Math 132 - Extra credit quiz 1

1. Let V be a vector space. Suppose U and W are subspaces of V. Using set notation, give the definition of the subspace U + W.

$$U + W := \{u + w | u \in U, w \in W\}$$

2. Suppose $T \in \mathcal{L}(V)$ and $T^2 = T$. Prove that V = null T + range T. This problem was a part of your homework. Here are two possible solutions. (The second

requires that V be finite dimensional) *Proof 1:* We need to show that any $v \in V$ can be expressed as a sum of an element of

Proof 1: We need to show that any $v \in V$ can be expressed as a sum of an element of null T and an element of range T. Claim: v = (v - T(v)) + T(v) does the job.

By definition $T(v) \in \text{range } T$, so it suffices to check that $v - T(v) \in \text{null } T$.

Applying the linear operator T to the vector v - Tv, we find:

$$T(v - Tv) = Tv - T^2v = Tv - Tv = 0.$$

Thus, $v - Tv \in \text{null } T$ and we are done.

Proof 2: As null $T + \text{range } T \subset V$ is a subspace (and assuming V is finite dimensional),

 $\dim(\text{null } T + \text{range } T) \le \dim V$

with equality if and only if null T + range T = V. Using the dimension of a sum formula

 $\dim(\text{null } T + \text{range } T) = \dim(\text{null } T) + \dim(\text{range } T) - \dim(\text{null } T \cap \text{range } T),$

and by the fundamental theorem of linear maps (aka rank-nullity) this is equal to:

 $= \dim V - \dim(\operatorname{null} T \cap \operatorname{range} T).$

Thus it suffices to prove that null $T \cap \text{range } T = 0$.

Suppose $v \in \text{null } T \cap \text{range } T$. Then v = Tw for some $w \in V$ and Tv = 0. But then v = Tw = T(Tw) = Tv = 0.

3. Prove or give a counterexample: If v_1, \ldots, v_m and w_1, \ldots, w_m are linearly independent lists of vectors in a vector space V, then $v_1 + w_1, \ldots, v_m + w_m$ is linearly independent.

False. For a simple counterexample, consider a nonzero element v of a vector space V (For example, $1 \in \mathbb{R}$). Note that $v_1 = v$ is a linearly independent list and so is $w_1 = -v$. The sum $v_1 + w_1 = v + (-v) = 0$, however, is not a linearly independent list.