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Abstract. In this paper, we generalize a result of Nathanson and Tenenbaum on

sum and product sets, partially answering the problem raised at the end of their

paper [N-T]. More precisely, they proved that if A is a large finite set of integers

such that |2A| < 3|A| − 4, then |A2| > (
|A|
`n |A| )

2 � |A|2−ε. It is shown here that if

|2A| < α|A|, for some fixed α < 4, then |A2| � |A|2−ε. Furthermore, if α < 3, then
|Ah| � |A|h−ε. Again, crucial use is made from Freiman’s Theorem.

INTRODUCTION

Let A,B be finite sets of a commutative ring.

The product set of A,B is

AB ≡ {ab | a ∈ A, b ∈ B} (0.1)

we denote by
Ah ≡ A · · ·A (h fold) (0.2)

the h-fold product of A.

Similarly, we define the sum set of A,B and h-fold sum of A.

A+B ≡ {a+ b | a ∈ A, b ∈ B} (0.3)

hA ≡ A+ · · ·+A(h fold). (0.4)

In 1983, Erdös and Szemerédi [E-S] (see also [E]) made the following conjecture (see
[T] and [K-T] for related aspects).
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Conjecture (Erdös-Szemerédi). For any ε > 0 and any h ∈ N there is
k0 = k0(ε) such that for any A ⊂ N with |A| ≥ k0, then

|hA ∪Ah| � |A|h−ε. (0.5)

The first result toward the conjecture was obtained by Erdös and Szemerédi [E-S]
(see also [Na3]).

Theorem (Erdös-Szemerédi). Let f(k) ≡ min|A|=k |2A ∪ A2|. Then there are
constants c1, c2, such that

k1+c1 < f(k) < k2 e−c2
`n k
`n `n k . (0.6)

Nathanson showed that f(k) < ck
32
31 , with c = 0.00028 . . .

Elekes [El] used the Szemerédi-Trotter Theorem on line-incidences in the plane
(see [S-T]), and proved that

|2A ∪A2| > c|A|5/4. (0.7)

In [C2], we proved that if |A2| < α|A|, then

|2A| > 36−α|A|2 (0.8)

and
|hA| > ch(α)|A|h, (0.9)

where
ch(α) = (2h2 − h)−hα. (0.10)

On the other hand, Nathanson and Tenenbaum [N-T] concluded something stronger
by assuming the sum set is small. They showed

Theorem (Nathanson-Tenenbaum). If A ⊂ N with

|2A| ≤ 3|A| − 4, (0.11)

then

|A2| �
(
|A|
`n |A|

)2

. (0.12)

We generalize Nathanson and Tenenbaum’s result in two directions.
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Theorem 1. Let A ⊂ N be finite. If

|2A| < α|A| with α < 4, (0.13)

then ∀ ε > 0, there exists k0 = k(ε) such that for all A with |A| ≥ k0,

|A2| � |A|2−ε. (0.14)

Theorem 2. Let A ⊂ N be finite. If

|2A| < α|A| with α < 3, (0.15)

then ∀ ε > 0, there exists k0 = k(ε) such that ∀ A with |A| ≥ k0,

|Ah| � |A|h−ε. (0.16)

Our proof is similar to that in [N-T] and based on Freiman’s theorem (see
[Bi],[Na1],[El]). Thus, from the assumption, we get that A is contained in a gener-
alized arithmetic progression P with P < c|A| and dimP ≤ 2. (We recall that
a s-dimensional progression is the translation of a homomorphic image of a s-
dimensional coordinate box in Z from Z

s. A more precise statement of Freiman’s
theorem will be given in Section 2.) The problem may then be reduced to bounding
the number ρ

P
(n) of representatives of integers n by a product of two elements in

P (in the case of Theorem 1). Instead of establishing a (uniform) bound

ρ
P

(n)� |P |ε (0.17)

for each element n, we will bound∑
n

ρ2
P

(n)� |P |2+ε. (0.18)

Inequality (0.18) is weaker than (0.17), but also sufficient for our purpose. The
advantage of considering the expression

∑
n ρ

2
P

(n) is that the problem may be re-
duced to the case of a homogeneous progression (a homomorphic image without
being translated) of the same dimension.

