Math 131 Review Problems

January 7, 2015

Recall the definitions of: subspace, direct sum, span, linear (in)dependence, basis, dimension, linear transformation, kernel and image.

- 1. True/False: Determine which of the following statements are true. For each true statement, give a proof and for each false statement produce a counterexample.
 - (a) If V is a vector space and W is a subset of V that is a vector space, then W is a subspace of V.
 - (b) The empty set is a subspace of every vector space.
 - (c) If V is a vector space other than the zero vector space, then V contains a subspace W such that $W \neq V$.
 - (d) The intersection of any two subsets of V is a subspace of V.
 - (e) An $n \times n$ diagonal matrix can never have more than n nonzero entries.

If S_1 and S_2 are non-empty subsets of a vector space V, the **sum** of S_1 and S_2 , denoted $S_1 + S_2$, is the set $\{x + y | x \in S_1, y \in S_2\}$.

- 2. Let W_1 and W_2 be subspaces of a vector space V.
 - (a) Prove that $W_1 + W_2$ is a subspace of V that contains both W_1 and W_2 .
 - (b) Prove that any subspace of V that contains both W_1 and W_2 must also contain $W_1 + W_2$.
- 3. True/False: Determine which of the following statements are true. For each true statement, give a proof and for each false statement produce a counterexample.
 - (a) If S is a linearly dependent set, then each element of S is a linear combination of other elements of S.
 - (b) Any set containing the zero vector is linearly dependent.
 - (c) The empty set is linearly dependent.
 - (d) Subsets of linearly dependent sets are linearly dependent.
 - (e) Subsets of linearly independent sets are linearly independent.

- (f) If $a_1x_1 + a_2x_2 + \ldots + a_nx_n = 0$ and x_1, x_2, \ldots, x_n are linearly independent, then all the scalars a_i are zero.
- 4. True/False: Determine which of the following statements are true. For each true statement, give a proof and for each false statement produce a counterexample.
 - (a) Every vector space that is generated by a finite set has a basis.
 - (b) A vector space cannot have more than one basis.
 - (c) The dimension of $Mat_{m \times n}(\mathbb{F})$ is m + n.
- 5. Let W_1 and W_2 be subspaces of a vector space V having dimensions m and n, respectively, where $m \ge n$.
 - (a) Prove that $\dim(W_1 \cap W_2) \leq n$.
 - (b) Prove that $\dim(W_1 + W_2) \leq m + n$.
- 6. Show that the kernel and image of a linear transformation $T: V \to W$ are linear subspaces of V and W, respectively.
- 7. True/False: Determine which of the following statements are true. For each true statement, give a proof and for each false statement produce a counterexample. In what follows, V and W are finite-dimensional vector spaces (over \mathbb{F}) and T is a function from V to W.
 - (a) If T is linear, then T preserves sums and scalar products.
 - (b) If T(x+y) = T(x) + T(y), then T is linear.
 - (c) T is one-to-one if and only if $\{v \in V | T(v) = 0\} = \{0\}$.
 - (d) if T is linear, then $T(0_V) = 0_W$.
 - (e) If T is linear, then $\dim \ker(T) + \dim \operatorname{im}(T) = \dim(W)$.
 - (f) If T is linear, then T carries linearly independent subsets of V onto linearly independent subset of W.
 - (g) If $T, U: V \to W$ are both linear and agree on a basis of V, then T = U.
 - (h) Given $x_1, x_2 \in V$ and $y_1, y_2 \in W$, there exists a linear transformation $T: V \to W$ such that $T(x_1) = y_1$ and $T(x_2) = y_2$.