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Abstract Let A be a set of k complex numbers, and let A+ (respectively, A×) be the
set of sums (resp. products) of distinct elements of A. Let

gC(k) = min
A⊂C,|A|=k

{|A+|+ |A×|}.

Ruzsa posed the question whether gC(k) grows faster than any power of k. In this note we
give an affirmative answer to this question.

Let A be a set of k complex numbers, and let A+ and A× be the sets of sums and
products of distinct elements of A:

A+ =

{
k∑

i=1

εiai: ai ∈ A, εi = 0 or 1

}
,

A× =

{
k∏

i=1

aεi
i : ai ∈ A, εi = 0 or 1

}
.

In [E-S] Erdős and Szemerédi considered

gZ(k) = min
A⊂Z,|A|=k

{|A+|+ |A×|}

(thus here A is a set of integers) and conjectured that gZ(k) grows faster than any power
of k. More precisely, they observed that

gZ(k) < kc log k
log log k
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for some absolute constant c > 0 and conjectured that there exists an absolute constant
c′ > 0 such that

gZ(k) > kc′ log k
log log k . (1)

In [Ch1], we established (1). The argument relies heavily on factorization into primes
and moment inequalities for trigonometric polynomials and does not extend beyond the
integer case.

More recently, Ruzsa [R1] proposed the problem to get a nontrivial estimate for

gR(k) = min
A⊂R,|A|=k

{|A+|+ |A×|},

and for
gC(k) = min

A⊂C,|A|=k
{|A+|+ |A×|}. (2)

Our main result is

Theorem 1. Let gC(k) be defined as in (2). Then

lim
k→∞

log gC(k)
log k

= ∞.

Hence gC(k) (and consequently gR(k) ≥ gC(k)) grows faster than any power of k.
We don’t know if the analogue of (1) holds true for gC(k).
The approach is substantially different from [Ch1] and our main tool is the new result on

factorization in “generalized arithmetic progressions” (as defined in the following theorem)
established in [Ch2].

Theorem 2 ([Ch2], Proposition 3). Let P be a generalized arithmetic progression

P = P (c0; c1, . . . , cd; J1, . . . , Jd) =
{

c0 +
∑d

i=1 kici : ki ∈ [0, Ji[
}

,

with generators c1, . . . , cd ∈ C. Set J = maxi Ji. Then for any h ≥ 2 and any n ∈ C the
number of representations rh(n) = rh(n, P ) of n as a product of h elements of P satisfies

rh(n) < J
Cd,h

log log J .

The proof uses the theory of factorization in algebraic number fields.

There are two more ingredients in our argument.
The first is Freiman’s theorem [F] on the structure of sets with small sumsets.
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Theorem (Freiman) [N, Theorem 8.1]. Let G be a torsion free abelian group and let
A ⊂ G be a finite subset. If α is a real number such that |2A| < α|A|, then there exist real
C1 = C1(α) and C2 = C2(α) (depending only on α) and a generalized progression P as
defined above, such that A ⊂ P , with

d ≤ C1

and
|P | ≤ C2|A|.

Finally, use Plünnecke-Ruzsa sumset estimate; see [R3] or [N, Theorem 7.8].

Lemma 3 (Ruzsa’s Inequality) [R3]. Let ρ be a real number and let M and N be finite
subsets of an abelian group such that

|M + N | ≤ ρ|M |.

Let h ≥ 1 and ` ≥ 1. Then
|hN − `N | ≤ ρh+`|M |.

Proof of Theorem 1. For brevity we write g(k) rather than gC(k).
Fix a positive real number c (so that all constants depending on c will also be considered

fixed) and suppose that there exists A ⊂ C of arbitrarily large cardinality k = |A| such
that |A+|+ |A×| ≤ kc.

We split A into b
√

kc disjoint subsets B1, B2, · · · , each of cardinality at least b
√

kc. Let

ρ = 1 + k−1/5

and

As =
s⋃

i=1

Bi.

If |A+
s+1| > ρ |A+

s | for all s ≤
√

k − 1 then

|A+| > ρb
√

kc−1|A+
1 | > ρ

√
k =

(
(1 + k−

1
5 )k

1
5
)k

1
2−

1
5

> ek
1
4 ,

contradicting the assumption; thus there exists 1 ≤ s ≤
√

k− 1 such that |A+
s+1| ≤ ρ |A+

s |.
Let B = Bs+1 and let ` = dk 1

5 e; we claim then that

|`B| < 3 kc. (3)
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Indeed, we have
|A+

s + B| ≤ |A+
s + B+| = |A+

s+1| ≤ ρ |A+
s | ,

which by Lemma 3 implies

|`B| ≤ |(` + 1)B −B| ≤ ρ`+2 |A+
s |.

As ρ`+2 = (1 + k−
1
5 )dk

1
5 e+2 < 3 for sufficiently large k, we obtain

|`B| < 3 |A+| ≤ 3 kc. (4)

Put
c1 = 210c

and suppose that
|2j+1B| > c1|2jB| (5)

for all positive integers j ≤ log2 `. Then by (5) we have

|`B| ≥ c
blog2 `c
1 |B|

> c
log2 `
1

= `log2 c1

= `10c

≥ k2c.

(The second inequality holds since |B| >
√

k − 1 > c1.)
Now by (4) we get

kc >
1
3
|`B| >

1
3

k2c,

which is a contradiction.
Thus, there exists some j ≤ log2 ` such that

|2jB + 2jB| = |2j+1B| ≤ c1 |2jB|. (6)

Inequality (3) gives
|2jB| ≤ 3 kc. (7)

Applying Freiman’s Theorem to (6) we find two positive constants C1 and C2, depending
only on c, and a generalized arithmetic progression P of dimension d < C1 such that

2jB ⊂ P, (8)
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and
|P | ≤ C2 |2jB|.

From (7) we get
|P | ≤ c2 kc

(where c2 depends only on c). Also, (8) implies that

B ⊂ x + P

for any fixed x ∈ −(2j − 1)B.
Note that Theorem 2 gives

rh(n, x + P ) < |P | c(h)
log log |P | = ec(h)

log |P |
log log |P | ,

for any n ∈ C and h ≥ 2, where c(h) is a constant dependent on c and h.
It follows that the number of representations of n as a product of h elements of B is at

most

rh(n, x + P ) < e
c(h)

log(c2kc)
log log(c2kc)

< ec1(h) log k
log log k

= k
c1(h)

log log k

< kε,

for any fixed ε > 0 and h, and for k large enough.
Next, using the Stirling formula in the form

(n

e

)n√
2πn < n! < 2

(n

e

)n√
2πn

we find a lower bound on
( |B|

h

)
in terms of k. Let b = |B| (which is > k

1
2 − 1). Then

there exists an absolute constant h0 such that for h0 < h < k1/5 − 1 we have
( |B|

h

)
>

1
4
√

2π

( b

h

)h( b

b− h

)b−h+ 1
2 1√

h

>
1

4
√

2π

( b

h

)h 1√
h

>
1

4
√

2π
k( 1

2− 1
5 )h− 1

10

> k
h
4 .
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We conclude that for any h as above holds

|B×| > k−ε

( |B|
h

)
> k−ε k

h
4 ,

and thus
kc > |A×| > |B×| > k

h
4−ε.

Appropriate choice of h gives the contradiction. ¤
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