# Math 132 - Midterm Review 

January 28, 2015

1. Here are definitions that you need to know. Items (1-14) you should have learned (at least seen!) in Math 132. After each item I have indicated the dependencies in brackets. For example, item two ends with [1], meaning that one needs to know the definition of a vector space to really understand the definition of a subspace. (I probably missed some further dependencies, but hopefully the ones I did catch will help you identify what you need to learn if there are things you don't understand.)
2. A vector space over a field $\mathbb{F}$.
3. A subspace of a vector space. [1]
4. A linear combination of a set of vectors in a vector space. [1]
5. The span of a set of vectors in a vectors space. [1-3]
6. A linearly independent/dependent set in a vector space. [1,3]
7. A basis of a vector space. [1-5]
8. The dimension of a vector space. [1-6]
9. A linear transformation $f: V \rightarrow W$ between two vector spaces $V$ and $W$. [1]
10. A linear operator on a vector space $V$. $[1,8]$
11. The kernel of a linear transformation. $[1,2,8]$
12. The image of a linear transformation. $[1,2,8]$
13. An isomorphism between two vector spaces. [1,2,8,10,11]
14. An invertible linear transformation. $[1,2,8,10,11,12]$
15. The matrix representation of a linear operator $T$ on a finite dimensional vector space $V$ in terms of an ordered basis $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$. [1-6,8]
16. An eigenvector of a linear operator $L: V \rightarrow V \cdot[1,8,9]$
17. An eigenvalue of a linear operator $L: V \rightarrow V .[1,8,9]$
18. The characteristic polynomial of an $n \times n$ matrix $A$. [determinants/row reduction]
19. The characteristic polynomial of a linear operator $L: V \rightarrow V$ on a finite dimensional vector space $V$. [1-6,8,9,14]
20. What does it mean for two matrices to be similar?
21. A diagonalizable matrix. [19]
22. A diagonalizable linear operator on a finite dimensional vector space. [1-6,8,14$16,18,19]$
23. The $\lambda$-eigenspace of a linear operator $L: V \rightarrow V$, where $\lambda$ is an eigenvalue of $L$. [1,2,8,9,10]
24. The multiplicity of a root of a polynomial.
25. The multiplicity of an eigenvector of a linear transformation. [1-6,8,9,14,18,23]
26. What does it mean for a polynomial $f(t) \in \mathbb{F}$ to split over $\mathbb{F}$ ?
27. An $L$-invariant subspace of a vector space $V$, where $L: V \rightarrow V$ is a linear operator on $V$. $[1,2,8,9]$
28. The restriction of a linear operator $L: V \rightarrow V$ to an $L$-invariant subspace. [1,2,8,9,26]
29. The $L$-cyclic subspace generated by a vector $v \in V$, where $L$ is a linear operator on a vector space $V$. $[1,2,8,9,26]$
30. Sum of subspaces and direct sum [1,2]
31. If $f(t) \in \mathbb{F}[t]$ is a polynomial and $T: V \rightarrow V$ is a linear operator, what does $f(T)$ mean? $[1,8,9]$
32. Here are the main results that we have covered and you should know.
(a) If $T$ is a linear operator on a vector space $V$ and $v_{1}, \ldots, v_{k}$ are eigenvectors with corresponding eigenvalues that are distinct, then $\left\{v_{1}, \ldots, v_{k}\right\}$ is linearly independent.
(b) The characteristic polynomial of any diagonalizable linear operator splits. (But if the characteristic polynomial splits it doesn't mean that the linear operator is is diagonalizable!)
(c) Let $T$ be a linear operator on a finite-dimensional vector space $V$, and let $\lambda$ be an eigenvalue of $T$ with multiplicity $m$. Then $\operatorname{dim}\left(E_{\lambda}\right) \leq m$.
(d) Let $T$ be a linear operator on a finite dimensional vector space $V$, then $T$ is diagonalizable if and only if both of the following conditions hold:

- The characteristic polynomial of $T$ splits, and
- For each eigenvalue $\lambda$ of $T$, the dimension of the $\lambda$-eigenspace $\operatorname{dim}\left(E_{\lambda}\right)$ is equal to the multiplicity of $\lambda$.
(e) Let $T$ be a linear operator on a finite-dimensional vector space $V$, and let $W$ be a $T$-invariant subspace of $V$. Then the characteristic polynomial of $\left.T\right|_{W}$ divides the characteristic polynomial of $T$.
(f) (The Cayley-Hamilton Theorem) Let $T$ be a linear operator on a finite-dimensional vector space $V$ over a field $\mathbb{F}$, and let $\chi_{T}(t) \in \mathbb{F}[t]$ denote the characteristic polynomial of $T$. Then $\chi_{T}(T)=0$, where the 0 on the right hand side denotes the zero transformation. In other words, $T$ "satisfies" its characteristic polynomial!

