Math 132 - HW 10 due February 20

February 13, 2015

Unless stated otherwise, we consider \mathbb{R}^n as an inner product space with respect to the dot product.

- 1. Let w be a non-zero vector in an inner product space V. For an arbitrary vector $v \in V$, express v as a sum of a vector orthogonal of w and a scalar multiple of w. In such a decomposition of v, we call the scalar multiple of w the orthogonal projection of v onto w.
- 2. Apply the Gram-Schmidt process to the given linearly independent subsets of inner product spaces.
 - (a) Let $V = \mathbb{R}^3$ and $S = \{(1, 0, 1), (0, 1, 1), (1, 3, 3)\}.$
 - (b) Let $V = \mathbb{R}^3$ and $S = \{(1, 1, 1), (0, 1, 1), (0, 0, 1)\}.$
 - (c) Let V be the vector space of polynomials over \mathbb{R} of degree at most two, endowed with the inner product $\langle f, g \rangle = \int_0^1 f(t)g(t) dt$, and $S = \{1, x, x^2\}$.
- 3. If $S \subset V$ is a subset of an inner product space, we denote by S^{\perp} the set

$$\{x \in V | \langle x, s \rangle = 0, \forall s \in S\}.$$

Prove that:

- (a) S^{\perp} is a subspace of V.
- (b) If $S_0 \subset S$, then $S^{\perp} \subset S_0^{\perp}$.
- (c) $S \subset (S^{\perp})^{\perp}$ and conclude span $(S) \subset (S^{\perp})^{\perp}$.
- (d) For any finite dimensional subspace $W \subset V, W = (W^{\perp})^{\perp}$.