Obtaining (0.17) and hence (0.18) for a homogeneous progression (of dimension 2
in the context of the theorem) is rather easy, while directly proving (0.17) for a non-
homogeneous 2-dimensional progression seems significantly harder. (See Remark
12.1.)
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Notation: We use the convention

A� B (0.19)

to mean that for every ε, there is a constant c(ε) such that

A < c(ε)B. (0.20)

The paper is organized as follows:

In Section 1, we prove some basic inequalities involving ρ
P

(n) and
∑
ρ2
P
n.

In Section 2, we prove the theorems.

Acknowledgement. The author would like to thank J. Bourgain for various advice
and J. Stafney for helpful discussions.

Section 1. Preliminaries.

Let Λ1,Λ2 ⊂ N be finite. For n ∈ N, we will use the following notations for the
numbers of representatives as products and as differences between squares.

Notation:

ρΛ1,Λ2
(n) ≡ |{(n1, n2) ∈ Λ1 × Λ2 | n1n2 = n}| (1.1)

σΛ1,Λ2
(n) ≡ |{(n1, n2) ∈ Λ1 × Λ2 | n2

1 − n2
2 = n}| (1.2)

ρΛ ≡ ρΛ,Λ . (1.3)

The following lemma formulates the relation between the lower bound on the
product set and the upper bound on the numbers of representatives as products.

Lemma 1. Let Λ1,Λ2 ⊂ N. Then

|Λ1Λ2| ≥
|Λ1|2|Λ2|2∑

n∈Λ1Λ2

ρ2
Λ1,Λ2

(n)
(1.4)

Proof. Cauchy-Schwartz inequality gives

|Λ1| |Λ2| =
∑

n∈Λ1Λ2

ρΛ1,Λ2
(n) ≤

(∑
ρ2

Λ1,Λ2
(n)
)1/2

(|Λ1Λ2|)1/2.

�

Sometimes it is more convenient to work with σ than with ρ.
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Lemma 2. The following inequalities between ρ and σ hold
(i) ρΛ1,Λ2

(n) ≤ σΛ1+Λ2,Λ1−Λ2
(4n).

(ii) σΛ1,Λ2
(n) ≤ ρΛ1+Λ2,Λ1−Λ2

(n).

Proof. Inequality (i) follows from

4n1n2 = (n1 + n2)2 − (n1 − n2)2, (1.5)

and inequality (ii) follows from

m2
1 −m2

2 = (m1 +m2)(m1 −m2). (1.6)

�

The next elementary fact is used frequently.

Fact 3. For n ∈ Z, ∫ 1

0

e2πinx dx =
{

0 if n 6= 0
1 if n = 0

.

Our first goal is to give an upper bound on
∑
n ρ

2
Λ
(n) for an arbitrary finite set

Λ ⊂ N. (See Proposition 9).

Lemma 4. Let Λ ⊂ N. Then∑
ρ2

Λ
(n) ≤

(∑
ρ2

4Λ,2Λ−2Λ
(n)
)1/2 (∑

ρ2
2Λ−2Λ

(n)
)1/2

(1.7)

Proof. Lemma 2(i) gives
ρΛ(n) ≤ σ2Λ,Λ−Λ(4n). (1.8)

Fact 3 says that the right hand side of (1.8) is

σ2Λ,Λ−Λ(4n) =
∫ 1

0

e−2πi4nx
∑
m∈2Λ

e2πim2x
∑

m∈Λ−Λ

e−2πim2x dx (1.9)

Let
f(x) =

∑
m∈2Λ

e2πim2x
∑

m∈Λ−Λ

e−2πim2x. (1.10)

Then (1.9) is the 4n-th Fourier coefficient of f(x), i.e.,

σ2Λ,Λ−Λ(4n) = f̂4n(x). (1.11)
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Putting (1.8), and (1.11) together, and using Parseval equality, we have∑
n

ρ2
Λ
(n) ≤

∑
n

σ2
2Λ,Λ−Λ

(4n)

=
∑
n∈Λ2

|f̂4n(x)|2

≤
∑
m

|f̂m(x)|2

= ‖f(x)‖22.

