Math 132 - HW 10

- 1. For each of the following, either prove that it defines an inner product on the given vector space or provide a reason why it does not.
 - (a) $\langle (a,b), (c,d) \rangle = ac bd$ on \mathbb{R}^2 .
 - (b) $\langle A, B \rangle = \operatorname{tr}(A + B)$ on $\operatorname{Mat}_{2 \times 2}(\mathbb{R})$. (Recall that the trace $\operatorname{tr}(A)$ of an $n \times n$ -matrix is the sum of its diagonal entries.)
 - (c) $\langle p,q\rangle = \int_0^1 p'(t)q(t)dt$ on $\mathcal{P}(\mathbb{R})$.
- 2. Suppose V is an inner product space, $T \in \mathcal{L}(V)$ is a linear operator and that for any $v \in V$,

$$||T(v)|| \le 2||v||.$$

Prove that T - 3I is invertible.