such a way that points in the
manifold are not mentioned at all. It is then possible to replace the commutative algebra of coor-
dinates by a not necessarily commutative algebra, and a way of expressing geometric properties
for noncommutative algebras has been opened.

Connes, alone or in collaborations, has extensively developed the foregoing idea. (See, for
example, the paper [5], the book [6] and the recent survey article [8], along with the relevant
references therein.) He has shown how an unbounded Fredholm module over the algebra A of
coordinates of a possibly noncommutative space X specifies some elements of the (quantized)
differential and integral calculus on X as well as the metric structure of X. An unbounded Fred-
holm module (H,D) consists of a representation of A as bounded operators on a Hilbert space
H and an unbounded self-adjoint operator D on H satisfying certain axioms. This operator is
then called a Dirac operator and, if the representation is faithful, the triple (A,H,D) is called a
spectral triple.

The introduction of the concept of a spectral triple for a not necessarily commutative algebra
Amakes it possible to assign a subalgebra ofA as playing the role of the algebra of the infinitely
differentiable functions, even though expressions of the type (f (x)−f (y))/(x −y) do not make
sense anymore.

With this space-free description of some elements of differential geometry at our disposal,
a new way of investigating the geometry of fractal sets seems to be possible. Fractal sets are
nonsmooth in the traditional sense, so at first it seems quite unreasonable to try to apply the
methods of differential geometry in the study of such sets. On the other hand, any compact set
T is completely described as the spectrum of the C*-algebra C(T ) consisting of the continuous
complex functions on it. This means that if we can apply Connes’ space-free techniques to a
dense subalgebra of C(T ), then we do get some insight into the sort of geometric structures on
the compact space T that are compatible with the given topology.

Already, in their unpublished work [9], Alain Connes and Dennis Sullivan have developed
a ‘quantized calculus’ on the limit sets of ‘quasi-Fuchsian’ groups, including certain Julia sets.
Their results are presented in [6, Chapter 4, Sections 3.γ and 3.ε], along with related results of
Connes on Cantor-type sets (see also [7]). The latter are motivated in part by the work of Michel
Lapidus and Carl Pomerance [32] or Helmut Maier [31] on the geometry and spectra of fractal
strings and their associated zeta functions (now much further expanded in the theory of ‘complex
fractal dimensions’ developed in the books [29,30]).

In particular, in certain cases, the Minkowski dimension and the Hausdorff measure can be
recovered from operator algebraic data. Work in this direction was pursued by Daniele Guido
and Tommaso Isola in several papers, [16–18].

Earlier, in [27], using the results and methods of [21] and [6] (including the notion of ‘Dixmier
trace’), Lapidus has constructed an analogue of (Riemannian) volume measures on finitely ram-
ified or p.c.f. self-similar fractals and related them to the notion of ‘spectral dimension,’ which
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gives the asymptotic growth rate of the spectra of Laplacians on these fractals. (See also [22]
where these volume measures were later precisely identified, for a class of fractals including the
Sierpinski gasket.) In his programmatic paper [28], building upon [27], he then investigated in
many different ways the possibility of developing a kind of noncommutative fractal geometry,
which would merge aspects of analysis on fractals (as now presented e.g. in [20]) and Connes’
noncommutative geometry [6]. (See also parts of [26] and [27].) Central to [28] was the proposal
to construct suitable spectral triples that would capture the geometric and spectral aspects of a
given self-similar fractal, including its metric structure. Much remains to be done in this direc-
tion, however, but the present work, along with some of its predecessors mentioned above and
below, address these issues from a purely geometric point of view. In later work, we hope to be
able to extend our construction to address some of the more spectral aspects.

In [2], Erik Christensen and Cristina Ivan constructed a spectral triple for the approximately
finite-dimensional (AF) C*-algebras. The continuous functions on the Cantor set form an AF
C*-algebra since the Cantor set is totally disconnected. Hence, it was quite natural to try to
apply the general results of that paper for AF C*-algebras to this well-known example. In this
manner, they showed in [2] once again how suitable noncommutative geometry may be to the
study of the geometry of a fractal. Since then, the authors of the present article have searched
for possible spectral triples associated to other known fractals. The hope is that these triples may
be relevant to both fractal geometry and analysis on fractals. We have been especially interested
in the Sierpinski gasket, a well-known nowhere differentiable planar curve, because of its key
role in the development of harmonic analysis on fractals. (See, for example, [1,20,39,40].) We
present here a spectral triple for this fractal which recovers its geometry very well. In particular,
it captures some of the visually detectable aspects of the gasket.

We will now give a more detailed description of the Sierpinski gasket and of the spectral triple
we construct in that case. The way of looking at the gasket, upon which our construction is based,
is as the closure of the limit of an increasing sequence of graphs. The pictures in Fig. 1 illustrate
this. We have chosen the starting approximation, SG0, as a triangle, and as a graph it consists of
3 vertices and 3 edges. The construction is of course independent of the scale, but we will assume
that we work in the Euclidean plane and that the usual concept of length is given. We then fix
the size of the largest triangle such that all the sides have length 2π/3. Then, for any natural
number n, the nth approximation SGn is constructed from SGn−1 by adding 3n new vertices
and 3n new edges of length 21−nπ/3. It is possible to construct a spectral triple for the gasket
by constructing a spectral triple for each new edge introduced in one of the graphs SGn, but in
order to let the spectral triples describe the holes too, and not only the lines, we have chosen
to look at this iterative construction as an increasing union of triangles. Hence, SG0 consists of
one equilateral triangle with circumference (i.e., perimeter) equal to 2π and SG1 consists of the
union of 3 equilateral triangles each of circumference π . Continuing in this manner, we get for
any natural number n that SGn is a union of 3n equilateral triangles of side length 21−nπ/3. The
advantage of this description is that, for any equilateral triangle of circumference 21−nπ , there is

Fig. 1. The first 3 pre-fractal approximations to the Sierpinski gasket.
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an obvious way to construct a spectral triple for the continuous functions on such a set. The idea
is to view such a triangle as a modified circle of circumference 21−nπ and then use the standard
spectral triple for the continuous functions on such a circle.

The direct sum of all these spectral triples is not automatically a spectral triple, but a minor
translation of each of the involved Dirac operators can make a direct sum possible so that we can
obtain a spectral triple for the continuous functions on the Sierpinski gasket in such a way that
the following geometric structures are described by the triple:

(i) The metric induced on the Sierpinski gasket by the spectral triple is exactly the geodesic
distance on the gasket.

(ii) The spectral triple is s-summable for any s greater than log 3/ log 2 and not s-summable for
any s smaller than or equal to this number. Hence it has metric dimension log 3/ log 2, equal
to the Minkowski dimension of the gasket.

(iii) The set of (geometric) complex fractal dimensions of the Sierpinski gasket (defined here as
the poles of the zeta function of the spectral triple) is given by

{
log 3

log 2
+ √−1 · k · 2π

log 2

∣∣∣ k ∈ Z

}
∪ {1},

much as was suggested in [28].
(iv) For each natural number n, let the set of vertices in the graph SGn be denoted Vn and its

cardinality |Vn|. Then there exists a state ψ on C(SG) such that for any continuous complex-
valued function f on SG,

lim
n→∞

1

|Vn|
∑
v∈Vn

f (v) = ψ(f ).

This function ψ is a multiple of the positive functional τ on C(SG) which the spectral
triple and a Dixmier trace create. Further, we show that ψ coincides with the normalized
Hausdorff measure on the Sierpinski gasket.

The methods which we have developed for the Sierpinski gasket are based on harmonic analy-
sis on the circle. After having provided some necessary background in Section 1, we will recall in
Section 2 the construction of the standard spectral triple for the continuous functions on a circle.
Since a continuous simple image of a circle in a compact topological space, say X, induces a
*-homomorphism of the continuous functions on this space onto the continuous functions on the
circle, such a closed curve in a compact space will induce an unbounded Fredholm module over
the algebra of continuous functions on X.

The results for continuous images of circles in the space X can be extended to simple, i.e.
not self-intersecting, continuous images of intervals. We call such an image a simple continuous
curve in X. The method is based on the standard embedding of an interval in a circle, by forming
a circle from an interval as the union of the interval and a copy of the same interval and then
gluing the endpoints. This is done formally in Sections 3 and 4. We can then construct spectral
triples for C(X) which are formed as direct sums of unbounded Fredholm modules associated
to some curves in the space. This construction of spectral triples built on curves (and loops) is
given in Section 5 and makes good sense and is further refined for finite graphs (Section 6), as
well as for suitable infinite graphs such as trees (Section 7). In the latter section, we illustrate
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our results by considering the fractal tree (Cayley graph) associated to F2, the noncommutative
free group of two generators. In Section 8, we then apply our results and study in detail their
consequences for the important example of the Sierpinski gasket, as described above. Finally, in
Section 9, we close this paper by discussing several open problems and proposing directions for
further research.

1. Notation and preliminaries

In the book [6], Connes explains how a lot of geometric properties of a compact space X can
be described via the algebra of continuous functions C(X), representations of this algebra and
some unbounded operators on a Hilbert space like differential operators. The concepts mentioned
do not rely on the commutativity of the algebra C(X), so it is possible to consider a general non-
commutative C*-algebra, its representations and some unbounded operators on a Hilbert space
as noncommutative versions of structures which in the first place have been expressed in terms of
sets and geometric properties. In particular, the closely related notions of unbounded Fredholm
module and spectral triple are fundamental and we will recall them here.

Definition 1.1. Let A be a unital C*-algebra. An unbounded Fredholm module (H,D) over A
consists of a Hilbert space H which carries a unital representation π of A and an unbounded,
self-adjoint operator D on H such that

(i) the set {a ∈A | [D,π(a)] is densely defined and extends to a bounded operator on H } is a
dense subset of A,

(ii) the operator (I + D2)−1 is compact.

If, in addition, tr((I + D2)−p/2) < ∞ for some positive real number p, then the unbounded
Fredholm module, is said to be p-summable, or just finitely summable. The number dST given by

dST := inf
{
p > 0

∣∣ tr
((

I + D2)−p/2)
< ∞}

is called the metric dimension of the unbounded Fredholm module.

Definition 1.2. LetA be a unital C*-algebra and (H,D) an unbounded Fredholm module overA.
If the underlying representation π is faithful, then (A,H,D) is called a spectral triple.

For notational simplicity, we will denote by (A,H,D) either a spectral triple or an unbounded
Fredholm module, whether or not the underlying representation is faithful.

We will refer to Connes’ book [6] on several occasions later in this article. As a standard
reference on the theory of operator algebras, we use the books by Kadison and Ringrose [19].

The emphasis of this article is actually not very much on noncommutative C*-algebras and
noncommutative geometry, but our interest here is to see to what extend the spectral triples
(unbounded Fredholm modules) of noncommutative geometry can be used to describe compact
spaces of a fractal nature. In the papers [2,3], one can find investigations of this sort for the
Cantor set and for general compact metric spaces, respectively. The metrics of compact spaces
introduced via noncommutative geometric methods were extensively investigated by Marc Rief-
fel. (See, for example, the papers [34–37].)



Author's personal copy

E. Christensen et al. / Advances in Mathematics 217 (2008) 42–78 47

Our standard references for concepts from fractal geometry are Edgar’s books [12,13], Fal-
coner’s book [15] and Lapidus and Frankenhuijsen’s books [29,30].

2. The spectral triple for a circle

Much of the material in this section is well known (see e.g. [14]) but is not traditionally
presented in the language of spectral triples. It is useful, however, to discuss it here because
to our knowledge, it is only available in scattered references and not in the form we need it.
In particular, we will study in some detail the domains of definition of the relevant unbounded
operators and derivations.