(1.12)

Now, we use (1.10) to bound (1.12),

‖f(x)‖22 =
∫ 1

0

∣∣ ∑
m∈2Λ

e2πim2x
∣∣2 ∣∣ ∑

m∈Λ−Λ

e−2πim2x
∣∣2 dx

≤
( ∫ 1

0

∣∣ ∑
m∈2Λ

e2πim2x
∣∣4 dx) 1

2
( ∫ 1

0

∣∣ ∑
m∈Λ−Λ

e−2πim2xProduct|4 dx
) 1

2

(1.13)

=
(∑

σ2
2Λ,2Λ

(n)
) 1

2
(∑

σ2
Λ−Λ,Λ−Λ

(n)
) 1

2 (1.14)

≤
(∑

ρ2
4Λ,2Λ−2Λ

(n)
) 1

2
(∑

ρ2
2Λ−2Λ

(n)
) 1

2 . (1.15)

Here, (1.13) follows from Hölder inequality, (1.14) follows from sublemma 5 below;
and (1.15) follows from Lemma 2(ii). �

Sublemma 5. Let Ω ⊂ N. Then∫ 1

0

∣∣ ∑
m∈Ω

e2πim2x
∣∣4 dx =

∑
σ2

Ω,Ω
(n). (1.16)

Proof. ∣∣ ∑
m∈Ω

e2πim2x
∣∣4 =

∣∣ (∑
m∈Ω

e2πim2x
)(∑
m∈Ω

e−2πim2x
) ∣∣2

=
∣∣ ∑σΩ,Ω(n)e2πinx

∣∣2 . (1.17)

Let
g(x) =

∑
σΩ,Ω(n)e2πinx (1.18)

Then
ĝn(x) = σΩ,Ω(n), (1.19)

and the left-hand side of (1.16) is
∫ 1

0
|g(x)|2 dx, which is

∑
‖ĝn(x)‖22, by Parseval

equality. Now (1.16) follows from (1.19). �
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Lemma 6. Let Λ1,Λ2 ⊂ N. Then∑
ρ2

Λ1,Λ2
(n) ≤

(∑
ρ2

Λ1
(n)
) 1

2
(∑

ρ2
Λ2

(n)
) 1

2
. (1.20)

We wil use the following “Fact 3 over R”, which comes from almost periodic
function theory.

Fact 7. Let λ ∈ R. For an integrable function f(x), we define

‖f(x)‖a.p. ≡
1
T

lim
T→∞

∫ T

0

f(x) dx. (1.21)

Then

‖e2πiλx‖a.p. =
{

0 if λ 6= 0
1 if λ = 0

. (1.22)

Sublemma 8. Let {λs}s ⊂ R be a set of distinct real numbers. Then∥∥∥∥ ∣∣∑
s

ase
2πiλsx

∣∣2∥∥∥∥
a.p.

=
∑
|as|2. (1.23)

Proof. The left-hand side of (1.23) is∥∥∥∥∑
s,t

asate
2πi(λs−λt)x

∥∥∥∥
a.p.

.

Now, use (1.22). �

Proof of Lemma 6. To use Sublemma 8, we take the set {`nn}n∈N of distinct real
numbers.

Inequality (1.20) is equivalent to∥∥∥∥ ∣∣∑
n

ρΛ1,Λ2
(n)e2πix`nn

∣∣2∥∥∥∥
a.p.

≤
∥∥∥∥ ∣∣∑

n1

ρΛ1
(n1)e2πix`nn1

∣∣2∥∥∥∥1/2

a.p.

∥∥∥∥ ∣∣∑
n2

ρΛ2
(n2)e2πix`nn2

∣∣2∥∥∥∥1/2

a.p.

.
(1.24)

It suffices to show that∫ T

0

∣∣∑
n

ρΛ1,Λ2
(n)e2πix`nn

∣∣2 dx
≤
(∫ T

0

∣∣ ∑
n1

ρΛ1
(n1)e2πix`nn1

∣∣2 dx

) 1
2
(∫ T

0

∣∣ ∑
n2

ρΛ2
(n2)e2πix`nn2

∣∣2 dx

) 1
2

.

