Due Tuesday Feb. 5th -

1.0.7 (a) Let R be a normal domain with field of fractions K and let $S \subset R$ be a multiplicative subset. Prove that the localization R_S is normal.

(b) Let R_{α} , $\alpha \in A$ be normal domains with the same field of fractions K. Prove that the intersection $\bigcap_{\alpha \in A} R_{\alpha}$ is normal.

1.1.11 Let T_N be a torus with character lattice M. Then every point $t \in T_N$ gives an evaluation map $\phi_t : M \to \mathbb{C}^*$ defined by $\phi_t(m) = \chi^m(t)$. Prove that ϕ_t is a group homomorphism and that the map $t \mapsto \phi_t$ induces a group isomorphism

 $T_N \cong \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{C}^*).$

Due Thursday Feb. 7th -

1.1.6 Different sets of lattice points can parametrize the same affine toric variety, even though these parametrizations behave slightly differently. In this exercise you will consider the parametrizations

$$\Phi_1(s,t) = (s^2, st, st^3)$$
 and $\Phi_2(s,t) = (s^3, st, t^3).$

(a) Prove that Φ_1 and Φ_2 both give the affine toric variety $Y = \mathbb{V}(xz - y^3) \subset \mathbb{C}^3$. (b) We can regard Φ_1 and Φ_2 as maps

$$\Phi_1: \mathbb{C}^2 \to Y \quad \text{and} \quad \Phi_2: \mathbb{C}^2 \to Y.$$

Prove that Φ_2 is surjective and that Φ_1 is not. The images are called *toric sets* - the text gives references to papers studying when a toric set equals the corresponding affine toric variety.

1.1.12 Consider tori T_1 and T_2 with character lattices M_1 and M_2 . As we saw in class (Example 1.1.13 in the book), the coordinate rings of T_1 and T_2 are $\mathbb{C}[M_1]$ and $\mathbb{C}[M_2]$. Let $\Phi: T_1 T_2$ be a morphism that is a group homomorphism. Then Φ induces maps

$$\Phi: M_2 \to M_1$$
 and $\Phi^*: \mathbb{C}[M_2] \to \mathbb{C}[M_1]$

by composition. Prove that Φ^* is the map of semigroup algebras induced by the map $\hat{\Phi}$ of affine semigroups.

Here is another problem to think about. You do not need to write it up: 1.1.10 Prove that $I = \langle x^2 - 1, xy - 1, yz - 1 \rangle$ is the lattice ideal for the lattice

$$L = \{(a, b, c) \in \mathbb{Z}^3 | a + b + c \equiv 0 \mod 2\} \subset \mathbb{Z}^3.$$

Also compute the primary decomposition of I to show that I is not prime.

Due Tuesday Feb. 12th -

1.2.1 Let τ be a face of a polyhedral cone σ . If $v, w \in \sigma$ and $v + w \in \tau$, show that $v, w \in \tau$. Hint: Write $\tau = H_m \cap$ for $m \in \sigma^{\vee}$.

1.2.13 Consider the cone $\sigma = \text{Cone}(3e_1 - 2e_2, e_2) \subset \mathbb{R}^2$. (a) Describe σ^{\vee} and find generators of $\sigma^{\vee} \cap \mathbb{Z}^2$. Draw both cones together with facet normals for each edge.

(b) Compute the toric ideal of the affine toric variety U_{σ} . Note the connection to problem 1.1.6 from the last problem set.

Here is another problem to think about. You do not need to write it up: **1.2.2** Let $\sigma \subset N_{\mathbb{R}}$ be a cone. (a) Show that if $u \in \sigma$, then $u \in \operatorname{Relint}(\sigma)$ if and only if $\langle m, n \rangle > 0$ for all $m \in \sigma^{\vee} - \sigma^{\perp}$ if and only if $\sigma^{\vee} \cap u^{\perp} = \sigma^{\perp}$. (b) Let $\tau \preceq \sigma$ and fix $m \in \sigma^{\vee}$. Prove that $m \in \tau^* \iff \tau \subset H_m \cap \sigma$, $m \in \operatorname{Relint}(\tau^*) \iff \tau = H_m \cap \sigma$.

Due Thur. Feb. 14th -

1.3.7 Let p be a point of an irreducible affine variety V. Then p gives the maximal ideal $\mathfrak{m} = \{f \in \mathbb{C}[V] | f(p) = 0\}$ as well as the maximal ideal $\mathfrak{m}_{V,p} \subset \mathcal{O}_{V,p}$. Prove that the natural map $\mathfrak{m}/\mathfrak{m}^2 \to \mathfrak{m}_{V,p}/\mathfrak{m}_{V,p}^2$ is an isomorphism of \mathbb{C} -vector spaces.

Due Thur. Feb. 19th - **1.3.11** Let d > 1 be an integer and $\mu_d = \{\zeta \in \mathbb{C}^* | \zeta^d = 1\}$. Consider the lattices: $N' = \mathbb{Z}^2 \subset N = \{(a/d, b/d) | a, b \in \mathbb{Z}, a/d - b/d \in \mathbb{Z}\},\$ and the cone $\sigma = \text{Cone}(e_1, e_2) \subset N'_{\mathbb{R}} = N_{\mathbb{R}}.$

Show that $U_{\sigma,N} = \hat{C}_d = \mathbb{C}^2/\mu_d = U_{\sigma,N'}/\mu_d$ where μ_d acts on \mathbb{C}^2 by $\zeta \cdot (x, y) = (\zeta x, \zeta y)$.