Let Cr denote the circle in the complex plane with radius r > 0 and centered at 0. As usual
in noncommutative geometry, we are not studying the circle directly but rather a subalgebra of
the algebra of continuous functions on it. From this point of view, it seems easier to look at the
algebra of complex continuous 2πr-periodic functions on the real line. We will let ACr denote
this algebra. We will let (1/2πr)m denote the normalized Lebesgue measure on the interval
[−πr,πr] and let πr be the standard representation of ACr as multiplication operators on the
Hilbert space Hr which is defined by Hr := L2([−πr,πr], (1/2πr)m). The space Hr has a
canonical orthonormal basis, denoted (φr

k)k∈Z, which consists of functions in ACr given by

∀k ∈ Z, φr
k(x) := exp

(
ikx

r

)
.

These functions are eigenfunctions of the differential operator 1
i

d
dx

and the corresponding eigen-
values are {k/r | k ∈ Z}. The natural choice for the Dirac operator for this situation is the closure
of the restriction of the above operator to the linear span of the basis {φr

k | k ∈ Z}. We will let Dr

denote this operator on Hr . It is well known that Dr is self-adjoint and that dom(Dr), the domain
of definition of Dr , is given by

∀f ∈ Hr : f ∈ domDr ⇔
∑
k∈Z

k2

r2

∣∣〈f ∣∣ φr
k

〉∣∣2
< ∞,

where 〈· | ·〉 is the inner product of Hr .
For an element f ∈ domDr , we have Drf = ∑

k∈Z
(k/r)〈f | φr

k〉φr
k . The self-adjoint operator

Dr has spectrum {k/r | k ∈ Z} and each of its eigenvalues has multiplicity 1. Furthermore, any
continuously differentiable 2πr-periodic function f on R satisfies

[
Dr,πr(f )

] = πr

(−if ′),
so we obtain a spectral triple associated to the circle Cr in the following manner.

Definition 2.1. The natural spectral triple, STn(Cr), for the circle algebra ACr is defined by
STn(Cr) := (ACr,Hr,Dr).

One of the main ingredients in the arguments to come is the possibility to construct interesting
spectral triples as direct sums of unbounded Fredholm modules, each of which only carries very
little information on the total space. In the case of the natural triples for circles, the number 0 is
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always an eigenvalue and hence, if the sum operation is done a countable number of times, the
eigenvalue 0 will be of infinite multiplicity for the Dirac operator which is obtained via the direct
sum construction. In order to avoid this problem, we will, for the Cr -case, replace the Dirac
operator Dr by a slightly modified one, Dt

r , which is the translate of Dr given by

Dt
r := Dr + 1

2r
I.

The set of eigenvalues now becomes {(2k + 1)/2r | k ∈ Z}, but the domain of definition is
the same as for Dr and, in particular, for any function f ∈ ACr , we have [Dt

r ,πr(f )] =
[Dr,πr(f )]. Hence, the translation does not really change the effect of the spectral triple.

Definition 2.2. The translated spectral triple, ST t (Cr), for the circle algebra ACr is defined by
ST t (Cr) := (ACr,Hr,D

t
r ).

The next question is to determine for which functions f from ACr the commutator
[Dt

r ,πr(f )] is bounded and densely defined. This is done in the following lemma which is stan-
dard, but which we include since its specific statement cannot be easily found in the way we need
it. On the other hand, the proof is based on elementary analysis and is therefore omitted.

Lemma 2.3. Let f ∈ACr . Then the following conditions are equivalent:

(i) [Dt
r ,πr(f )] is densely defined and bounded.

(ii) f ∈ dom(Dr) and Drf is essentially bounded.
(iii) There exists a measurable, essentially bounded function g on the interval [−πr,πr] such

that

πr∫
−πr

g(t)dt = 0 and ∀x ∈ [−πr,πr]: f (x) = f (0) +
x∫

0

g(t)dt.

If the conditions above are satisfied, then g(x) = (iDrf )(x) a.e.

We will end this section by mentioning some properties of this spectral triple. We will not
prove any of the claims below, as they are easy to verify. First, we remark that all the statements
below hold for both of the triples ST t (Cr) and STn(Cr), although they are only formulated for
STn(Cr).

Theorem 2.4. Let r > 0 and let (ArC,Hr,Dr) be the STn(Cr) circle spectral triple. Then the
following two results hold:

(i) The metric, say dr , induced by the spectral triple STn(Cr) on the circle is the geodesic
distance on Cr .

(ii) The spectral triple STn(Cr) is summable for any s > 1, but not for s = 1. Hence, it has
metric dimension 1.
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3. The interval triple

The standard way to study an interval by means of the theory for the circle is to take two
copies of the interval and then glue them together at the endpoints. When working with algebras
instead of spaces, this construction is done via an injective homomorphism Φα of the continuous
functions on the interval [0, α] into the continuous functions on the double interval [−α,α]
defined by

∀f ∈ C
([0, α]), ∀t ∈ [−α,α]: Φα(f )(t) := f

(|t |).
The continuous functions on the interval [0, α] are mapped by this procedure onto the even

continuous 2α-periodic continuous functions on the real line, and the theory describing the prop-
erties of the spectral triple (ACα/π ,Hα/π ,Dt

α/π ) may be used to describe a spectral triple for
the algebra C([0, α]). We will start by defining the spectral triple STα which we associate to the
interval [0, α] before we actually prove that this is a spectral triple. The arguments showing that
STα is a spectral triple follow from the analogous results for the circle.

Definition 3.1. Given α > 0, the α-interval spectral triple STα := (Aα,Hα,Dα) is defined by

(i) Aα = C([0, α]);
(ii) Hα = L2([−α,α],m/2α), where the measure m/2α is the normalized Lebesgue measure;

(iii) the representation πα :Aα → B(Hα) is defined for f in Aα as the multiplication operator
which multiplies by the function Φα(f );

(iv) an orthonormal basis {ek | k ∈ Z} for Hα is given by ek(x) := exp(iπkx/α) and Dα is
the self-adjoint operator on Hα which has all the vectors ek as eigenvectors and such that
Dαek = (πk/α)ek for each k ∈ Z.

Let us look at the expression [Dα,πα(f )], for a smooth function f . Then it is well known
that [Dα,πα(f )] = πα(Dαf ), and we want to remark that for an even function f we have that
Dαf is an odd function. Hence, here in the most standard commutative example, we already
meet a noncommutative aspect of the classical theory, in the sense that for any function f in Aα

the commutator [Dα,πα(f )], if it exists, is no longer in the image of πα(Aα).
The following proposition demonstrates that many even continuous functions f do have

bounded commutators with Dα . The result follows directly from Lemma 2.3.

Proposition 3.2. Let f be a continuous real and even function on the interval [−α,α] such that
f is boundedly and continuously differentiable outside a set of finitely many points. Then f is in
the domain of definition of Dα and Dαf is bounded outside a set of finitely many points.

The close connection between the spectral triples for the circle and the interval yields imme-
diately the following corollary of Theorem 2.4.

Theorem 3.3. Given α > 0, let (Aα,Hα,Dα) be the α-interval spectral triple. Then, for any pair
of reals s, t such that 0 � s < t � α, we have

|t − s| = sup
{∣∣f (t) − f (s)

∣∣ ∣∣ ∥∥[
Dα,πα(f )

]∥∥ � 1
}
.
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Furthermore, the triple is summable for any real s > 1 and not summable for s = 1. Hence, it
has metric dimension 1.

4. The r-triple, STr

Let now T be a compact and Hausdorff space and r : [0, α] → T a continuous and injective
mapping. The image in T , i.e. the set of points R= r([0, α]), is called a continuous curve and r

is then a parameterization of R. As usual, a continuous curve may have many parameterizations
and one of the possible uses of the concept of a spectral triple is that it can help us to distinguish
between various parameterizations of the same continuous curve. Below we will associate to a
parameterization r of a continuous curve R an unbounded Fredholm module, STr . After having
read the statement of the following proposition, it will be clear how this module may be defined.

Proposition 4.1. Let r : [0, α] → T be a continuous injective mapping and (Aα,Hα,Dα) the
α-interval spectral triple.

Consider the triple STr defined by STr := (C(T ),Hα,Dα), where the representation
πr : C(T ) → B(Hα) is defined via a homomorphism φr of C(T ) onto Aα as follows:

(i) ∀f ∈ C(T ), ∀s ∈ [0, α]: φr(f )(s) := f (r(s));
(ii) ∀f ∈ C(T ), πr(f ) := πα(φr(f )).

Then STr is an unbounded Fredholm module, which is summable for any s > 1 and not summable
for s = 1.

Proof. The Hilbert space, the representation and the Dirac operator are mostly inherited from the
α-interval triple, so this makes it quite easy to verify the properties demanded by an unbounded
Fredholm module. The only remaining problem is to prove that the subspace

LC := {
f ∈ C(T )

∣∣ [
Dα,πr(f )

]
is densely defined and bounded

}
is dense in C(T ). The proof of this may be based on the Stone–Weierstrass Theorem. We first
remark that the Leibniz differentiation rule implies that LC is a unital self-adjoint algebra. We
then only have to prove that the functions in LC separate the points of T . An argument proving
this can be based on Urysohn’s Lemma and Tietze’s Extension Theorem. �

We can then associate as follows an unbounded Fredholm module to a continuous curve.

Definition 4.2. Let r : [0, α] → T be a continuous injective mapping and (Aα,Hα,Dα) the α-
interval spectral triple. The unbounded Fredholm module STr := (C(T ),Hα,Dα) is then called
the unbounded Fredholm module associated to the continuous curve r .

We close this section by computing the metric dr on T induced by the parameterization r

of R.

Proposition 4.3. Let r : [0, α] → T be a continuous injective mapping, and STr = (C(T ),

Hα,Dα) the unbounded Fredholm module associated to r . The metric dr induced on T by STr

is given by
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dr(p, q) =
{0 if p = q,

∞ if p 
= q and (p /∈R or q /∈R),

|r−1(p) − r−1(q)| if p 
= q and p ∈R and q ∈R.

Proof. If one of the points, say p, is not a point on the curve and q 
= p, then by Urysohn’s
Lemma there exists a nonnegative continuous function f on T such that f (p) = 1, f (q) = 0
and, for any point r(t) from R, we have f (r(t)) = 0. This means that πr(f ) = 0; so for any
N ∈ N, we have ‖[Dα,πr(Nf )]‖ � 1. Hence, dr(p, q) � N and dr(p, q) = ∞.

Suppose now that both p and q belong to R and p 
= q . Then it follows that the homomor-
phism φr : C(T ) → C([0, α]), as defined in Proposition 4.1, has the property that r-triple factors
through the α-interval triple via the identities presented in Proposition 4.1, and we deduce that

∀f ∈ C(T ): ∥∥[
Dα,πr(f )

]∥∥ � 1 ⇔ ∥∥[
Dα,πα

(
φr(f )

)]∥∥ � 1.

Hence, on the curve r[0, α]), the metric induced by the spectral triple for the curve is simply the
metric which r transports from the interval [0, α] to the curve. The proposition follows. �
5. Sums of curve triples

Let T be a compact and Hausdorff space and suppose that for 1 � i � k, we are given con-
tinuous curves ri : [0, αi] → T . It is then fairly easy to define the direct sum of the associated
ri -unbounded Fredholm modules, but the sum may fail to be an unbounded Fredholm module
in the sense that there may not exist a dense set of functions which have bounded commutators
with all the Dirac operators simultaneously. It turns out that if the curves do not overlap except
at finitely many points, then this problem cannot occur.

Proposition 5.1. Let T be a compact and Hausdorff space and for 1 � i � h, let ri : [0, αi] be a
continuous curve. If for each pair i 
= j the number of points in ri([0, αi]) ∩ rj ([0, αj ]) is finite,
then the direct sum

⊕h
i=1 STri is an unbounded Fredholm module for C(T ).

Proof. For each i ∈ {1, . . . , h}, the ri -spectral triple, STri is defined by STri := (C(T ),Hαi
,Dαi

).
Further, the direct sum is defined by

h⊕
i=1

STri :=
(

C(T ),

h⊕
i=1

Hαi
,

h⊕
i=1

Dαi

)
.

