Math 132 - Final Review

March 10, 2015

- 1. As well as those from the midterm review sheet, you should also know the definitions of the following concepts:
 - 1. An inner product space on a real or complex vector space.
 - 2. The **norm** (or length) of a vector in an inner product space.
 - 3. What does it mean for a set of vectors to be **orthogonal**? **orthonormal**?
 - 4. The Gram-Schmidt procedure.
 - 5. The orthogonal subspace S^{\perp} for any subset $S \subset V$ of an inner product space.
 - 6. The **adjoint** $T^*: W \to V$ of a linear map $T: V \to W$ between inner product spaces V and W.
 - 7. The least squares approximation of a data set.
 - 8. A normal operator on an inner product space.
 - 9. A self-adjoint operator on an inner product space.
 - 10. A unitary operator on a complex inner product space.
 - 11. A orthogonal operator on a real inner product space.
- 2. Here are the main results that we have covered since the midterm. You also need to know the ones on the midterm review sheet. Assume throughout that V is an inner product space and that T is a linear operator on V.
 - (a) The Cauchy-Schwarz Inequality
 - (b) The Triangle Inequality
 - (c) **Orthogonal projection**: Let $W \subset V$ be a finite-dimensional subspace and $v \in V$:
 - There exist unique vectors $w \in W$ and $z \in W^{\perp}$ such that v = w + z.
 - If $\beta = \{v_1, \ldots, v_k\}$ is an orthonormal basis of W, then $w = \sum_{i=1}^k \langle v, v_i \rangle v_i$.
 - The vector w is the unique vector in W 'closest' to v in the sense that for any $u \in W$, $||v w|| \ge ||v u||$ and equality holds if and only if w = u.
 - (d) If V is finite-dimensional and W is a subspace of V, then

$$\dim(V) = \dim(W) + \dim(W^{\perp}),$$

- (e) Let V be a finite-dimensional over a field \mathbb{F} . Let $g: V \to \mathbb{F}$ be a linear map. Then there exists a unique vector $y \in V$ such that $g(x) = \langle x, y \rangle$ for all $x \in V$.
- (f) The adjoint of a linear map is a well-defined linear map.
- (g) Suppose V is finite-dimensional and β is an *orthonormal* basis for V. Then if T is a linear operator on V,

$$[T^*]_{\beta} = \overline{[T]^t_{\beta}}.$$

- (h) Assume V is finite-dimensional. If T has an eigenvector, then so does T^* . (Warning: This does not mean that an eigenvector of T is an eigenvector of T^* !)
- (i) Schur's Theorem: Assume V is finite-dimensional and that the characteristic polynomial of T splits (e.g., if V is complex). Then there exists an orthonormal basis $\beta = \{v_1, \ldots, v_n\}$ for V such that $[T]_{\beta}$ is upper-triangular.
- (j) If T is a normal operator, then
 - $||T(x)|| = ||T^*(x)||$, for all $x \in V$.
 - If x is an eigenvector of T, then x is also an eigenvector of T^* . In fact, if $T(x) = \lambda x$, then $T^*(x) = \overline{\lambda} x$.
 - If x_1, x_2 are eigenvectors with distinct eigenvalues, then $\langle x_1, x_2 \rangle = 0$.
- (k) Assume that V is a finite-dimensional *complex* inner product space. Then T is normal if and only if there exists an orthonormal basis for V consisting of eigenvectors of T.
- (1) Assume that T is self-adjoint. Then:
 - The eigenvalues of T are real,
 - The characteristic polynomial of T splits.
- (m) Assume that V is a finite-dimensional *real* inner product space. Then T is selfadjoint if and only if there exists an orthonormal basis for V consisting of eigenvectors of T.
- (n) Suppose that V is finite-dimensional. Then the following are equivalent:
 - $T^*T = I = TT^*$,
 - $\langle T(x), T(y) \rangle = \langle x, y \rangle$ for any $x, y \in V$.
 - for any orthonormal basis β for $V, T(\beta)$ is orthonormal,
 - there exists an orthonormal basis β for V such that $T(\beta)$ is orthonormal,
 - ||T(x)|| = ||x|| for any $x \in V$.
- (o) Assume that V is a finite-dimensional *real* inner product space. T is both selfadjoint and orthogonal if and only if there exists an orthonormal basis β of eigenvectors of T with eigenvalues equal to 1 or -1.
- (p) Assume that V is a finite-dimensional *complex* inner product space. T is unitary if and only if there exists an orthonormal basis β of eigenvectors of T with eigenvalues of absolute value 1.