Math 132 - HW 4 due January 21

January 14, 2015

- 1. (a) What is the definition of a diagonalizable linear operator T on a finite dimensional vector space V?
 - (b) What is the definition of a diagonalizable $n \times n$ -matrix?
 - (c) For each of the following matrices $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$, determine if A is diagonalizable (over \mathbb{R}), and if it is diagonalizable, find a matrix Q such that $Q^{-1}AQ$ is a diagonal matrix.

$$(a) \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \quad (b) \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}, \quad (c) \begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}$$
$$(d) \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}, \quad (e) \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{pmatrix}$$

- 2. True/False: Determine which of the following statements are true. For each true statement, give a proof and for each false statement produce a counterexample.
 - (a) Any linear operator on an n-dimensional vector space that has fewer than n distinct eigenvalues is not diagonalizable.
 - (b) Eigenvectors corresponding to the same eigenvalue are always linearly dependent.
 - (c) If λ is an eigenvalue of a linear operator T, then each element of the eigenspace E_{λ} is an eigenvector of T.
 - (d) If λ_1 and λ_2 are distinct eigenvalues of a linear operator T, then $E_{\lambda_1} \cap E_{\lambda_2} = \{0\}$.
 - (e) Let $A \in M_{n \times n}(\mathbb{F})$ and $\beta = \{v_1, \ldots, v_n\}$ be an ordered basis for \mathbb{F}^n consisting of eigenvectors of A. If Q is the $n \times n$ matrix whose *i*-th column is v_i $(1 \le i \le n)$, then $Q^{-1}AQ$ is a diagonal matrix.