In order to prove that

∥∥∥∥∥
[

h⊕
i=1

Dαi
,

(
h⊕

i=1

παi

)
(f )

]∥∥∥∥∥ < ∞

for a dense set of continuous complex functions on T , we will again appeal to the Stone–
Weierstrass theorem, and repeat most of the arguments we used to prove that any STr is an
unbounded Fredholm module. We therefore define a set of functions A by

A := {
f ∈ C(T )

∣∣ ∀i, 1 � i � h,
∥∥[

Dαi
,παi

(f )
]∥∥ < ∞}

.



Author's personal copy

52 E. Christensen et al. / Advances in Mathematics 217 (2008) 42–78

As before, we see that A is a self-adjoint unital algebra. Moreover, we find, just as in the proof
of Proposition 4.1, that given two points p and q in T for which at least one of them does not
belong to the union of the points on the curves,

⋃h
i=1Ri , there is a function f in A such that

f (p) 
= f (q). Let us then suppose that both p and q are points on the curves, say p ∈Rj and
p = rj (tp), q ∈Rk and q = rk(tq). We will then define a continuous function g on the compact
set

⋃h
i=1Ri by first defining it on Rj , then extending its definition to all the curves which meet

Rj , and then to all the curves which meet any of these, and so on. Finally, it is defined to be zero
on the rest of the curves, which are not connected to Rj . The definition of g on Rj is given in
the following way. First, we define a continuous function cj in Aαj

by

cj (tp) := 1;
if 0 
= tp, then cj (0) := 0;
if tp 
= αj , then cj (αj ) := 0;
cj is extended to a piecewise affine function on [0, αj ];
cj is even on [−αj ,αj ].

By Proposition 3.2, such a function cj is in the domain of Dαj
and Dαj

cj is a bounded function.
We will then transport cj to a continuous function g on Rj by

∀t ∈ [0, αj ]: g
(
rj (t)

) := cj (t).

The next steps then consist in extending g to more curves by adding one more curve at each step.
In order to do this, we will give the necessary induction argument. Let us then suppose that g is
already defined on the curves Ri1, . . . ,Rin and assume that there is yet a curve Rin+1 on which
g is not defined but has the property that Rin+1 intersects at least one of the curves Ri1, . . . ,Rin .
Clearly, there are only finitely many points s1, . . . , sm on Rin+1 which are also in the union of the
first n curves. Suppose that these points are numbered in such a way that

0 � r−1
in+1

(s1) < · · · < r−1
in+1

(sm) � αin+1 .

We can then define a piecewise affine, continuous and even function cin+1 on [−αin+1 , αin+1] by

∀l ∈ {1, . . . ,m}: cin+1

(
r−1
in+1

(sl)
) := g(sl);

if 0 
= s1, then cin+1(0) := 0;
if sm 
= αin+1 , then cin+1(αin+1) := 0;
cin+1 is extended to a piecewise affine function on [0, αin+1];
cin+1 is even on [−αin+1 , αin+1 ].

This function is in the domain of Dαin+1
and Dαin+1

cin+1 is bounded. The function cin+1 can then
be lifted to Rin+1 and we may define g on this curve by

∀t ∈ [0, αin+1]: g
(
rin+1(t)

) := cin+1(t).
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This process will stop after a finite number of steps and will yield a continuous function g on
the union of the curves which are connected to p. On the other curves, g is defined to be 0, and
by Tietze’s extension theorem, this function can then be extended to a continuous real function
on all of T . By construction, the function g belongs to A. Further, its restriction to the union⋃
Rh

i=1 has the property that g(p) = 1 and for all other points s in
⋃
Rh

i=1, we have g(s) < 1.
In particular, g(q) 
= g(p). Hence, the theorem follows. �
6. Parameterized graphs

We will now turn to the study of finite graphs where each edge, say e, is equipped with a
weight or rather a length, say �(e). Such a graph, is called a weighted graph. This concept has
occurred in many places and it is very well described in the literature on graph theory and its
applications. Our point of view on this concept is related to the study of the so-called quantum
graphs, although it was developed independently of it. We refer the reader to the survey article
[23] by Peter Kuchment on this kind of weighted graphs and their properties. In Section 2 of
the article by Kuchment, a quantum graph is described as a graph for which each edge e is
considered as a line segment connecting two vertices. Any edge e is given a length �(e) and
then equipped with a parameterization, as described in the definition just below; it then becomes
homeomorphic to the interval [0, �(e)]. This allows one to think of the quantum graph as a one-
dimensional simplicial complex.

Definition 6.1. A weighted graph G with vertices V , edges E and a length function �, is said to
have a parameterization if it is a subset of a compact and Hausdorff space T such that the vertices
in V are points in T and for each edge e there exists a pair of vertices (p, q) and a continuous
curve {e(t) ∈ T | 0 � t � �(e)} without self-intersections such that e(0) = p and e(�(e)) = q.

Two edges e(t) and f (s) may only intersect at some of their endpoints. Given e ∈ E , the length
of the defining interval, �(e), is called the length of the edge e. The set of all points on the edges
is denoted P .

Even though the foregoing definition indirectly points at an orientation on each edge, this is
not the intention. Below we will allow traffic in both directions on any edge, but we will only
have one parameterization. One may wonder if any finite graph has a parameterization as a subset
of some space R

n, but it is quite obvious that if one places as many points as there are vertices
inside the space R

3 such that the diameter of this set is at most half of the length of the shortest
edge, then the points can be connected as in the graph with smooth nonintersecting strings having
the correct lengths. Consequently, it makes sense to speak of the set of points P of the graph and
of the distances between the points in P .

The graphs we are studying have natural representations as compact subsets of R
n, so we

would like to have this structure present when we consider the graphs. Hence, we would like to
think of our graphs as embedded in some compact metric space. In the case of a finite graph,
which we are considering in this section, the ambient space may be nothing but the simplicial
complex, described above, and equipped with a parameterization of the 1-simplices.

Each edge e in a parameterized graph has an internal metric given by the parameterization
and then, as in [23], it is possible to define the distance between any two points from the same
connected component of P as the length of the shortest path connecting the points. In order to
keep this paper self-contained, however, we will next introduce the notions of a path and length
of a path in this context. We first recall the graph-theoretic concept of a path as a set of edges
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{e1, . . . , ek} such that ei ∩ ei+1 is a vertex and no vertex appears more than once in such an
intersection. It is allowed that the starting point of e1 equals the endpoint of ek , in which case
we say that the path is closed, or that it is a cycle. We can then extend the concept of a path to a
parameterized graph as follows.

Definition 6.2. Let G = (V,E) be a graph with parameterization. Let e, f be two edges, e(s)

a point on e and f (t) a point on f . Let G ∪ {e(s), f (t)} be the parameterized graph obtained
from G by adding the vertices e(s), f (t) and, accordingly, dividing some of the edges into 2 or
3 edges. A path from e(s) to f (t) is then an ordinary graph-theoretic path in G ∪ {e(s), f (t)}
starting at e(s) and ending at f (t).

The intuitive picture is that a path from e(s) to f (t) starts at e(s) and runs along the edge
upon which e(s) lies to an endpoint of that edge. From there, it continues on an ordinary graph-
theoretic path to an endpoint of the edge upon which f (t) is placed, and then continues on this
edge to f (t). This is also almost what is described in the definition above, but not exactly. The
problem which may occur is that e(s) and f (t) actually are points on the same edge, and then
we must allow the possibility that the path runs directly from e(s) to f (t) on this edge, as well
as the possibility that the path starts from e(s), runs away from f (t) to an endpoint, and then
finally comes back to f (t) by passing over the other endpoint of the given edge.

Now that we have to our disposal the concepts of paths between points, lengths of edges and
internal distances on parts of edges, the length of a path is simply defined as the sum of the
lengths of the edges and partial edges of which the path is made of. Since the graphs we consider
are finite, there are only finitely many paths between two points e(s) and f (t) and we can define
the geodesic distance, dgeo(e(s), f (t)), between these two points as the minimal length of a path
connecting them. If there are no paths connecting them, then the geodesic distance is defined to
be infinite. Each connected component of the graph is then a compact metric space with respect
to the geodesic distance, and on each component, the topology induced by the metric is the same
as the one the component inherits from the ambient compact space.

A main emphasis of Kuchment’s research on quantum graphs (see [23,24]) is the study of the
spectral properties of a second order differential operator on a quantum graph. This is aimed at
constructing mathematical models which can be applied in chemistry, physics and nanotechnol-
ogy. On the other hand, our goal is to express geometric features of a graph by noncommutative
geometric means. This requires, in the first place, associating a suitable spectral triple to a graph.

We have found in the literature several proposals for spectral triples associated to a graph.
(See [6, Section IV.5], [10,11,33].) We agree with Requardt when he states in [33] that it is a
delicate matter to call any of the spectral triples the “right one,” any proposal for a spectral triple
associated to a graph being in fact determined by the kind of problem one wants to use it for.

Our own proposal for a spectral triple is based on the length function associated to the edges,
which, as was stated before, brings us close to the quantum graph approach. A major difference
between the quantum graph approach and ours, however, is that the delicate question of which
boundary conditions one has to impose in order to obtain self-adjointness of the basic differential
operator 1

i
d

dx
on each edge disappears in our context. The reason being that our spectral triple

associated with the edges takes care of that issue by introducing a larger module than just the
space of square-integrable functions on the line.

We are now going to construct a spectral triple for a parameterized graph by forming a direct
sum of all the unbounded Fredholm modules associated to the edges. This is a special case of the
direct sum of curve triples as studied in Proposition 5.1, so we may state
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Definition 6.3. Let G = (V,E) be a weighted graph with a parameterization in a compact metric
space T and let P denote the subset of T consisting of the points of G. For each edge e = {e(s) |
0 � s � �(e)}, we let STe denote the e-triple. The direct sum of the STe-triples over E is an
unbounded Fredholm module over C(T ) and a spectral triple for C(P), which we call the graph
triple of G and denote STG . The metric induced by the graph triple on the set of points P is
denoted dG .

Our next result shows that dG coincides with the geodesic metric on the graph G.

Proposition 6.4. Let G = (V,E) be a weighted graph with a parameterization. Then, for any
points e(s), f (t) on a pair of edges e, f, we have

dG
(
e(s), f (t)

) = dgeo
(
e(s), f (t)

)
.

Proof. We will define a set of functions N by

N = {
k :P → R

∣∣ ∃e(s) ∀f (t): k
(
f (t)

) = dgeo
(
f (t), e(s)

)}
.

Locally, the function f ∈N has slope 1 or minus 1 with respect to the geodesic distance. This
is seen in the following way. Let f be a function in N , and suppose you move from a point,
say f (t0), on the edge f to the point f (t1) on the same edge; then the geodesic distance to
e(s) will usually either increase or decrease by the amount |t1 − t0|. This means that most often
it is expected that in a neighborhood around a point t0 the function k(f (t)) is given either as
k(f (t)) = k(f (t0)) + (t − t0) or k(f (t)) = k(f (t0)) − (t − t0). On the interval (t0 − δ, t0 + δ),
the function t �→ k(f (t)) is then differentiable and its derivative is either constantly 1 or −1.

The reason why this picture is not always true is that for a point f (t0) on an edge f , the geo-
desic paths from e(s) to the points f (t0 − ε) and f (t0 + ε) may use different sets of edges.
The function k(f (t)) is still continuous at t0, but the derivative will change sign from 1 to
−1, or the other way around. For each edge f , the function k on f is then transported via
the homomorphism attached to the f -triple onto the function φf (k) ∈Al(f ) and further, via the
homomorphism Φl(f ), onto the continuous and even function Φl(f )(φf (k)) on [−�(f ), �(f )] on
the positive part of the interval. The function Φl(f )(φf (k)) is also piecewise affine with slopes
in the set {−1,1}. From Proposition 3.2, we then deduce that D�(f )Φl(f )(φf (k)) exists and is
essentially bounded by 1. Given this fact, it follows that for all functions k in N and any edge f

we have ‖[D�(f ),πf (k)]‖ � 1, so with the above choice of function k, we obtain

∀e, f ∈ E, ∀t ∈ [
0, �(f )

]
, ∀s ∈ [

0, �(e)
]:

dgeo
(
f (t), e(s)

) = k
(
f (t)

) − k
(
e(s)

)
� dG

(
f (t), e(s)

)
.

