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Let A be a finite subset of an integral domain, and let |A| denote the cardinality of the
set A. The sum set of A is

2A ≡ A + A ≡ {a1 + a2 | ai ∈ A}, (0.1)

and the product set of A is

A2 ≡ A.A ≡ {a1a2 | ai ∈ A}. (0.2)

In [7], Erdös and Szemerédi conjectured that |2A| and |A2| cannot both be small. More
precisely, they made the following

Conjecture. |2A|+ |A2| > |A|2−ε.

What they proved is the following

Theorem (Erdős-Szemerédi). If A ⊂ R is a finite set of real numbers, then

|2A|+ |A2| & |A|1+δ, (0.3)

where δ is a constant.

Notation 1. X & Y means X > cY , for some nonzero constant c.

Nathanson [9] showed that δ = 1
31 .
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Ford [12] obtained that δ = 1
15 , and Elekes [5] showed that δ = 1

4 by using Szemerédi-
Trotter Theorem [11].

So far, the best bound is obtained by Solymosi [13] who showed that δ = 3
11+ε also by

using Szemerédi-Trotter Theorem cleverly.

In a different direction, Bourgain, Katz, and Tao [1] proved the theorem for the case
that A is a subset of a finite field.

For other related results, see [2], [3], [4], [6], [8], [10].

In this paper, we generalize the Erdős-Szemerédi argument to sets of elements contained
in C, the field of complex numbers, or K, the quaternions, or certain normed subspaces V
of an R algebra (See Theorem 3) .

Theorem 1. Let A be a finite subset of C, or K. Then

|2A|+ |A2| & |A|1+ 1
54 . (0.4)

The proof of Erdős-Szemerédi Theorem uses the order of real numbers and therefore it
does not generalize trivially for the complex case. The problem for the complex case was
brought up by I. Ruzsa (private communication).

The theorem follows from the following special case.

Theorem 2. Let R be the annulus,

R ≡ {z | r ≤ |z| ≤ 2r}, (0.5)

contained in C, or K and let B ⊂ R be a finite subset of R. Then

|2B|+ |B2| & |B|1+δ, (0.6)

where
δ = (

1
3
− ε)δ1, δ1 =

1
9
, ε =

1
100

. (0.7)

Our method to prove Theorem 2 is to cover R with disjoint boxes Q of equal size such
that the maximal number of elements of B contained in each of the boxes is |B|δ1 . We fix
one such a maximal box called Q0, assuming |2B| . |B|1+δ and |B2| . |B|1+δ, and show
that ”most” of the boxes have nearly as many elements as B∩Q0. For each of these boxes,
we find a ”large” subset CQ such that we can define a map from (B ∩Q0)8 to CQ × CQ.
The cardinalities of the domain and the range give us a bound on δ1.

The following theorem can be used to prove a sum-product theorem for symmetric
matrices.
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Theorem 3. Let {Rm, +, ∗} be an R-algebra with + the componentwise addition. For
a = (a1, · · · , am), let |a| =

√
(
∑

a2
i ) be the Hilbert-Schmidt norm, and let V ⊂ Rm such

that
1. ∃ c = c(m), ∀a, b ∈ V , | a ∗ b| = c| a| | b|
2. for any a ∈ V \ {0}, a−1 exists (in a possibly larger field).
Then for any A ⊂ V , |A + A|+ |AA| > |A|1+δ.

The paper is organized as follows:
In Section 1, we prove Theorem 2.
In Section 2, we reduce Theorem 1 to Theorem 2.

For simplicity, we prove the theorems for complex numbers, and describe the differences
for the cases of the quaternions and the normed subspace in Remark 2 (Section 1) and
Remark 5 (Section 2) for those who care about the constant c as in Notation 1. (The
exponents are the same for both C and K.)

Section 1. The Theorem for an annulus.

Let r > 0 be as in (0.5). We define

A′ = {1
r
a : a ∈ A}.

Then
|A| = |A′|, |A + A| = |A′ + A′|, |A.A| = |A′.A′|, (1.1)

and we may rescale the annulus R and assume

R ≡ {z ∈ C : 1 ≤ |z| ≤ 2}. (1.2)

For any ρ > 0, the complex plane is covered by disjoint squares

Oj,k = {pρ +
√−1 qρ : (j − 1) ≤ p < j, (k − 1) ≤ q < k}, (1.3)

where j, k ∈ Z. (For convenience, sometimes we denote Qj,k by Q.)
We choose ρ such that

maxQ|B ∩Q| ∼ |B|δ1 . (1.4)

(See (0.7) for δ1.)
Let

P ≡ {Q :Q ∩B 6= ∅},
and Q0 be an element of P with

|B ∩Q0| ∼ |B|δ1 . (1.5)

First, we will show that the number of the sets Q + Q0 and QQ0 containing a fixed
point is bounded by an absolute constant.
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Claim 1. Fix Q ∈ P.
1. For any x ∈ Q + Q0, |{Q : x ∈ Q + Q0}| ≤ 4.
2. For any x ∈ QQ0, |{Q :x ∈ QQ0}| ≤ 25.

Proof. (1) Let Qj,k be as in (1.3),

Qj,k = {pρ +
√−1 qρ : (j − 1) ≤ p < j, (k − 1) ≤ q < k},

and Q0 be as in (1.5),

Q0 = {p0ρ +
√−1 q0ρ : (j0 − 1) ≤ p0 < j0, (k0 − 1) ≤ q0 < k0}.

Then Qj,k + Q0 is the set

{(p+p0)ρ+
√−1 (q+q0)ρ : (j+j0−2) ≤ p+p0 < (j+j0), (k+k0−2) ≤ q+q0 < (k+k0)},

The only sums of squares intersecting Qj,k+Q0 are Qj+1,k+Q0,Qj,k+1+Q0, Qj+1,k+1+Q0.

