Math 132 - HW 17

- 1. True/False give a counterexample or proof!
 - (a) Every normal operator is self-adjoint.
 - (b) Operators and their adjoints have the same eigenvectors.
 - (c) The identity and zero operators are self-adjoint.
 - (d) Every normal operator is diagonalizable.
- 2. Let T be a linear operator on an inner product space V, and let W be a T-invariant subspace of V. Prove the following:
 - (a) If T is self-adjoint, then $T|_W$ is self-adjoint. ¹
 - (b) If W is both T- and T*-invariant, then $(T|_W)^* = (T^*)|_W$.
 - (c) If W is both T- and T*-invariant and T is normal, then $T|_W$ is normal.
- 3. Let T be a normal operator on a finite-dimensional inner product space V. Prove that $\operatorname{null}(T) = \operatorname{null}(T^*)$ and $\operatorname{range}(T) = \operatorname{range}(T^*)$. Hint: for the second part recall that $\operatorname{range}(T^*) = \operatorname{null}(T)^{\perp}$ and similarly with T replaced by T^* .

Here $T|_W: W \to W$ denotes the linear operator defined by $T|_W(w) = T(w)$ for any $w \in W$.