Suppose now that we are given points as before, e(s) and f (t), on some edges e and f . Then
there exists a geodesic path from e(s) to f (t), and we may without loss of generality assume
that this path is an ordinary graph-theoretic path consisting of the edges e1, . . . , ek such that the
starting point of e1 is e(s) and the endpoint of ek is f (t). Any continuous function g on P which
has the property that

max
e∈E

∥∥[
D�(e),πe(g)

]∥∥ � 1
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also has the property that its derivative on each edge is essentially bounded by 1. In particular,
this means that for each edge ej , with 1 � j � k, we must have |g(ej (�(ej )))−g(ej (0))| � �(ej )

and then, since ei(�(ei)) = ei+1(0) for 1 � i � k − 1, we have

∣∣g(
e(s)

) − g
(
f (t)

)∣∣ = ∣∣g(
e1(0)

) − g
(
ek

(
�(ek)

))∣∣
�

k∑
j=1

∣∣g(
ej (0)

) − g
(
ej

(
�(ej )

))∣∣

�
k∑

j=1

�(ej )

= dgeo
(
e(s), f (t)

)
.

Since this holds for any such function g, we deduce that

dG
(
e(s), f (t)

)
� dgeo

(
e(s), f (t)

)
,

and the proposition follows. �
It should be remarked that the unbounded Fredholm modules of noncommutative geometry

can be refined to give more information about the topological structure of the graph. Suppose for
instance that the graph is connected but is not a tree. It then contains at least one closed path,
a cycle. For each cycle, one can obtain a parameterization by adding the given parameterizations
or the inverses of the given parameterizations of the edges which go into the cycle. In this way,
the cycle can be described via a spectral triple for a circle of length equal to the sum of the edges
used in the cycle. If this unbounded Fredholm module is added to the direct sum of the curve-
triples coming from each edge, then the geodesic distance is still measured by the new spectral
triple, and this triple will induce an element in the K-homology of the graph, as in [6, Chapter IV,
Section 8.δ]. This element in the K-homology group will be able to measure the winding number
of a nonzero continuous function around this cycle. One may, of course, take one such a summand
for each cycle and in this way obtain an unbounded Fredholm module which keeps track of the
connectedness type of the graph. We have not yet found a suitable use for this observation in the
case of finite graphs, but we would like to pursue this idea in connection with our later study of
the Sierpinski gasket in Section 8. (See, especially, item (vi) in Section 9, along with the relevant
discussion following it.)

7. Infinite trees

In the first place, it is not possible to create unbounded Fredholm modules for infinite graphs
by taking a direct sum of the unbounded Fredholm modules corresponding to each of the edges
and each of the cycles. The problem is that there may be an infinite number of edges of length
bigger than some δ > 0. In such a case, the direct sum of the Dirac operators will not have a
compact resolvent any more. We will avoid this problem by only considering graphs which we
call finitely summable trees and which we define below, but before that, we want to remark that
the concept of a path remains the same, namely, a finite collection of edges leading from one
vertex to another without repetitions of vertices.
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Definition 7.1. An infinite graph G = (V,E) is a finitely summable tree if the following conditions
are satisfied:

(i) There are at most countably many edges.
(ii) There exists a length function � on E such that for any edge e, we have �(e) > 0.

(iii) For any two vertices u,v from V , there exists exactly one path between them.
(iv) There exists a real number p � 1 such that

∑
e∈E �(e)p < ∞. (In that case, the tree is said

to be p-summable.)

An infinite tree which is not finitely summable may create problems when one tries to look
at it in the same way as we did for finite graphs. It may, for instance, not be possible to embed
such a graph into a locally compact space in a reasonable way. To indicate what the problems
may be, we now discuss an example. Think of the bounded tree whose vertices vn are indexed by
N0 and whose edges all have length 1 and are given by en := {{v0, vn} | n ∈ N}, i.e. all the edges
go out from v0 and the other vertices are all endpoints, and they are all one unit of length away.
If the points vn for n � 1 have to be distributed in a symmetric way in a metric space, then the
distance between any two of them should be the same and no subsequence of this sequence will
be convergent. This shows right away that the graph cannot be embedded in a compact space in
a reasonable way, but it also shows that the point v0 does not have a compact neighborhood, so
even an embedding in a locally compact space is not possible. The restriction of working with
finitely summable trees will be shown to be sufficient in order to embed the graph in a compact
metric space. Before we show this, we would like to mention that the point of view of this article
is to consider edges as line segments rather than as pairs of vertices. We will start, however, from
the graph-theoretic concept of edges as pairs of vertices and then show very concretely that we
can obtain a model of the corresponding simplicial complex, even in such a way that the edges
are continuous curves in a compact metric space.

Definition 7.2. A finitely summable tree G with vertices V and edges E is said to have a pa-
rameterization if V can be represented injectively as a subset of a metric space (T , d) and for
each edge e = {p,q}, there exists a continuous curve, {e(t) ∈ T | 0 � t � �(e)}, without self-
intersections and leading from one of the vertices of e to the other. Two curves e(t) and f (s)

for different edges e and f may only intersect at endpoints. The length of the defining interval,
�(e), for a curve e(t), is called the length of the curve. The set of points e(t) on all the curves is
denoted P .

For an infinite tree, there is only one path between any two vertices in V . This is the basis
for the following concrete parameterization of an infinite p-summable tree inside a compact
subset of the Banach space �p(E). We first fix a vertex u in V and map this to 0 in �p(E); then
the unique path from u to any other vertex v determines the embedding in a canonical way. In
order to describe this construction, we will denote by δe the canonical unit basis vector in �p(E)

corresponding to an edge e in E .

Proposition 7.3. Let G = (V,E) be a finitely summable tree, u a vertex in V and Tu : V → �p(E)

be defined by

Tu(w) :=
{

0 if w = u,∑k
j=1 �(ej )δej

if w 
= u and the path is {e1, . . . , ek}.
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For an arbitrary edge e = {w1,w2}, we choose an orientation such that the first vertex is the one
which is nearest to u. Let us suppose that w1 is the first vertex. Then, given such an oriented edge
e = (w1,w2), a curve eu : [0, �(e)] → �p(E) is defined by

eu(t) := Tu(w1) + tδe.

Let Pu denote the set of points on all the curves eu(t) and let Tu denote the closure of Pu.

Then Tu is a norm compact subset of �p(E) and the triple (Tu, Tu, {eu(t) | e ∈ E}) constitutes a
parameterization of G, in the sense of Definition 7.2.

Proof. The only thing which really has to be proved is that the set Tu is a norm compact subset
of �p(E). Let then ε > 0 be given and choose a finite and connected subgraph G0 = (V0,E0) of
G such that

∑
e∈E0

�(e)p + εp >
∑

e∈E �(e)p and u is a vertex in V0. We denote by Pu,E0 the set
of points on all the curves eu(t), where e ∈ E0. We then remark that Pu,E0 is just a finite union
of compact sets, and is therefore compact. By construction, any point in Pu is within a distance
ε of Pu,E0 , so the closure Tu of Pu is compact. �

It is not difficult to see that for two different vertices u and v, the metric spaces Tu and Tv

obtained via the above construction are actually isometrically isomorphic via the rather natural
identification of the sets Pu and Pv described just below.

Proposition 7.4. Let G = (V,E) be a finitely summable tree. Consider u and v two different ver-
tices in V and let Tu : V → �p(E), respectively Tv : V → �p(E), be defined as in Proposition 7.3.
Then the mapping Suv : Pu → Pv defined by

Suv(x) :=
{

Tv ◦ T −1
u (x) if x ∈ Tu(V),

Tv(wj ) + tδe if x = eu(t), e = (w1,w2), t ∈ (0, l(e)),

where wj is the nearest vertex to v among w1 and w2, is an isometric isomorphism ofPu ontoPv .

Proof. Given two points, say x, y, in Pu, we have to show that

d
(
Suv(x), Suv(y)

) = d(x, y).

There has to be two different arguments showing this, according to the cases where x and y are
on the same or on different edges. We will only consider the case where x = eu(s) on an edge
e and y = gu(t) on a different edge g. Then there exists a finite set of vertices w1, . . . ,wk such
that the closed line segments in �p(E) given by

[
eu(s), Tu(w1)

]
,

[
Tu(w1), Tu(w2)

]
, . . . ,

[
Tu(wk−1), Tu(wk)

]
,

[
Tu(wk), gu(t)

]
,

all belong to Pu and constitute the unique path herein from x to y. The distance in Pu from x to
y is given by

‖x − y‖p =
(∥∥Tu(w1) − eu(s)

∥∥p + ∥∥gu(t) − Tu(wk)
∥∥p +

k−1∑
i=1

�
({wi,wi+1}

)p

)1/p

.
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The term ‖Tu(w1) − eu(s)‖ is either s or �(e) − s. It is s if w1 is closer to u than x, and �(e) − s

otherwise. The distance in Pv from Suv(x) to Suv(y) is given by

∥∥Suv(x) − Suv(y)
∥∥

p

=
(∥∥Tv(w1) − ev(s

′)
∥∥p + ∥∥gv(t

′) − Tv(wk)
∥∥p +

k−1∑
i=1

�
({wi,wi+1}

)p

)1/p

.

A moment’s reflection will make it clear to the reader that the distance between Suv(x) and
Suv(y) is the same as the distance between x and y. Thus Suv defines an isometry between the
sets of points Pu and Pv . �

Since the sets Pu and Pv are dense in Tu and Tv , respectively, we see that Suv extends to a
natural isometry between Tu and Tv . The compact metric spaces Tu and Tv are then isometrically
isomorphic via an isometry which commutes with the parameterizations, so we may introduce

Definition 7.5. Let G = (V,E) be a p-summable infinite tree, u a vertex in V , and (Tu, Tu, {eu(t) |
e ∈ E}) the parameterization of G introduced in Proposition 7.3. In view of Proposition 7.4,
we may use the simpler notations T , respectively P, to denote the sets Tu and Pu. (In the
sequel, we will also use the notation T p,Pp when needed.) The parameterization is called the
p-parameterization of G. The metric given by ‖ · ‖p is denoted by dp and the complement of P
in T is denoted by B and called the boundary.

It is clear that if an infinite tree is p-summable, then it is also q-summable for any real number
q > p. A natural question is, of course, if the p- and q-parameterizations are homeomorphic or
even Lipschitz equivalent as metric spaces. We can easily show that the spaces are homeomorphic
but the Lipschitz equivalence may not be automatic, although it is easy to establish in many
concrete examples. We have found a condition which ensures Lipschitz equivalence; it is nearly
a tautology, but rather handy for the study of concrete examples. To be able to express this
property, we first observe that the p-parameterization has a concrete realization via a base vertex
u as Tu. This is a subset of �p(E) and since the p-norm here dominates the ∞-norm, we can
use this norm to introduce a metric d∞ on Tu by d∞(x, y) := ‖x − y‖∞. If one goes back to the
description of Tu, one can realize that d∞(x, y) is independent of u and, in fact, depends only on
the unique path (may be even infinite in both directions) which leads from x to y.

Proposition 7.6. Let G = (V,E) be a p-summable infinite tree, and q be a real number such
that q > p. Further, let T p,T q denote the p-, respectively, q-parameterization compact metric
spaces of G. Then these spaces are homeomorphic via the natural embedding of Tp into Tq .

Moreover, the metric spaces T p and T q are Lipschitz equivalent if there exists a constant
k > 0 such that

∀x, y ∈ T p: dp(x, y) � kd∞(x, y).

