Math 132 - HW 14

- 1. Suppose that U and W are finite-dimensional subspaces of an inner product space V. Prove that $P_{W^{\perp}}P_U = 0$ if and only if $U \subset W$.
- 2. Let V be a finite-dimensional inner product space and let $P \in \mathcal{L}(V)$ be a linear operator such that $P^2 = P$. Prove that there exists a subspace U of V such that $P = P_U$ if and only if $\operatorname{null}(P) = (\operatorname{range}(T))^{\perp}$.