Math 132 - Extra credit quiz 3

1. Let V and W be vectors spaces and $T: V \to W$ be a linear map. Show that if T is a injective and v_1, \ldots, v_k is a linearly independent list of vectors in V, then Tv_1, \ldots, Tv_k is a linearly independent list in W.

Proof: Suppose $a_1, \ldots, a_k \in \mathbb{F}$ and that

$$a_1Tv_1 + \dots + a_kTv_k = 0.$$

To show that Tv_1, \ldots, Tv_k is a linearly independent list, we must show that this implies $a_1 = \cdots = a_k = 0$.

By the linearity of T:

$$T(a_1v_1 + \dots + a_kTv_k) = 0.$$

Thus, $a_1v_1 + \cdots + a_kTv_k \in \text{null}(T)$. As T is injective, this implies:

$$a_1v_1 + \dots + a_kTv_k = 0.$$

But v_1, \ldots, v_k is linearly independent, so we can conclude that $a_1 = \cdots = a_k = 0$, as was to be shown.

- 2. Let $T \in \mathcal{L}(\mathbb{C}^3)$. Suppose that T has eigenvectors (1, 1, 0), (1, -1, 0), (0, 0, i) with respective eigenvalues 2, 4 + i and -1.
 - (a) Is T normal? Why or why not?

Yes! After normalizing the given eigenvectors, we obtain an orthonormal basis of \mathbb{C}^3 consisting of eigenvectors for T. The complex spectral theorem tells us that this implies that T is normal.

(b) Is T self-adjoint? Why or why not?

No. Self-adjoint operators have only real eigenvalues.

Note: A common mistake was to consider a matrix with columns (or rows) given by the eigenvectors. Note that such a matrix does not represent that operator T (e.g., (1, 1, 0) is not an eigenvector of such a matrix).