Math 132 - HW 13 due March 4

February 25, 2015

- 1. True/False give a counterexample or proof!
 - (a) Every self-adjoint operator is normal.
 - (b) Operators and their adjoints have the same eigenvectors.
 - (c) The identity and zero operators are self-adjoint.
 - (d) Every normal operator is diagonalizable.
- 2. Let T be a linear operator on an inner product space V, and let W be a T-invariant subspace of V. Prove the following:
 - (a) If T is self-adjoint, then $T|_W$ is self-adjoint.
 - (b) W^{\perp} is a T^* -invariant.
 - (c) If W is both T- and T*-invariant, then $(T|_W)^* = (T^*)|_W$.
 - (d) If W is both T- and T^* -invariant and T is normal, then $T|_W$ is normal.
- 3. Let T be a normal operator on a finite-dimensional inner product space V. Prove that $\operatorname{Ker}(T) = \operatorname{Ker}(T^*)$ and $\operatorname{Im}(T) = \operatorname{Im}(T^*)$. Hint: for the second part use the equality $\operatorname{Im}(T^*) = \operatorname{Ker}(T)^{\perp}$ that you were asked to show on the previous homework.