(1.25)
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The left-hand side of (1.25) is

∫ T

0

∣∣ ∑
n1∈Λ1

e2πix`nn1
∣∣2∣∣ ∑

n2∈Λ2

e2πix`nn2
∣∣2dx

≤
(∫ T

0

∣∣ ∑
n1∈Λ1

e2πix`nn1
∣∣4dx)1/2(∫ T

0

∣∣ ∑
n2∈Λ2

e2πix`nn2
∣∣4dx)1/2

.

(1.26)

The last inequality is Cauchy Schwartz. It is clear that the right-hand sides of (1.25)
and (1.26) are the same. �

Proposition 9. Let Λ ⊂ N. Then

∑
ρ2

Λ
(n) ≤

(∑
ρ2

2Λ−2Λ
(n)
)3/4 (∑

ρ2
4Λ

(n)
)1/4

. (1.27)

Proof. Combining Lemma 4 and Lemma 6, we have

∑
ρ2

Λ
(n) ≤

(∑
ρ2

4Λ,2Λ−2Λ
(n)
)1/2 (∑

ρ2
2Λ−2Λ

(n)
)1/2

≤
((∑

ρ2
4Λ

(n)
)1/2(∑

ρ2
2Λ−2Λ

(n)
)1/2
)1/2 (∑

ρ2
2Λ−2Λ

(n)
)1/2

,

which is (1.27). �

Next, we want to bound ρ
P

(n) by the length of the progression, for some special
2-dimensional progression P .

We will use

Fact 10. Let d(n) be the number of divisors of n, i.e.,

d(n) ≡ |{m ∈ N | m|n}|.

Then ∀ε > 0, d(n)� nε. In particular,

ρΛ1,Λ2
(n)� nε. (1.28)

The following was in [N-T]. We include it here for completeness.
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Lemma 11. Let P1, P2 be 1-dimensional progressions of length `, i.e.,

Pi ≡ {bi + jai | 1 ≤ j ≤ `}. (1.29)

Then for n ∈ N
ρ
P1,P2

(n)� `ε, ∀ε > 0. (1.30)

Proof. It is clear that we may assume

(ai, bi) = 1, for i = 1, 2. (1.31)

Claim 1. For ω 6= ω′ ∈ P1, let (ω, ω′) be the greatest common divisor. Then
(ω, ω′) < `.

Proof of Claim 1. . Let ω = b1 + ja1 and ω′ = b1 + j′a1. Then

ω − ω′ = (j − j′)a1. (1.32)

In particular,
(ω, ω′) | (j − j′)a1. (1.33)

(1.31) implies that
(ω, a1) = 1. (1.34)

Hence
(ω, ω′) | (j − j′). (1.35)

In particular,
(ω, ω′) ≤ |j − j′| < `. (1.36)

�

Claim 2. n ≥ `−3ωω′ω′′, where ω, ω′, ω′′ ∈ P1 are any three distinct divisors of n.

Proof of Claim 2. Let [ω, ω′, ω′′] be the least common multiple of ω, ω′, ω′′.
Then

[ω, ω′, ω′′] | n. (1.37)

Therefore

n ≥ [ω, ω′, ω′′] =
ωω′ω′′

(ω, ω′)(ω′, ω′′)(ω′′, ω)
>
ωω′ω′′

`3
. �
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To finish the proof of Lemma 10, take three factorizations of n,

n = ω1ω2 = ω′1ω
′
2 = ω′′1ω

′′
2 , (1.38)

with ωi, ω
′′
i , ω′′i ∈ Pi.

Then, claim 2 implies

n ≥ `−3ω1ω
′
1ω
′′
1 , and

n ≥ `−3ω2ω
′
2ω
′′
2 . (1.39)

Combining the inequalities in (1.39), we have

n2 ≥ `−6n3,

or
`6 ≥ n (1.40)

The proof is concluded by (1.28) and (1.40). �

Now we bound ρ
P0

(n), when the progression P0 is the homomorphic image of a
coordinate rectangle.

Proposition 12. Let P0 be a 2-dimensional proper “homogeneous” progression,
i.e.,

P0 ≡ {j1a1 + j2a2 | 1 ≤ ji ≤ Ji}. (1.41)

Then for any n ∈ N,
ρ
P0

(n)� Jε, ∀ε > 0. (1.42)

Here J = J1J2 = |P |.

