HW 6 due May 25

In class we discussed the cubic $x^3 + x^2 - 2x - 1$, which has three real roots (and Galois group $\mathbb{Z}/3$). One can express these real roots in terms of a radical expression as follows:

$$x_1 = -\frac{1}{3} + z_1 + z_2$$

$$x_2 = -\frac{1}{3} + \omega z_1 + \omega^2 z_2$$

$$x_1 = -\frac{1}{3} + \omega^2 z_1 + \omega z_2,$$

where z_1 is a cube root of $\frac{7}{2}(1+i3\sqrt{3})$ and $z_2=7/3z_1^{-1}$. These expressions heavily involve complex numbers to describe real numbers.

The goal of this homework is to show that, in this and most examples, one is *forced* to use complex numbers to express real roots in terms of radicals.

- 1. Suppose $\alpha \in \mathbb{C}$ is algebraic and let L be the Galois closure of the finite extension $\mathbb{Q}(\alpha)$ of \mathbb{Q} . Show that for any prime p dividing the order of $\operatorname{Gal}(L/\mathbb{Q})$, there is a subfield of L with [L:F]=p and $L=F(\alpha)$.
- 2. Let F be a subfield of the real numbers \mathbb{R} . Let a be an element of F and $K = F(\sqrt[m]{a})$, where m is a prime and $\sqrt[m]{a}$ denotes a real mth root of a. Prove that if L is any Galois extension of F contained in K then $[L:F] \leq 2$.
- 3. Let $f \in \mathbb{Q}[x]$ is an irreducible polynomial all of whose roots are real. Suppose that one of the roots α of f can be expressed in terms of *real* radicals, meaning: There is a 'radical' tower of extensions

$$\mathbb{Q} = K_0 \subset K_1 \subset \ldots \subset K_n \subset \mathbb{R},$$

such that $\alpha \in K_n$ and for each i, $K_{i+1} = K_i(\sqrt[m_i]{a_i})$ for some prime number m_i and some $a_i \in K_i$.

We will show that the Galois group of f is a 2-group!

Let $L \subset \mathbb{R}$ be the splitting field of f over \mathbb{Q} . For the sake of contradiction, let p be an odd prime that divides $[L:\mathbb{Q}]$.

- (a) Apply Problem 1 to get a subfield F of L with [L:F]=p and $L=F(\alpha)$. Consider the tower of extensions $K'_i=FK_i$ obtained from the one above by taking the compositum with F. Show that the new tower is again a 'radical' tower and each $[K'_{i+1}:K'_i]$ is either the prime m_i or 1.
- (b) Show that there exists an integer s such $\alpha \notin K'_{s-1}$, but $\alpha \in K'_s$.
- (c) Show that $K'_s = K'_{s-1}(\alpha)$.
- (d) Note that $F \subset L$ is Galois of degree p and use this to show that $K'_{s-1} \subset K'_s$ is Galois and of degree p.
- (e) Use Problem 2 applied to $K'_{s-1} \subset K'_s = K'_{s-1}(\sqrt[p]{a_{s-1}})$ to obtain our desired contradiction.