Proof. Let us take a base vertex u and consider the concrete representations of T p and T q as
T p

u and T g
u . Since p < q , we have �p(E) ⊂ �q(E). Let ι denote the canonical embedding; then ι

is a contraction and consequently, ι(T p
u ) is a compact subset of T q

u containing the point set Pq
u
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of T q
u . Hence, ι induces a homeomorphism between the two compact spaces T p

u and T q
u . Let us

now assume that

∀x, y ∈ T p
u : dp(x, y) � kd∞(x, y),

and continue to work inside T p
u . Then we get

∀x, y ∈ T p
u : dq(x, y) � dp(x, y) � kd∞(x, y) � kdq(x, y),

so the metrics are Lipschitz equivalent. �
It took us quite some time to realize how different various parameterizations may be. Later

in this section, the reader will see (in Fig. 3) a picture of the fractal which is usually associated
to the free noncommutative group on 2 generators. In Connes’ book [6], on page 341, one can
see quite a different picture. In the first case, the boundary is totally disconnected, whereas in the
Poincare disk picture used in [6], the boundary is the unit circle. The p-parameterization has the
property that it separates different boundary points very much.

Proposition 7.7. Let G = (V,E) be an infinite p-summable tree and T its p-parameterization
space. The set B of boundary points of P in T is closed and totally disconnected.

Proof. Let a and b be two different points in B and let δ be a positive number less than d(a, b)/3.
To δ we associate a finite connected subgraph G0 = (V0,E0) such that

∑
e∈E0

�(e)p + δp >
∑
e∈E

�(e)p.

The graph G0 is a finite tree, so it has at least two ends, i.e. vertices of degree 1. By examination
of the concrete space Tu, one can easily see that the set of points P0 of G0 has nonempty interior
as a subset of T , and that this interior, say P̊0, is exactly all of P0 except its endpoints. Given
a point x in P which is in the complement, say C, of P̊0 in T , we see that there must be a path
from x to P0 which meets P0 at an endpoint. This means that all the points in C are grouped
into a finite number of pairwise disjoint sets according to which end vertex in V0 is the nearest.
Suppose now that x and y are points in C such that their nearest end vertices in V0, say v and w,
respectively, are different. Then, by the construction of the metric space (T , d), one finds that
d(x, y) > d(v,w) > 0. This shows that the connected components of C can be labeled by the end
vertices of V0 as Cv and there is a positive distance between any two different components.

Let us now return to the boundary points a, b and show that they fall in different components
Cu and Cv . Suppose to the contrary that both a and b belong to the same component, say Cu.
Then there exist vertices v and w in Cu ∩V such that d(a, v) < δ and d(b,w) < δ. Since v and w

are in the same component Cu, the unique path between them must be entirely in Cu. This means
that it uses none of the edges from E0; so, by the construction of G0, we get d(u, v) < δ and then
d(a, b) < 3δ < d(a, b), a contradiction. Since the components induce a covering of the boundary
by open sets, we deduce that a and b are in different components of the boundary and thus that
the boundary is totally disconnected. The closedness of B follows, as we can take an increasing
sequence of finite connected subgraphs of G, say (Gn), such that the union of the sequence of
open sets (P̊n) in T is all of P . �
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We are not going to study the properties of the p-parameterization in more details since our
main interest is to describe certain aspects of graphs with the help of noncommutative geometry.
The possibility of embedding a graph as a dense subset of a compact metric space T shows
that we can study this space through a spectral triple which is the sum of triples associated the
edges of the tree. The ambient metric space has a metric which is constructed such that the space
becomes compact. On the other hand the natural distance between points on a tree is the length
of the unique path between the points and this will quite often not be a bounded metric on the
tree, so we will refer to this distance as the geodesic distance.

Definition 7.8. Let G = (V,E) be a graph which is embedded in a metric space T such that
each edge, e = (x0, x1), where x0 and x1 are vertices in V, has a parameterization re(t) with
re(0) = x0 and re(�(e)) = x1. Then the geodesic distance between any two points x, y ∈ T ,
which are situated on edges on the graph, is defined to be the infimum of the sums of the lengths
of the corresponding intervals which have to be used in order to construct a curve from x to y

based on the parameterization given for each edge.

The p-parameterization provides a framework which makes it possible to obtain a spectral
triple as a sum of triples based on curves, where the curves are parameterized edges of the tree.
We will concentrate our investigations on the spectral triple which can now be obtained in the
same way as was done for finite graphs. Before we embark on this, we would like to mention
that unless the summability number p equals 1, one should not expect that the geodesic distance
on P is bounded. Think, for instance, of a tree embedded in R+ with vertices (vn) indexed by
the natural numbers, edges of the form {vn, vn+1} and lengths �({vn, vn+1}) = 1/n. This graph
is 2-summable and the set of path lengths is unbounded. Let us further remark that, by applying
the triangle inequality, one can see that the geodesic distance is always larger than the distance
on the p-parameterization space, which is a subset of �p(E). Thus it may very well be that the
geodesic distance is unbounded on P and hence, in such a case, is not extendable to a continuous
function on the compact space T .

In [6, Section IV.5], Fredholm Modules and Rank-One Discrete Groups, Connes studies mod-
ules which are associated to trees. His modules are �2-spaces over sets consisting of points and
edges, whereas the ones we are going to construct are sums of L2-spaces over the edges, as de-
scribed for finite graphs in Section 6. There may be closer relations than we can see right now
between the two types of modules; at least, it seems that Proposition 6 on page 344 of [6] is
related to our Theorem 7.10.

Definition 7.9. Let T be a compact space, r : [0, α] → T a continuous curve, and let a be a real
number. The r, a-triple

(
C(T ),Hα,Da

α

)
is defined as a translated unbounded Fredholm module (in the sense of Definition 2.2) of the
r-triple defined in Definition 4.2. The operator Da

α is the translate of Dα given by Dα + aI .

Since for any f ∈ C(T ) we have [Dα + aI,πα(f )] = [Dα,πα(f )], the change in the Dirac
operator does not affect the spectral triple much, but the eigenvalues of the Dirac operator all get
translated by the number a.
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Theorem 7.10. Let G = (V,E) be a p-summable infinite tree with p-parameterization in the
compact metric space T . The direct sum over all the edges e from E of the unbounded Fredholm
modules

(
C(T ),H�(e),D

π/(2�(e))

�(e)

)
is a spectral triple for C(T ), which is denoted STG := (C(T ),HG,DG). It can only be a finitely
summable module for a real number s > 1. Further, for a given s > 1, it is finitely summable if
and only if

∑
e∈E

�(e)s < ∞.

Moreover, the metric dG induced by STG on the points P of the infinite tree G is the geodesic
distance.

Proof. The proof relies in many ways on the corresponding proof for finite graphs. For points
from the set P, we shall see that the previous arguments can be reused to a large extent. The
real problem occurs when we have to deal with the boundary points B in T , i.e. the set of
points T which are not in P . We noticed above that the geodesic distance may not be extended
to a continuous function on T , so we cannot just copy the proof of Proposition 6.4 and define the
setN similarly. Instead, we consider the set, say FG , of finite connected subgraphs G0 = (V0,E0)

of G. In the proof of Proposition 7.7, we saw that the complement of the open set P̊0 in T
consists of a finite collection of pairwise disjoint closed sets Cv labeled by the endpoints of G0.

This makes it possible to define a dense algebra of continuous functions on T which will have
uniformly bounded commutators for all of our unbounded Fredholm modules associated with
the edges. We simply define the set of functions N by looking at functions which have bounded
commutators for the unbounded Fredholm module of Definition 6.3 applied to some G0 in FG
and are constant on each of the components, outside P̊0, i.e. the value of such a function f

on a component Cv is f (v). Any function f in N must have a bounded commutator with DG ,
since the commutator is zero except at edges in a subgraph G0, and here it is supposed to have
bounded commutator with the Dirac operator associated to G0. The functions in N constitute
a self-adjoint algebra of continuous functions on T since the set FG is upwards directed under
inclusion. Ordinary points in P can be separated by functions from N in the same way as this
was done in the proof of Proposition 5.1. For a boundary point b and an ordinary point p in P , it
will always be possible to find a graph G0 in FG such that p is an inner point in the set of points
P0 associated to G0. The function k, which on P0 is defined by k(x) := dgeo(x,p) and continued
by constancy on the components associated to the end vertices of G0, belongs to N and separates
p and the boundary point b. The reason being that p is assumed to be an inner point in P0, so it
will have positive geodesic distance to any end vertex of G0. For two different boundary points
b and c, one may use the proof of Proposition 7.7 to obtain a subgraph G0 in FG such that b

and c fall in different components. Suppose b is in Cv and c is in Cw for end vertices v and w

of G0. As seen above, there is a function f in N such that f (v) 
= f (w); but f (b) = f (v) and
f (c) = f (w), so f separates b and c.

In order to prove that we have a spectral triple for C(T ), we then have to show that the
resolvents of DG are compact, when bounded. This will be proven below, but first we will show
that the metric induced by the set {f ∈ C(T ) | ‖[DG,π(f )]‖ � 1} is the geodesic distance on P .
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We will then return to the analogous problem for finite graphs in the proof of Proposition 6.4.
Again, we show that for any two points a and b from P , we may find a connected subgraph G0
in FG such that its set of points in T contain both a and b. We then conclude as in the finite case
that dG(a, b) = dgeo(a, b).

In order to see that we have an unbounded Fredholm module and prove the summability
statement, we have to look at the eigenvalues of

⊕
e∈E

D
π/(2�(e))

�(e) .

The eigenvalues for each summand form the set {(k + 1/2)π/�(e) | k ∈ Z}; so (D2
G + I )−1 has

the following doubly indexed set of eigenvalues

(
4�(e)2

(2k + 1)2π2 + 4�(e)2

)
(k∈Z,e∈E)

.

Remark that the same eigenvalue may occur, for different edges, but only a finite number of
times. Since

4�(e)2

(2k + 1)2π2 + 4�(e)2
� 4�(e)2

(2k + 1)2

and
∑

e∈E �(e)s < ∞, we see that (D2
G + I )−1 is compact.

With respect to the summability, we consider for a real number s > 0 the sum

∑
e∈E

∑
k∈Z

(
4�(e)2

(2k + 1)2π2 + 4�(e)2

)s/2

.

The term (2k + 1)2 in the denominator implies that we must have s > 1 in order to obtain a finite
sum. Now, for s > 1, we rewrite the double sum as follows:

2s ·
∑
e∈E

�(e)s ·
∑
k∈Z

(
1

(2k + 1)2π2 + 4�(e)2

)s/2

= 2s+1 ·
∑
e∈E

�(e)s ·
∑
k∈N0

(
1

(2k + 1)2π2 + 4�(e)2

)s/2

.

For each e ∈ E , there is a ke ∈ N0 such that (2k + 1)π > 2�(e) for every k > ke. Then, for each
e ∈ E , we obtain that

ke∑
k=0

(
1

(2k + 1)2π2 + 4�(e)2

)s/2

+
(

1

2

)s/2 ∞∑
k=ke+1

(
1

(2k + 1)2π2

)s/2

�
∑
k∈N0

(
1

(2k + 1)2π2 + 4�(e)2

)s/2

�
∑
k∈N0

(
1

(2k + 1)π

)s



Author's personal copy

64 E. Christensen et al. / Advances in Mathematics 217 (2008) 42–78

and hence it follows that the module is s-summable if and only if s > 1 and the sum
∑

e∈E �(e)s

is finite. �
Example 7.11. The Cayley graph for the noncommutative free group on 2 generators F2.

There is a nice description of this graph as a fractal. We start with the neutral element e at the
origin of R

2. Then the generators {a, b, a−1, b−1} are placed on the axes at the points

{
(1/2,0), (0,1/2), (−1/2,0), (0,−1/2)

}
.

Traveling right along an edge represents multiplying on the right by a, while traveling up
corresponds to multiplying by b. Each new edge is drawn at half size of the previous one to give
a fractal image. We start by illustrating in Fig. 2 how all words, say CGa, which begin with an a

are positioned on the tree.
Figure 3 shows the entire graph which consists of four identical fractal images. Each one, say

CGa,CGa−1 ,CGb,CGb−1 , represents all the words starting with a, a−1, b or b−1.
This forms an infinite tree with 4 edges of length 1/2, 12 edges of length 1/4, 36 edges of

length 1/8 and, generally, 4 · 3n−1 edges of length 2−n. The sum
∑

e∈E �(e)s from Theorem 7.10
can then be written as

∑
e∈E

�(e)s =
∞∑

m=1

4 · 3m−12−ms = 4

3

∞∑
m=1

(
3 · 2−s

)m
.