Proof. We may assume
(a1, a2) = 1 (1.43)

If n has two factorizations

n = (j1a1 + j2a2)(k1a1 + k2a2) (1.44)

= (j′1a1 + j′2a2)(k′1a1 + k′2a2)

with
j2k2 − j′2k′2 6= 0, (1.45)

then (1.43) and (1.44) imply

a1 | (j2k2 − j′2k′2).



PRODUCT SETS 11

Hence
|a1| < |j2k2 − j′2k′2| < J2

2 . (1.46)

If all factorizations (see (1.44)) of n have the same j2k2, then the choices of {j2, k2}
is

d(j2k2) ≤ d(J2
2 )� (J2

2 )ε1 � Jε2 , (1.47)

by Fact 10.

On the other hand, for each {j2, k2} fixed, to bound the number of factorizations
(1.44), we can apply Lemma 11 with b1 = j2a2, b2 = k2a2, and derive

ρ
P0

(n)� Jε2Jε31 < Jε. (1.48)

Similarly, we have either
|a2| < J2

1 , (1.49)

or (1.48) again.

Putting (1.46) and (1.49) together, we have

|j1a1 + j2a2| ≤ J1J
2
2 + J2J

2
1 < 2J2 (1.50)

Fact 10 gives
ρ
P0

(n)� nε4 � (2J2)ε4 < Jε. �

Remark 12.1. Proposition 12 can be proved for the nonhomogeneous case, which
would provide another proof of Theorem 1. This argument, however, is technically
much more complicated.

Section 2. The Proofs.

The following structure theorem (see [Bi],[Fr1],[Fr2],[Fr3],[C1]), is essential to our
proof

Freiman Theorem. Let A ⊂ Z be finite. If there is a constant α, α <
√
|A|, such

that |2A| < α|A|, then A is contained in a s-dimensional proper progression P , i.e.,
there exist β, α1, . . . , αs ∈ Z and J1, . . . , Js ∈ N such that

P = {β + j1α1 + · · ·+ jsαs | 1 ≤ ji ≤ Ji} (2.1)

and |P | = J1 · · · Js.

Moreover, s ≤ α, and if |A| > bαcbα+1c
2(bα+1c−α) , then

s ≤ bα− 1c. (2.2)
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Furthermore, for any integer h ≥ 1, the progression

P
(h)
0 ≡ {j1α1 + · · ·+ jsαs | 1 ≤ ji ≤ hJi} (2.3)

is proper (i.e., |P (h)
0 | = hsJ1 · · · Js) and

J = J1 · · · Js < c(h)|A|. (2.4)

Proof of Theorem 1. Let P be the progression allowed by Freiman’s Theorem,

A ⊂ P = {b+ j1a1 + j2a2 | 1 ≤ ji ≤ Ji} (2.5)

To use Lemma 1, we want to bound
∑
ρ2
P

(n).

Proposition 9 gives

∑
ρ2
P

(n) ≤
(∑

ρ2
2P−2P

(n)
)3/4 (∑

ρ2
4P

(n)
)1/4

. (2.6)

Here
2P − 2P ≡ P0 ≡ {j1a1 + j2a2 | −2Ji ≤ ji ≤ 2Ji} (2.7)

and
4P ≡ P1 ≡ {4b+ j1a1 + j2a2 | 1 ≤ ji ≤ 4Ji}

are both proper, and P0 is of the form (1.41) in Proposition 12.

Therefore
ρ
P0

(n)� Jε, ∀ε > 0.

Hence ∑
ρ2
P0

(n)� Jε
∑
n∈P 2

0

ρ
P0

(n) = Jε|P0|2

� J2+ε

� |A|2+ε. (2.8)

The last inequality follows from (2.4).

Combining with (2.6), we have

∑
ρ2
P

(n)� |A| 34 (2+ε)
(∑

ρ2
P1

(n)
) 1

4
. (2.9)
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To bound
∑
ρ2
P1

(n), we write

P1 =
16⋃
α=1

Pα, (2.10)

where each Pα is a translation of P in (2.5).

