## Math 172 - HW 3 due April 14

## April 7, 2015

- 1. Exercise 2 from Section 2.2. In class today we defined the a "graded lexicographic" order on the set of monomials in  $F[x_1, \ldots, x_n]$ . Given a polynomial  $f \in F[x_1, \ldots, x_n]$ , we say that its leading term (denoted LT(f)) is the "largest" nonzero term of f, where "large" is with respect to the order on monomials. This exercise proves a useful property of leading terms that we will need to prove the Fundamental Theorem of Symmetric Polynomials.
- 2. Exercise 7 from Section 2.2. To clarify,  $\sigma \cdot f \in F[x_1, \ldots, x_n]$  is the polynomial defined by  $\sigma \cdot f = f(x_{\sigma(1)}, \ldots, x_{\sigma(n)})$ .
- 3. Exercise 8 from Section 2.2. Here a rational function  $\phi \in F(x_1, ..., x_n)$  is symmetric if  $\sigma \cdot \phi = \phi$  for any  $\sigma \in S_n$ , where  $\sigma \cdot \phi$  is defined by permuting the variables according to  $\sigma$ .