Due Tuesday April 2nd -

6.1.8 For the following toric varieties X_{Σ} , compute $\operatorname{Pic}(X_{\Sigma})$ and describe which torus-invariant divisors are basepoint free.

(a) X_{Σ} is the toric variety of the smooth complete fan Σ in \mathbb{R}^2 with

$$\Sigma(1) = \{\pm e_1, \pm e_2, e_1 + e_2\}.$$

(b) The blowup $\operatorname{Bl}_p(\mathbb{P})$ of \mathbb{P}^n at a fixed point p of the torus action.

6.1.9 The fan of $(\mathbb{P}^1)^n$ has ray generators $\pm e_1, \ldots, \pm e_n$. Let $D_1^{\pm}, \ldots, D_n^{\pm}$ denote the corresponding torus-invariant divisors. Consider $D = \sum_{i=1}^n (a_i^+ D_i^+ + a_i^- D_i^-)$. When is D basepoint free?

Due Thursday April 4th -

6.1.8 + 6.1.9(cont'd) For the toric varieties in the previous homework, describe which torus-invariant divisors are ample.

6.1.3 In class we saw that if D is ample on a complete toric variety, then P_D is a full dimensional lattice polytope. Here you will show that the same statement is false if *ample* is replaced by *basepoint free*. Consider $(\mathbb{P}^1)^n$ and for any 0 < d < n find a basepoint free divisor on $(\mathbb{P}^1)^n$ such that dim $P_D = d$.

Due Tuesday April 9th -

6.3.5 Consider the complete fan in \mathbb{R}^3 with six minimal generators

$$u_1 = (1, 0, 1), u_2 = (0, 1, 1), u_3 = (-1, -1, 1)$$

 $u_4 = (1, 0, -1), u_5 = (0, 1, -1), u_6 = (-1, -1, -1)$

and six maximal cones

 $Cone(u_1, u_2, u_3), Cone(u_1, u_2, u_4), Cone(u_2, u_4, u_5)$

 $Cone(u_1, u_3, u_4, u_6), Cone(u_2, u_3, u_5, u_6), Cone(u_4, u_5, u_6).$

(a) Draw a picture of this fan.

(b) Prove that $\operatorname{Pic}(X_{\Sigma}) \cong \{a(D_1 + D_4) | a \in 3\mathbb{Z}\}\$ and that the nef cone in $N^1(X_{\Sigma}) \cong \operatorname{Pic}(X_{\Sigma})_{\mathbb{R}}$ is $\{a(D_1 + D_4) | a \ge 0\}$.

(c) Prove that X_{Σ} is not projective.

Note that $D = 3(D_1 + D_4)$ is in the interior of the nef cone, but is not ample.

Due Thursday April 11th -

6.4.6 Let X_{Σ} be the blowup of \mathbb{P}^n at a fixed point of the torus action. Thus $\operatorname{Pic} X_{\Sigma} \cong \mathbb{Z}^2$.

(a) Compute the nef and Mori cones of X_{Σ} and draw pictures of them like we did for the Hirzebruch surface in class.

(b) Determine the extremal walls.

Due Tuesday April 16th - None!

Due Tuesday April 23rd -

In this exercise we recall Cox's construction of a toric variety X_{Σ} with no torus factors as a good categorical quotient and then use this description to relate graded modules for the total coordinate ring with quasicoherent sheaves on X_{Σ} .

Let $S = \mathbb{C}[x_{\rho}|\rho \in \Sigma(1)]$ be the total coordinate ring of X_{Σ} . We defined its irrelevant ideal to be $B(\Sigma) = \{x^{\hat{\sigma}} | \sigma \in \Sigma\}$. We then defined $Z(\Sigma) = \mathbb{V}(B(\Sigma)) \subset \mathbb{C}^{\Sigma(1)}$ and considered $\mathbb{C}^{\Sigma(1)} \setminus Z(\Sigma)$. Let G be the kernel of the natural map of tori $(\mathbb{C}^*)^{\Sigma(1)} \to T_N$. We saw that G has character group $\operatorname{Cl}(X_{\Sigma})$ and acts on $\mathbb{C}^{\Sigma(1)} \setminus Z(\Sigma)$.

Considering $\mathbb{C}^{\Sigma(1)} \setminus Z(\Sigma)$ as a toric variety itself, we constructed the obvious map of fans to give a map $\pi : \mathbb{C}^{\Sigma(1)} \setminus Z(\Sigma) \to X_{\Sigma}$.

Finally we showed that π is a good categorical quotient by G, by checking that for each $\sigma \in \Sigma$, the preimage of U_{σ} is $U_{\tilde{\sigma}}$ where $\tilde{\sigma} = \operatorname{Cone}(e_{\rho}|\rho \in \sigma(1))$, and the map $\pi : U_{\tilde{\sigma}} \to U_{\sigma}$ is a good categorical quotient. This was in turn equivalent to showing the map $\pi_{\sigma}^* : \chi^m \mapsto \chi^{\langle m \rangle} = \prod_{\rho} x_{\rho}^{\langle m, u_{\rho} \rangle}$ induces as isomorphism

$$\pi_{\sigma}^*: \mathbb{C}[\sigma^{\vee} \cap M] \xrightarrow{\sim} (S_{x^{\hat{\sigma}}})^G \subset S_{x^{\hat{\sigma}}}.$$

1. Show that $S_{x^{\hat{\sigma}}}$ is graded by $\operatorname{Cl}(X_{\Sigma})$. $(S_{x^{\hat{\sigma}}})_0 = (S_{x^{\hat{\sigma}}})^G$.

2. Let M be a graded S-module (graded by the class group). Show that there is a quasicoherent sheaf \tilde{M} on X_{Σ} such that for every $\sigma \in \Sigma$,

$$\Gamma(U_{\sigma}, M) = (M_{x^{\tilde{\sigma}}})_0.$$

3. For any $\alpha \in Cl(X_{\Sigma})$. Let $S(\alpha)$ be the graded free S-module such that $S(\alpha)_{\beta} = S_{\alpha+\beta}$. By part (2), this gives a quasicoherent (in fact, coherent) sheaf $\mathcal{O}_{X_{\Sigma}}(\alpha)$. Show

$$S_{\alpha} \cong \Gamma(X_{\Sigma}, \mathcal{O}_{X_{\Sigma}}(\alpha)).$$

4. Let $D = \sum_{\rho} a_{\rho} D_{\rho}$ be a Weil divisor such that $[D] = \alpha$. Prove

$$\mathcal{O}_{X_{\Sigma}} \cong \mathcal{O}_{X_{\Sigma}}(\alpha).$$