So the module is finitely summable if and only if s > log 3/ log 2. Hence, the spectral triple of F2
has metric dimension log 3/ log 2, and this is exactly the Minkowski and also the Hausdorff
dimension of the closure of the Cayley graph of F2.

As was seen just above, given any real number p > log 3/ log 2, the graph is p-summable; so
we can consider its p-parameterization T p. Since the lengths of the edges decrease geometrically
like 2−n, it follows that we have

∀x, y ∈ T p: dp(x, y) � 2d∞(x, y).

Hence, by Proposition 7.6, T q and T p are Lipschitz equivalent for any q > p > log 3/ log 2.

Further, some computations with the closure of the Cayley graph for F2 constructed above show

Fig. 2. A portion of the Cayley graph of F2. Fig. 3. The Cayley graph of F2, viewed as a fractal tree.
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that the metric coming from R
2 on this set is also Lipschitz equivalent to the d∞ metric. There-

fore, the R
2 fractal is actually Lipschitz equivalent to any of the T p parameterization spaces for

p > log 3/ log 2.

On page 341 of [6], one can find a representation of the Cayley graph of F2 as a subset of the
Poincare disc, and as we mentioned above, the boundaries of these two parameterizations of the
Cayley graph of F2 are very different.

7.1. Complex dimensions of trees

The mathematical theory of complex fractal dimensions finds its origins in the study of the
geometry and spectra of fractal drums [25,27] and, in particular, of fractal strings [31,32]. In the
latter case, it is developed in the research monograph [29] and significantly further expanded in
the recent book [30]. We establish here some connections between this theory and our work.

Definition 7.12. Let p be a real number greater than 1 and G an infinite p-summable tree with
vertices V and a countable number of parameterized edges E = {en | n ∈ N}. Assume that the
lengths of the edges �(en) converges to 0 as n → ∞. The zeta function of the tree G is denoted
ζG(z) and is defined for Re(z) > p by

ζG(z) = tr
(|DG |−z

)
.

In view of Theorem 7.10, |DG | has the following doubly indexed set of eigenvalues.

(
(2k + 1)π

2�(e)

)
(k∈N0,e∈E)

each with multiplicity 2.
Let ζ(z) denote the Riemann zeta function. By writing

ζ(z) =
∞∑
l=1

l−z =
∞∑

k=0

(2k + 1)−z +
∞∑

k=1

(2k)−z =
∞∑

k=0

(2k + 1)−z + 2−z · ζ(z),

we obtain

∞∑
k=0

(2k + 1)−z = (
1 − 2−z

) · ζ(z). (1)

Hence, for Re(z) > p, we deduce that

tr
(|DG |−z

) = 2
∑
e∈E

∑
k∈N0

(
2�(e)

(2k + 1)π

)z

= 2z+1

πz
·
(∑

e∈E
�(e)z

)
·
( ∞∑

k=0

(2k + 1)−z

)

= 2z+1

πz
· (1 − 2−z

) ·
(∑

e∈E
�(e)z

)
· ζ(z).
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Example 7.13. Let G be the Cayley graph of F2. Then, the zeta function of G has a meromorphic
extension to all of C given by

ζG(z) = 8

πz

1 − 2−z

1 − 3 · 2−z
· ζ(z), for z ∈ C.

Indeed, this is true for Re(z) > log 3/ log 2, by the last displayed equation in Example 7.11.
Hence, by analytic continuation, it is true for all z ∈ C.

Aside from a trivial multiplicative factor f (z), which is an entire function, the zeta function
of G is of the same form as the spectral zeta function of a self-similar fractal string, which is
always equal to the product of the Riemann zeta function and the geometric zeta function of the
fractal string (see [26,27,31,32] and Chapter 1 in [29] or [30]).

We refer to [30, Chapters 1, 4 and 5], for the precise definition of the complex dimensions of
a fractal string, using the notions of “screen and window.”

Definition 7.14. Assume that ζG admits a meromorphic continuation to an open neighborhood
of a window W ⊂ C. Then the visible complex dimensions of G (relative to W ) are the poles
in W of the meromorphic continuation of ζG . The resulting set of visible complex dimension is
denoted by DG(W):

DG(W) := {z ∈ W | ζG has a pole at z}.

If W = C, then we simply write DG for DG(C) and call the elements of DG the complex dimen-
sions of G.

It follows that the set of complex dimensions of G, the Cayley graph of F2, is given by

DG = {1} ∪ {
DG + √−1 · k · p

∣∣ k ∈ Z
}
,

where, in the terminology of [29,30], DG := log 3/ log 2 is the Minkowski dimension of G and
p := 2π/ log 2 is its oscillatory period.

Note that this is analogous both to what happens for self-similar strings (see [30, Section 2.3.1
and especially Chapter 3], where such strings are allowed to have dimension greater than 1), as
was mentioned earlier, and for the Sierpinski drum (see [30, Section 6.6.1]), viewed as a fractal
spray (more specifically, as the bounded, infinitely connected planar domain with boundary the
Sierpinski gasket). Indeed, it follows from [30, Eqs. (6.81) and (6.82)] that the set of (spectral)
complex dimensions of the Sierpinski drum is equal to {2} ∪ DG , with DG as in the last dis-
played equation. In our present situation, the value 1 appears naturally since it corresponds to
the dimension of any edge of the tree, while in [30], the additional value 2 occurs because the
Sierpinski drum is viewed as embedded in R

2.

Remark 7.15. More generally, choose a suitable window W contained in the half-plane
Re(z) > 0. We deduce from the discussion following Definition 7.12 that the zeta function ζG(z)

of any p-summable tree G (as in Theorem 7.10) is given by

ζG(z) := g(z) · ζL(z) · ζ(z) = g(z) · ζν(z).
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Here, g(z) is an entire function which is nowhere vanishing in W and ζL(z) is the meromorphic
continuation to W of the geometric zeta function

∑
e∈E �(e)z of the fractal string L = LG :=

{�e}e∈E associated with G. Furthermore, ζν(z) := ζL(z) · ζ(z) is the spectral zeta function of L
([27,32], and [30, Theorem 1.19]). In particular, we have

DG(W) = {1} ∪ DL(W),

where DL(W) is the set of visible complex dimension of L (as in Definition 7.14).

8. The Sierpinski gasket: Hausdorff measure and geodesic metric

The Sierpinski gasket is well known and is described in many places. In particular, it is a
connected fractal subset of the Euclidean plane R

2; in fact, it can be viewed as a continuous
planar curve which is nowhere differentiable. We refer the reader to the books by Barlow, Edgar,
and Falconer [1,12,13,15], which all contain good descriptions and a lot of information about
this fractal set. The gasket can be obtained in many ways. The most common is probably the
one, illustrated in Fig. 4, where one starts with a solid equilateral triangle in the plane and cut out
one open equilateral triangle of half size, and then continue to cut out open triangles of smaller
and smaller sizes. Hence, in the nth step, one cuts away 3n−1 open equilateral triangles with side
length equal to 2−n that of the original one.

In our present study, we would rather like to consider a construction where the Sierpinski
gasket, denoted from now on by SG, is obtained as the closure of the limit of an increasing se-
quence of sets in R

2. This means that we take as a starting point an equilateral triangle, but not
solid anymore; just its border, consisting of the 3 sides, and the three vertices. We call this figure
SG0. The next figure, SG1, is obtained by adding another triangle of half size, and turned upside
down relative to SG0, and so on. This procedure is well known, and illustrated in Fig. 1 in the
introduction. We are not so much interested in the algorithm used to construct the Sierpinski gas-
ket. Instead, our goal is to describe the topological properties of the gasket via noncommutative
methods. From this point of view, it seems better to describe SG1 as consisting of 3 equilateral
triangles of half size and glued together at 3 points. Clearly, the set SG0 is still in a natural way
a subset of SG1. The following figure SG2 then consists of 32 triangles of size 2−2 of SG0, and
they are glued together at 3 + 32 points. And finally, SGn consists of 3n triangles, each shrunken
to a size 2−n of the starting one, and glued together at 3(3n − 1)/2 points. Figures 1 and 4 illus-
trate, when compared, the well-known fact that the closure of the union of the sets SGn equals the
intersection of the decreasing sequence of the sets, which are obtained via the cutting procedure.

There are, of course, identifications between points in the figures such that each figure SGn

is a subset of the next one SGn+1, but this will be taken care of by the construction of a spectral
triple for C(SG) as a direct sum of triples associated to each of the triangles which appear in any

Fig. 4. The first 3 steps in the standard construction of the Sierpinski gasket.
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of the figures SGn. The advantage of this way of constructing a spectral triple for the Sierpinski
gasket is that it keeps track of the holes in the gasket.

We will use a circle as the basis for the construction of an unbounded Fredholm module
for each of the triangles contained in SGn, and then ultimately obtain a spectral triple for the
Sierpinski gasket. In order to avoid using too many π ’s, we fix the side length of SG0 to 2π/3.
The perimeter of each triangle which is used to form SGn is then 2π/2n. We will think of each
of the triangles shown above as having a horizontal edge. Further, we will introduce a natural
parameterization of each triangle in SGn by using the right-hand corner on the bottom line as
the starting point and then run counterclockwise by arclength. In this way, we get for each such
triangle in SGn an isometry of the circle of radius 2−n onto this triangle, when both are equipped
with arclength as metric. We will now introduce a numbering of the triangles which go into this
construction and also define the associated spectral triples.

Definition 8.1.

(i) Given n in N0, choose a numbering of the 3n triangles of size 2−n which form SGn, and let
Δn,i , i ∈ {1,2, . . . ,3n}, denote the numbered triangles.

(ii) Let, for each n in N0 and each i in {1, . . . ,3n}, the mapping rn,i : [−2−nπ,2−nπ] → Δn,i

be defined such that rn,i(0) equals the lower right-hand corner of Δn,i and the mapping
is an isometry, modulo 21−nπ , of this interval onto the triangle Δn,i equipped with the
geodesic distance as metric, and the counterclockwise orientation. The mapping rn,i induces
a surjective homomorphism Φn,i of C(SG) onto C([−2−nπ,2−nπ]) by

∀t ∈ [−2−nπ,2−nπ
]
,∀f ∈ C(SG) : Φn,i(f )(t) := f

(
rn,i (t)

)
.

(iii) Let, for each n in N0 and each i in {1, . . . ,3n}, the unbounded Fredholm module
STn,i(SG) := (C(SG),Hn,i ,Dn,i) for SG be given by
(1) Hn,i := H2−n (see Definition 2.1);
(2) the representation πn,i : C(SG) → B(Hn,i) is defined for f in C(SG) as the multiplica-

tion operator which multiplies by the function Φn,i(f ).
(3) Dn,i := Dt

2−n (Definition 2.2).

Theorem 8.2. The direct sum of all the unbounded Fredholm modules STn,i(SG) for n in N0
and i in 1, . . . ,3n gives a spectral triple for SG. This spectral triple is denoted ST(SG) =
(C(SG),HSG,DSG), and it is s-summable if and only if s > log 3/ log 2. Hence, its metric
dimension is equal to log 3/ log 2, which is also the Minkowski (as well as the Hausdorff ) di-
mension of the Sierpinski gasket.

Proof. As usual, we have to prove that the algebra of continuous functions on SG, which have
bounded commutators with the Dirac operator DSG , is dense in C(SG). As before, it is enough
to show that this algebra separates the points in SG. In this case, our task is easy. We just remark
that the real-valued linear functions on R

2 separate points and we will prove that any real-valued
linear functional on R

2, say ψ(x, y) = ax + by, has the property that its restriction to SG has a
bounded commutator with the sum of the Dirac operators. We will think of each of the triangles
shown above as having an horizontal edge, as before. Moreover, we will consider a Euclidean
coordinate system such that the x-axis is also horizontal. Let us then consider the composition
of ψ with any of the parameterization mappings rn,i . This yields a continuous 21−nπ -periodic
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function, say f , on the interval [−2−nπ,2−nπ] or rather on R, which is affine on the intervals
[−21−nπ/3,0], [0,21−nπ/3], [−2−nπ,−21−nπ/3], and [21−nπ/3,2−nπ]. The slopes of all the
functions ψ ◦ rn,i will belong to the set

S :=
{
a,

−a + b
√

3

2
,
−a − b

√
3

2

}
.

