HW 2 due April 20

1. The goal of this question is to prove that if $\phi \in F(x_1, \ldots, x_n)$ is symmetric, then ϕ is a rational function in $\sigma_1, \ldots, \sigma_n$ with coefficients in F. To start, we know that $\phi = A/B$, where A and B are in $F[x_1, \ldots, x_n]$. Note that A and B need not be symmetric - we are only assuming that the quotient is!

To help us along, consider the polynomial

$$C = \prod_{\sigma \in S_n \setminus \{e\}} \sigma \cdot B.$$

- (a) Show that BC is a symmetric polynomial.
- (b) Show that AC is also a symmetric polynomial.
- (c) Use the previous parts to show that ϕ is indeed a rational function in the elementary symmetric polynomials with coefficients in F.
- 2. Let the roots of $y^3 + y^2 3y + 5$ be $\alpha, \beta, \gamma \in \mathbb{C}$. Find polynomials with integer coefficients with the following roots:
 - (a) $\alpha\beta$, $\alpha\gamma$, and $\beta\gamma$.
 - (b) $\alpha + 1, \beta + 1$, and $\gamma + 1$.
 - (c) α^2, β^2 , and γ^2 .
- 3. Let $f = x^3 x + 1 \in \mathbb{F}_3[x]$. Show that f is irreducible over \mathbb{F}_3 . Let L be the splitting field of f over \mathbb{F}_3 . Compute the degree $[L : \mathbb{F}_3]$ and the number of elements in L.
- 4. Determine the splitting field and its degree over \mathbb{Q} for $x^4 + x^2 + 1$.