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Abstract Let A be a set of k& complex numbers, and let A™ (respectively, AX) be the
set of sums (resp. products) of distinct elements of A. Let

= i At A*|}.
go(k) = _min_ {|A*|+|a%])

Ruzsa posed the question whether g, (k) grows faster than any power of k. In this note we
give an affirmative answer to this question.

Let A be a set of k complex numbers, and let AT and A* be the sets of sums and
products of distinct elements of A:

k
AT = {Zsiaizai GA,Si =0 or 1},

=1

k
AX = {Hafi:ai €A,e; =0 or 1}.

i=1
In [E-S] Erdés and Szemerédi considered

= i At A*
0.(6) = min_ {|4%|+]4%]}

(thus here A is a set of integers) and conjectured that g, (k) grows faster than any power
of k. More precisely, they observed that

(k) < KR
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for some absolute constant ¢ > 0 and conjectured that there exists an absolute constant
¢’ > 0 such that

1 _log k

9. (k) > k° Paloa®, (1)

In [Chl], we established (1). The argument relies heavily on factorization into primes
and moment inequalities for trigonometric polynomials and does not extend beyond the
integer case.

More recently, Ruzsa [R1] proposed the problem to get a nontrivial estimate for

— ; + X
g:(k) =, mmin {47+ ][4},

and for

= i AT A%, 2
g (k) = | min  {|4%]+]4%]} (2)

Our main result is
Theorem 1. Let g.(k) be defined as in (2). Then

k—oo logk

Hence g.(k) (and consequently g, (k) > g.(k)) grows faster than any power of k.

We don’t know if the analogue of (1) holds true for g.(k).

The approach is substantially different from [Ch1] and our main tool is the new result on
factorization in “generalized arithmetic progressions” (as defined in the following theorem)
established in [Ch2].

Theorem 2 ([Ch2], Proposition 3). Let P be a generalized arithmetic progression
P =P(co;c1y. o yeq; Jiy ...y Ja) = {co+2,?:1kici:ki = [O,Ji[},
with generators ci,...,cq € C. Set J = max; J;. Then for any h > 2 and any n € C the

number of representations rp(n) = rp(n, P) of n as a product of h elements of P satisfies

Cd.n
rp(n) < Jiels7,

The proof uses the theory of factorization in algebraic number fields.

There are two more ingredients in our argument.
The first is Freiman’s theorem [F] on the structure of sets with small sumsets.
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Theorem (Freiman) [N, Theorem 8.1]. Let G be a torsion free abelian group and let
A C G be a finite subset. If a is a real number such that |2A| < «|A|, then there exist real
Cy = Ci(a) and Cy = Co(a) (depending only on «) and a generalized progression P as
defined above, such that A C P, with

d<Cy

and

|P| < Cs|Al.

Finally, use Plinnecke-Ruzsa sumset estimate; see [R3] or [N, Theorem 7.8].
Lemma 3 (Ruzsa’s Inequality) [R3]. Let p be a real number and let M and N be finite
subsets of an abelian group such that

|M + N| < p|M|.

Leth>1and ¢ > 1. Then
|AN — IN| < p" M.

Proof of Theorem 1. For brevity we write g(k) rather than g.(k).

Fix a positive real number ¢ (so that all constants depending on ¢ will also be considered
fixed) and suppose that there exists A C C of arbitrarily large cardinality k& = |A| such
that [AT] + |A*] < k°.

We split A into |vk| disjoint subsets By, By, - - - , each of cardinality at least [vk]. Let

p=1+Kk"1°

and

=1

If |AY, | > p |Af| for all s < vk — 1 then

_ 1 kENk
AT > pVETHAT] > oY = (U ETE)R)T T s b

[
S
INC

Y

contradicting the assumption; thus there exists 1 < s < vk — 1 such that AL < p AT
Let B = B,y and let £ = [k5]; we claim then that

6B| < 3 k°. (3)
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Indeed, we have
AT+ B| < AT + B[ =|A74] < plAT],

which by Lemma 3 implies

Bl < |(€+1)B—B| < p**2]A%].

1 1
As p'*t2 = (14 k= 5)[k5 142 < 3 for sufficiently large k, we obtain

|(B] < 3|AT| < 3k°. (4)
Put
g = 2100
and suppose that A .
127T1B| > ¢|27B| (5)

for all positive integers j < log, ¢. Then by (5) we have

e "B

log, £
G

0B] >
>
glng c1

_ 6100

Z k,QC.

(The second inequality holds since |B| > vk —1 > ¢;.)
Now by (4) we get

1 1
k¢ > —|¢B| > = k*,
3| | 3

which is a contradiction.
Thus, there exists some j < log, ¢ such that

122B+2'B| = |27T'B| < ¢ |2’B|. (6)

Inequality (3) gives ‘
|2B| < 3k°. (7)

Applying Freiman’s Theorem to (6) we find two positive constants C; and Cs, depending
only on ¢, and a generalized arithmetic progression P of dimension d < C7 such that

2B C P, (8)
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and ‘
|P| < C3|2'B|.

From (7) we get
|P| < cok©

(where co depends only on ¢). Also, (8) implies that
B Cax+P
for any fixed x € —(2/ — 1)B.
Note that Theorem 2 gives
log | P|

ek _log |P| _
rh(n,x+P) < |P’10310g\P| :ec(h)loglog\P\,

for any n € C and h > 2, where ¢(h) is a constant dependent on ¢ and h.
It follows that the number of representations of n as a product of h elements of B is at
most

log(ep k)
h)————=2~ 7 _
rn(n,z 4+ P) < M istostcare)

log k
< ecl(h)logolgogk

ci(h)
— klog log k

< k°,

for any fixed € > 0 and h, and for k large enough.
Next, using the Stirling formula in the form

(E) V2mn < nl! <2 <E> 2mn
e e

we find a lower bound on (|f|> in terms of k. Let b = |B| (which is > k2 — 1). Then

there exists an absolute constant hg such that for hg < h < k1/5 — 1 we have

() =) G2

1 b\P 1
> =) 7
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We conclude that for any h as above holds
|B*| > k=€ (L§|) > k¢ ki,

and thus X
k¢ > |A*| > |B*| > k1i7°.

Appropriate choice of h gives the contradiction. O
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