Note that S is independent of both n and i. According to Lemma 2.3, for each pair n, i

the function ψ ◦ rn,i is in the domain of Dn,i and ‖[πn,i(f ),Dn,i]‖ � max(S). Hence,
‖[πSG(f ),DSG]‖ � max(S) and we have proven that the restriction of any affine function f
on R

2 to SG has the property that ‖[πSG(f ),DSG]‖ is bounded.
In order to check that (D2

SG + I )−1 is compact and establish its summability properties, we
compute for each n ∈ N0 the set of eigenvalues En of DSG , which are added on in the nth step.

n = 0: E0 = {(2k + 1)/2 | k ∈ Z}, each of multiplicity 1 = 30.

n > 0: En = {2n−1(2k + 1) | k ∈ Z}, each of multiplicity 3n.

(Note that the formula for En(n > 0) is valid for n = 0 as well. However, by scaling, it is
naturally derived from that for E0.)

Now that we know the eigenvalues, we can compute the trace of the operator |DSG |−z for
a given complex number z, and we will in the next theorem show that the trace is finite for
Re(z) > log 3/ log 2. �
Remark 8.3. It is well known that the Sierpinski gasket has Minkowski and Hausdorff dimen-
sions equal to log 3/ log 2. Indeed, it follows from the fact that SG is a self-similar set satisfying
the Open Set Condition and can be constructed out of 3 similarity transformations each of scaling
ratio 1/2. (See e.g. [15, Chapter 9].)

Theorem 8.4. Let ζ(z) denote the Riemann zeta function. Then, for any complex number z such
that Re(z) > log 3/ log 2,

tr
(|DSG |−z

) = 2z+1 · 1 − 2−z

1 − 3 · 2−z
· ζ(z).

Moreover, for any Dixmier trace Trω on B(HSG), we have

Trω
(|DSG |− log 3

log 2
) = 4

log 3
· ζ

(
log 3

log 2

)
.

Proof. We recall here the formula (1) from page 65:

∞∑
k=0

(2k + 1)−z = (
1 − 2−z

) · ζ(z).

Hence, for Re(z) > log 3/ log 2 we deduce that
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tr
(|DSG |−z

) =
∑
n∈N0

∑
k∈Z

3n2−nz|k + 1/2|−z

=
∑
n∈N0

3n2−nz
∑
k∈Z

2z|2k + 1|−z

= 2z

1 − 3 · 2−z
· 2 ·

∞∑
k=0

|2k + 1|−z

= 2z+1 · 1 − 2−z

1 − 3 · 2−z
· ζ(z).

Then, by Proposition 4 on page 306 in [6], we obtain

Trω
(|DSG |− log 3

log 2
) = lim

x→1+(x − 1) tr
((|DSG |− log 3

log 2
)x)

= lim
x→1+(x − 1) · 2x

log 3
log 2 +1 · 1 − 2−x

log 3
log 2

1 − 3 · 2−x
log 3
log 2

· ζ
(

x
log 3

log 2

)

= lim
x→1+

x − 1

1 − 31−x
2
(
3x − 1

) · ζ
(

x
log 3

log 2

)

= 4

log 3
· ζ

(
log 3

log 2

)
.

We note that it is also possible to compute the classical limit expression for the Dixmier trace
of a measurable operator, obtained as the limit as N → ∞ of (1/ logN)

∑N−1
j=0 |λj |−(log 3/ log 2),

where (λj )
∞
j=1 are the characteristic values (here, the eigenvalues) of the given compact operator,

written in nonincreasing order. �
Remark 8.5. The zeta function of the Sierpinski gasket can now be defined for Re(z) >

log 3/ log 2 by ζSG(z) := tr(|DSG|−z). In view of Theorem 8.4, it has a meromorphic contin-
uation to all of C and is given by

ζSG(z) = 2z+1 · 1 − 2−z

1 − 3 · 2−z
· ζ(z), for z ∈ C.

It also follows from the foregoing formula that the zeta function of the Sierpinski gasket (as de-
fined just above) and the zeta function for the Cayley tree given in Example 7.13 are proportional
modulo the function h(z) = πz ·2z−2. Hence, they have the same set of complex dimensions (see
Section 7.1), given by

DSG = {1} ∪ {
DSG + √−1 · k · p

∣∣ k ∈ Z
}
,

where DSG := log 3/ log 2 is the Minkowski dimension of the gasket and p := 2π/ log 2 is its os-
cillatory period. This is in agreement with a conjecture made in [28, Section 8], when discussing
the ‘geometric complex dimensions’ of the gasket. We note, however, that the value 1 was not
included in [28] but appears naturally in our context since it corresponds to the dimension of the
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boundary of any of the holes (circles or triangles) of the gasket. Following [28], we may refer to
DSG as the set of geometric complex dimensions of the Sierpinski gasket.

A Dixmier trace, Trω, on B(HSG) induces a positive linear functional, τ , on C(SG), as stated
in [6, Proposition 5, Chapter IV.2], and proved in [4]. It turns out that τ is a nonzero multiple
of the integral with respect to the Hausdorff measure, say μ, on the Sierpinski gasket (see e.g.
[20,21], or [39]), which, in turn, has a very natural description in terms of functional analytic
concepts. To show this, we will first give a description of the Hausdorff integral, which can be
used to establish the proportionality between τ and the Hausdorff measure (or rather, integral).
Having this to our disposal, we can deduce from the second part of Theorem 8.4 that for any
continuous function f on the gasket, we have

τ(f ) := Trω
(
πSG(f )|DSG |− log 3

log 2
) = 4

log 3
· ζ

(
log 3

log 2

)
·
∫
SG

f (x)dμ(x).

In order to establish this relation, we will use the description of the gasket as an increasing
sequence SGn of graphs, but this time we will, for a given nonnegative integer n, focus on the set
consisting of the 3n+1 midpoints of the sides in the 3n triangles Δn,i of size 21−nπ/3 contained
in SGn. We refer the reader to Fig. 1 in the introduction for the pictures of the first few sets SGn

and now begin the formal description.
The triangles in SGn are denoted {Δn,i | 1 � i � 3n} and we denote the midpoints of a triangle

Δn,i by {xn,i,j | 1 � j � 3}. For any natural number n, we then define a positive linear functional
ψn of norm 1, a state, on C(SG) by

∀f ∈ C(SG): ψn(f ) := 3−(n+1)
3n∑
i=1

3∑
j=1

f (xn,i,j ).

Proposition 8.6. Let μ denote the Hausdorff probability measure on the Sierpinski gasket SG
and let ψ denote the state on C(SG) defined by

∀f ∈ C(SG): ψ(f ) :=
∫
SG

f (t)dμ(t).

Then the sequence of states (ψn)n∈N converges to ψ in the weak*-topology on the dual of C(SG).

Proof. We will first show that for each complex continuous function f on SG, the sequence
(ψn(f ))n is a Cauchy sequence. This follows from the fact that any such function f is uniformly
continuous and the points xn,i,j are evenly distributed on the gasket. To be more precise, let
ε > 0 be given, then choose, by the uniform continuity of f , an n0 in N so large that for each
h in {1, . . . ,3n0} and any two points x, y in SG which are inside or on the triangle Δn0,h, we
have |f (x) − f (y)| � ε. Let then n be a natural number bigger than n0 and let us consider the
average, say νn

n0,h
(f ), of the values f (xn,i,j ) over all the midpoints xn,i,j from SGn which are

on the border or inside the triangle Δn0,h. Then the estimate for the variation of f over the points
inside or on Δn0,h implies that
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∣∣∣∣νn
n0,h

(f ) − f (xn0,h,1) + f (xn0,h,2) + f (xn0,h,3)

3

∣∣∣∣ � ε.

We can then establish the Cauchy property by using the following inequalities:

∀n � n0:
∣∣ψn(f ) − ψn0(f )

∣∣ =
∣∣∣∣∣3−n0

3n0∑
h=1

(
νn
n0,h

(f ) − f (xn0,h,1) + f (xn0,h,2) + f (xn0,h,3)

3

)∣∣∣∣∣
� ε.

This shows that the sequence (ψn)n∈N is weak*-convergent to a state, say φ, on C(SG). By
construction, it is clear that φ is self-similar with respect to the basic affine contractions which
define Sierpinski’s gasket, as described for instance by Strichartz in [39]. Hence, φ = ψ and the
proposition follows. �

Having this to our disposal, we can establish the claimed relationship between τ and ψ.

Theorem 8.7. Let τ be the functional on C(SG) given by

τ(f ) := Trω
(
πSG(f )|DSG |− log 3

log 2
)

and μ the Hausdorff probability measure on SG. Then, for any continuous complex-valued func-
tion f on SG, we have

τ(f ) = 4

log 3
· ζ

(
log 3

log 2

)
·
∫
SG

f (x)dμ(x) = 4

log 3
· ζ

(
log 3

log 2

)
· ψ(f ).

Proof. Let f be a continuous real-valued function on SG and ε > 0 a positive real number.
Let us then go back to the proof of Proposition 8.6 and choose n0 ∈ N and, for n > n0 and
h ∈ {1, . . . ,3n0}, define νn

n0,h
(f ) as above. We then restrict our attention to the portion of the

Sierpinski gasket which is contained inside or on the triangle Δn0,h and denote this space by
SGn0,h. It follows that for the function which is constant 1 on SGn0,h, say In0,h, and for fn0,h the
analogous restriction of f , we have in the natural ordering on C(SGn0,h),

(
νn
n0,h

(f ) − ε
)
In0,h � fn0,h �

(
νn
n0,h

(f ) + ε
)
In0,h.

For each h ∈ {1, . . . ,3n0}, we can naturally define a spectral triple for SGn0,h by deleting all the
summands of ST(SG) which are based on triangles outside Δn0,h. To any such triple, we can
associate a corresponding functional τn0,h and we get

τ(f ) =
3n0∑
h=1

τn0,h(fn0,h) and τn0,h(In0,h) = 3−n0τ(I ).

Since τ is a positive functional, the inequalities above give
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3n0∑
h=1

(
νn
n0,h

(f ) − ε
)(

3−n0τ(I )
)
� τ(f ) �

3n0∑
h=1

(
νn
n0,h

(f ) + ε
)(

3−n0τ(I )
)
,

where I is the identity for the algebra of continuous functions on SG. If we then go back to the
proof of Proposition 8.6, we see that

∣∣∣∣∣ψ(f ) − 3−n0

3n0∑
h=1

νn
n0,h

(f )

∣∣∣∣∣ � ε, so
∣∣τ(I )ψ(f ) − τ(f )

∣∣ � τ(I )ε.

By the second part of Theorem 8.4, we know that

τ(I ) = 4

log 3
· ζ

(
log 3

log 2

)
,

and the theorem follows. �
Remark 8.8. In [17], Guido and Isola have associated a spectral triple to a general self-similar
fractal in R. For such a spectral triple, they proved the same type of result as the one stated in The-
orem 8.7. It is possible that their proof of [17, Lemma 4.10], can be adapted to our present case,
from which Theorem 8.7 would then follow by using the uniqueness of a normalized self-similar
measure on the gasket having the same homogeneity as the (log 3/ log 2)-Hausdorff measure.
However, since the functional ψ of Theorem 8.6 offers a nice description of the Hausdorff mea-
sure on the Sierpinski gasket, we have preferred to give a direct argument which shows that the
positive functionals τ and ψ on C(SG) are proportional.

