Math 132 - HW 15 due March 9

March 2, 2015

- 1. True/False give a counterexample or proof!
 - (a) Every unitary operator is normal.
 - (b) Every orthogonal operator is diagonalizable.
 - (c) An operator is unitary if and only if it is invertible.
 - (d) The sum of unitary operators is unitary.
 - (e) If T is an orthogonal operator on V, then $[T]_{\beta}$ is an orthogonal matrix for any ordered basis β for V.
 - (f) The composition of any two unitary operators is unitary.
 - (g) Let U be a linear operator on a finite-dimensional inner product space V and β be an orthonormal basis for V. If ||U(x)|| = ||x|| for an $x \in \beta$, then U is unitary.
- 2. For $z \in \mathbb{C}$ define $T_z : \mathbb{C} \to \mathbb{C}$ by $T_z(u) = zu$. For which $z \in \mathbb{C}$ is T_z normal? self-adjoint? unitary?
- 3. Let U be a unitary operator on an inner product space V, and let W be a finitedimensional U-invariant subspace of V. Prove that
 - (a) U(W) = W,
 - (b) W^{\perp} is U-invariant.