Then

ρ
P1

(n) =
16∑

α,α′=1

ρ
Pα,Pα′

(n). (2.11)

Hence (∑
n

ρ2
P1

(n)

) 1
2

≤
16∑

α,α′=1

(∑
n

ρ2
Pα,Pα′

(n)

) 1
2

≤
16∑

α,α′=1

(∑
n

ρ2
Pα

(n)

) 1
4
(∑

n

ρ2
P
α′

(n)

) 1
4

≤ 162 max
α

(∑
ρ2
Pα

(n)
) 1

2
. (2.12)

The first is the triangle inequality, the second is Lemma 6.

Putting (2.9) and (2.12) together, we have

∑
n

ρ2
P

(n)� |A| 34 (2+ε)

(∑
n

ρ2
P̄

(n)

) 1
4

, (2.13)

where P̄ is the translation of P such that
∑
n ρ

2
P̄

(n) is the maximum among all
translations of P .

This whole argument could start with any translation of P . In particular, in
(2.13) P could be replaced by P . Therefore,

∑
ρ2
P̄

(n)� |A| 34 (2+ε)
(∑

ρ2
P̄

(n)
) 1

4
,

i.e., ∑
ρ2
P̄

(n)� |A|2+ε.

Hence ∑
ρ2
P

(n) ≤ max
α

∑
ρ2
Pα

(n) ≤
∑

ρ2
P̄

(n)� |A|2+ε.
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Lemma 1 implies

|A2| ≥ |A|4∑
ρ2
A

(n)
≥ |A|4∑

ρ2
P

(n)
� |A|2−ε.

�

Next, we prove Theorem 2.
From Freiman’s Theorem, A is contained in a 1-dimensional progression

A ⊂ P ≡ {b+ ja | 1 ≤ j ≤ J}, with J < c(A) (2.17)

Defining
ρ
h
(n) ≡

∣∣{(n1, . . . , nh) ∈ P × · · · × P | n1 · · ·nh = n}
∣∣ (2.18)

we get, (since A ⊂ P )

|Ah| ≥ |A|h

maxn ρh(n)
. (2.19)

Therefore, we want to show that ∀ε > 0, there is a constant c(ε), such that

ρ
h
(n)� |A|ε, ∀n. (2.20)

We may assume
(a, b) = 1 and b 6= 0 (2.21)

Let
n = (b+ j1a) · · · (b+ jha) (2.22)

be a factorization of n into h factors in P .

We want to bound the number of choices of j̄ = (j1, . . . , jh).

Claim. If for all (j1, . . . , jh) in (2.22), the product
h∏
c=1

ji is a constant, then (2.20)

holds.

Proof of Claim. Recall our notation of d(m) in Fact 10. The number of choices of
j̄ = (j1, . . . , jh) is

ρh(n) ≤
(
d(

h∏
c=1

ji)
)h
�
(

(Jh)ε1
)h

= Jε2 � |A|ε.

The second inequality is Fact 10, and the last is (2.17). �

Now we return to the proof of Theorem 2.
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Let j̄′ = (j′1, . . . , jh) be any other choice in (2.22). Then we have

bh−1[s1(j̄)− s1(j̄′)]a+ · · ·+ [sh(j̄)− sh(j̄′)]ah = 0, (2.23)

where sk(j̄) is the kth elementary symmetric function in {ji}i.

We have the following cases.

Case 1. |a| > (hJ)h. Dividing (2.23) by a, and using (2.21), we have

a
∣∣ |s1(j̄)− s1(j̄′)

∣∣ . (2.24)

Our assumption on a gives
s1(j̄)− s1(j̄′) = 0 (2.25)

keeping this process on (2.23) until we reach

sh(j̄)− sh(j̄′) = 0, (2.26)

which is our hypothesis in the claim. Hence the theorem is proved.

Case 2. |b| > Jh. Again, (2.23) gives (2.26), and the same reasoning as above
concludes this case.

Case 3. |a| ≤ (hJ)h and |b| ≤ Jh. Using (2.22), we have

|n| ≤ (|b|+ J |a|)h < (hJ)h(h+1). (2.27)

Fact 10 implies
ρ
h
(n) ≥

(
d(n)

)h � nε1 � Jε. �
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