Remark 8.9. In the more delicate context of standard analysis on fractals, Kigami and Lapidus
identify in [22] the volume measure constructed in [27] via a Dixmier trace functional. In par-
ticular, they show that this measure is self-similar but is not always proportional to the natural
Hausdorff measure on the self-similar fractal, even when the measure maximizes the spectral
exponent (i.e., is an analogue of ‘Riemannian volume,’ in the sense of [27,28]). In the latter case,
however, and for the special case of the standard Sierpinski gasket, it does coincide with the
natural Hausdorff measure, pointing to some possible connections or analogies between the two
points of view.

We will now discuss the concept of geodesic distance on SG and then show that it can actually
be measured by the metric induced by the spectral triple ST(SG). The geodesic distance between
two points p and q on the gasket is denoted dgeo(p, q), and it is defined as the minimal length of a
rectifiable continuous curve on the gasket connecting p and q . This metric on the gasket is studied
in Barlow’s lecture notes [1] and from page 13 of these notes we quote the proposition below,
which shows that the geodesic metric on the gasket is Lipschitz equivalent to the restriction of
the Euclidean metric. In particular, the geodesic metric induces the standard topology on the
gasket.

Proposition 8.10. Let p,q be arbitrary points in SG and let ‖p − q‖ denote their Euclidean
distance. Then

‖p − q‖ � dgeo(p, q) � 8‖p − q‖.
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We have not found an easy way to give an analytic expression of the geodesic distance between
two arbitrary points in the gasket, but the distance from a corner point, a vertex, in SG0 to an
arbitrary point in SG can be precisely expressed in terms of barycentric coordinates, as we now
show.

Lemma 8.11. Let v1, v2, v3 be the vertices of SG0. For any point p in SG, let (x, y, z) denote the
barycentric coordinates of p with respect to v1, v2, v3. Then the geodesic distance in SG from v1
to p is y + z.

Proof. Since the Euclidean metric is equivalent to the geodesic metric, and the function which
assigns barycentric coordinates to a point is continuous with respect to these metrics, we see that
it is enough to prove the statement for a point p which is a vertex in one of the triangles from
one of the sets SGn where n is in N. Let then n in N be fixed and let p denote a vertex in SGn,

and let us consider paths in SGn which connect v1 to p; we will then show that a geodesic curve
can be obtained inside SGn. Any path from v1 to p in SGn will be a sum of steps, each of which
will be a positive multiple of one of the following 6 vectors, which all have length 2π/3.

v2 − v1, v1 − v2, v3 − v1, v1 − v3, v3 − v2, v2 − v3.

When p = (x, y, z) in barycentric coordinates, we have p = v1 + y(v2 − v1) + z(v3 − v1); so
it must follow that the geodesic distance between v1 and p is at least y + z. On the other hand, it
is possible, via a little drawing, to see that SGn contains a path of length y + z between v1 and p.

The geodesic distance between v1 and p is then y + z, and this result extends to a general point
p in SG, by continuity. �

Let us then consider the geodesic distance between two arbitrary, but different, points p and q .
In order to describe a way to compute this distance, we will look at the other picture of SG, as
the limit of a decreasing sequence, say Fn, of compact subsets of the largest solid triangle,
as depicted in Fig. 4. For any nonnegative integer n, Fn is the union of 3n equilateral solid
triangles, say {Tn,k | 1 � k � 3n}, with side length 2−n2π/3. In order to determine the geodesic
distance between p and q , we determine the largest number n0 ∈ N0 for which there exists a k0
in {1,2, . . . ,3n0} such that both p and q belong to Tn0,k0 . From the solid triangle Tn0,k0 remain
3 solid triangles, say Tn0+1,k1 , Tn0+1,k2 , Tn0+1,k3 , in the next step of the iterative construction.
By assumption, p and q must lie in two different of these smaller triangles, say Tn0+1,k1 and
Tn0+1,k2 . Hence, any path from p to q must run from p to a vertex in Tn0+1,k1 . We can then use
Lemma 8.11 to measure the length of this part of the path. The vertex we have arrived at may, or
may not, be in Tn0+1,k2 too. In the first case, we can measure the distance from the corner to q ,
again using Lemma 8.11. In the second case, the corner of Tn0+1,k1 at which we have arrived
must be directly connected to a corner of Tn0+1,k2 via a side of the third triangle Tn0+1,k3 . This
side has length 2−(n0+1)2π/3, and this edge will bring us to a corner in Tn0+1,k2 , from where
we can measure the distance to q on the basis of Lemma 8.11. This observation has several
consequences, some of which we will formulate in the next results.

Lemma 8.12. Let q be a point in SG and let g be the continuous function on SG defined by
g(p) = dgeo(p, q). Then, for any continuous curve rn,i which parameterizes a triangle in the
gasket, we have ‖[Drn,i

, πrn,i
(g)]‖ � 1.
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Proof. Let us return to the introductory example in Lemma 8.11 and suppose for simplicity that
q is the vertex v1. Given an edge, say e, in a triangle Δn,i , which is parameterized by one of
the functions rn,i , then there are only 3 possibilities for the slope of the edge, since it must be
parallel to one of the edges of the big triangle. Following Lemma 8.11, we therefore deduce that
in this case where q = v1, we must have

∃β ∈ R, ∃α ∈ {−1,0,1}: rn,i (t) ∈ e ⇒ g
(
rn,i(t)

) = dgeo
(
rn,i(t), v1

) = αt + β.

According to Lemma 2.3, such a function is in the domain of all the operators Dn,i, and we
see that the derivative is numerically bounded by 1. We will now establish a similar result for a
general point q. This situation is discussed in the text just in front of this lemma and it follows
from there that the function g(rn,i(t)) has to be modified by an additive constant, which measures
the geodesic distance from q to one of the endpoints of the edge e. When rn,i(t) passes along
the edge e, the geodesic distance from q may reach an extremal value in the interior of the edge,
and the slope may change, but still be in the set {−1,0,1}. Hence, according to Lemma 2.3,
we deduce that the derivative of g(rn,i(t)) exists almost everywhere and is numerically bounded
by 1, and by the same lemma we get ‖[Drn,i

, πrn,i
(g)]‖ � 1. �

Theorem 8.13. The metric on the Sierpinski gasket, dSG, induced by the spectral triple
(C(SG),HSG,DSG), coincides with the geodesic distance on SG.

Proof. As before, let N = {f ∈ C(SG) | ‖[DSG,πSG(f )]‖ � 1}. Then Lemma 8.12 shows that
all the functions of the form g(p) = dgeo(p, q) belong to N . We therefore have

∀p,q ∈ SG: dgeo(p, q) � dSG(p, q).

The other inequality is an application of the fundamental theorem of calculus. Let points p,q in
SG be given and let f be in N . Then f is continuous and for any ε > 0 there exists a natural
number n and vertices v,w in SGn such that

dgeo(p, v) + dgeo(q,w) + ∣∣f (p) − f (v)
∣∣ + ∣∣f (q) − f (w)

∣∣ < ε. (2)

Let us then look at |f (v) − f (w)| and show that this quantity is at most dgeo(v,w). We will
therefore consider a path along some of the edges of some of the triangles Δn,i connecting
v and w inside SGn. Since f is in N , it follows from Lemma 2.3 that the derivative of the
induced function f (rn,i(t)) corresponding to an edge in Δn,i is a measurable function which is
numerically bounded by 1 almost everywhere. We can then express f (v) − f (w) as a sum of
line integrals. Each of these integrals is numerically bounded from above by the length of the
path over which the integration is performed; so |f (v) − f (w)| is dominated by the length of
any path in SGn connecting s and t . This implies that

∣∣f (v) − f (w)
∣∣ � dgeo(v,w)

and, by Eq. (2),

∣∣f (p) − f (q)
∣∣ � dgeo(p, q) + ε.
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From here we see that

dSG(p, q) = sup
f ∈N

∣∣f (p) − f (q)
∣∣ � dgeo(p, q),

and the theorem follows. �
9. Concluding remarks

We close this paper by indicating several possible extensions or directions of future research
related to this work, some of which may be investigated in later articles:

(i) exploring the possibility of associating to other fractals built on curves spectral triples which
are based on a direct sum of r-triples and describing the topological and geometric proper-
ties of those fractals;

(ii) investigating the geometric and topological properties of the Sierpinski gasket described by
the spectral triples based on some other possible direct sums of spectral triples for circles;

(iii) extending connections and/or relations to other known constructions of differential oper-
ators on the Sierpinski gasket and other self-similar fractals, especially in some of the
approaches to analysis on fractals expounded, for example, in [1] and [20], either probabilis-
tically or analytically. In particular, investigating some of the open problems or conjectures
proposed within that framework in [27,28], and aimed at merging aspects of fractal, spectral
and noncommutative geometry;

(iv) studying the differential operators (including ‘Laplacians’) connected to the Dirac-type op-
erators constructed in this paper, as well as of the solutions of partial differential equations
naturally associated to them;

(v) looking at the Sierpinski gasket via the ‘harmonic coordinates’ attached to the Laplacian
Δ associated to our Dirac operator D (namely, −Δ = D2), or to a suitable modification
thereof. (See e.g. [40,41] and the relevant references therein for the analogous situation
involving the usual Laplacian on the gasket.);

(vi) looking for further applications of the spectral triples as a tool for computing invariants of
algebraic topological type for the Sierpinski gasket and other fractals.

We now explain more precisely what we mean by item (ii):
We first recall the construction where the Sierpinski gasket is obtained as the limit of an

increasing sequence of sets in R
2 (see Fig. 1). We take as a starting point an equilateral triangle

with side length 2π/3 and we call it SG0. The next figure, SG1, is obtained by adding another
triangle of half size, and turned upside down relative to SG0, and so on. This means that SG1
consists of SG0, and 1 equilateral triangle of size 2−1 of SG0. The following figure SG2 then
consists of SG0, 1 equilateral triangle of size 2−1 of SG0, and 3 of size 2−2 of SG0. And finally,
SGn consists of SG0, 1 equilateral triangle of size 2−1 of SG0, 3 of size 2−2 of SG0, and so
on up to 3n−1 triangles of size 2−n that of the starting one. We will use a circle as the basis
for the construction of a spectral triple for each of the triangles contained in SGn as n → ∞,
and then ultimately obtain a spectral triple for the Sierpinski gasket in the same way as it was
done in Section 8 of the present article. Another possibility is to use a circle as the basis for
the construction of a spectral triple for each of the triangles considered in Section 8, as well as
each of the triangles considered just above, and then ultimately obtain a spectral triple for the
Sierpinski gasket in the same way as it was done in Section 8.
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Next, in the special case of the Sierpinski gasket, we elaborate on item (vi) above regarding
the computation of topological invariants:

The spectral triple ST(SG) has been constructed in such a way that the theory of [6, Sec-
tions IV.1 and IV.2], will yield nontrivial topological information. The details of this will appear
in a later article, but to indicate what sort of results we have in mind, we will just describe
the bounded Fredholm module (K-cycle) which one can obtain from ST(SG) = (C(SG),HSG
(together with πSG),DSG). The unitary part, FSG , of the polar decomposition of the Dirac
operator DSG gives a bounded odd Fredholm module (πSG,HSG,FSG), see [6, Chapter IV,
Section 2] and [38]. The pairing with K1(SG) can then be obtained in the following way. Let
FSG = P+ − (I − P+), where P+ is the orthogonal projection of HSG onto the eigenspace cor-
responding to the positive eigenvalues of DSG, and let f be a continuous function on SG which
has the property that πSG(f ) is invertible, i.e. min{|f (x)| | x ∈ SG} > 0. Then the equicontinu-
ity of f will imply that there exists a natural number, say n0, such that for any n � n0 and any
triangle Δn,i of size 2−n that of the original one, the function f has winding number 0 along
Δn,i . This implies that the operator P+πSG(f )P+ has a finite index which actually is the op-
posite number to the sum of all the winding numbers over all the triangles Δj,h for 0 � j < n0
and h ∈ {1, . . . ,3j }. This is a rather obvious extension of well-known results for the circle, but
we think that also the newer invariants related to the cyclic cohomology of the gasket may be
expressed via the spectral triple ST(SG).
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