(2) To count the number of products of squares containing x, we enclose each square by
a disc with the same center and count the number of discs containing the product of the
discs. We will use the ”multiplicative” property of the Hilbert-Schmidt norm.

Let zQ be the center of Q. Then any z ∈ Q is contained in a disc centered at zQ with
radius ρ√

2
. Therefore, we have

z = zQ + d, where |d| < ρ√
2
. (1.6)

Similarly, let zQ0 be the center of Q0. Then for any z0 ∈ Q0, we have

z0 = zQ0 + d0, where |d0| < ρ√
2
. (1.7)

We see easily that zz0 is contained in a disc centered at zQzQ0 with radius 7
2ρ. In fact,

|zz0 − zQzQ0 | ≤ |dzQ0 |+ |d0zQ|+ |dd0|

≤ 2
ρ√
2

2 +
ρ2

2

<
7
2
ρ.

For the second inequality, we use the fact that |zQ|, |zQ0 | ≤ 2.
The point zz0 is in a disc centered at zQzQo

if and only if zQzQ0 is in a disc centered at
zz0 with the same radius. Therefore, counting the number of discs containing zz0 is the
same as counting the number of zQzQ0 in the disc centered at zz0. Since

|zQzQ0 − zQ′zQ0 | ≥ ρ, (1.8)

a disc of radius 7
2ρ with center zz0 contains at most 49 of the points zQzQ0 . Therefore,

every point zz0 in QQ0 is contained in at most 49 discs centered at zQzQ0 , hence zz0 is
contained in at most 49 of the sets QQ0 centered at zQzQ0 .
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Remark 2. If R ⊂ K, then we cover R with boxes Q of volume ρ4. Therefore, every point
is contained in at most 16 of the sets Q + Q0, and at most 94 of the sets QQ0. More
generally, if V is as in Theorem 3, then a point in V is contained in at most 2m of the
sets Q + Q0 and at most [1 + 2(2

√
m + m

4 )]2 of the sets QQ0.

Next, we show that most squares have almost the maximal number of elements of B, if
|2B| < |B|1+δ.

Claim 3. We assume
|2B| < |B|1+δ, (1.9)

and let
P0 ≡ {Q ∈ P : |B|δ1−(1+ε)δ ≤ |B ∩Q| ≤ |B|δ1}. (1.10)

Then
|P0| & |B|1−δ1 . (1.11)

Proof. First, it follows from (1.9), Claim 1 and (1.5) that

|B|1+δ > | 2B| >|
⋃

Q∈P
(B ∩Q0) + (B ∩Q)|

>
1
4

∑

Q∈P
|(B ∩Q0) + (B ∩Q)|

&|P| |B ∩Q0| ∼ |P||B|δ1 (1.12)

Therefore,
|P| . |B|1+δ−δ1 . (1.13)

Next, we see that (1.10) and (1.13) imply
∑

Q∈P\P0

|B ∩Q| < |P \ P0||B|δ1−(1+ε)δ ≤ |P| |B|δ1−(1+ε)δ . |B|1−εδ, (1.14)

which is < 1
2 |B|, when |B| is sufficiently large. Hence

∑

Q∈P0

|B ∩Q| >
1
2
|B| , (1.15)

which, together with (1.4) gives (1.11).

The next claim shows that for almost all Q ∈ P0, the sum sets of B ∩Q and B ∩Q0 are
not too big, if |2B| < |B|1+δ.
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Claim 4. We assume
|2B| < |B|1+δ, (1.16)

and let
P1 ≡ {Q ∈ P0 : |(B ∩Q) + (B ∩Q0)| < |B|δ1+(1+ε)δ}. (1.17)

Then
|P1| & |B|1−δ1 . (1.18)

Proof. By (1.16), Claim 1, and (1.17), we have

|B|1+δ > |2B| > |
⋃

Q∈P0\P1

(B ∩Q0) + (B ∩Q)|

>
1
4

∑

Q∈P0\P1

|(B ∩Q) + (B ∩Q0)|

≥ |P0 \ P1| |B|δ1+(1+ε)δ. (1.19)

Hence,

|P0 \ P1| ≤ |B|1−δ1−εδ. (1.20)

Now, (1.18) follows from (1.11) and (1.20).

Standard Construction

Let Q ∈ P1 be fixed, and let Y be a maximal subset of B ∩ Q, such that the sets
y + (B ∩Q0) for y ∈ Y are all disjoint. The following gives an estimate of |Y |.
Claim 5. |Y | < |B|(1+ε)δ.

Proof. The claim follows from (1.5) and the following inequality

|Y | |B ∩Q0| =
∑

y∈Y

|y + (B ∩Q0)| ≤ |(B ∩Q) + (B ∩Q0)| < |B|δ1+(1+ε)δ.

The last inequality is by (1.17).
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Claim 6. For z ∈ B ∩ Q, we define Bz = (B ∩ Q) ∩ (
z + (B ∩ Q0) − (B ∩ Q0)

)
. Then

there is a point zQ ∈ B ∩Q, such that

|BzQ
| > |B|δ1−2(1+ε)δ. (1.21)

Proof. The maximality of Y implies that

B ∩Q ⊂
⋃

y∈Y

(
y + (B ∩Q0)− (B ∩Q0)

)
. (1.22)

Therefore,
B ∩Q =

⋃

y∈Y

(
(B ∩Q) ∩ (

y + (B ∩Q0)− (B ∩Q0)
))

, (1.23)

and there is zQ ∈ Y , such that

|BzQ | = |(B ∩Q) ∩ (
zQ + (B ∩Q0)− (B ∩Q0)

)| ≥ |B ∩Q|
|Y | . (1.24)

Hence,
|BzQ

| ≥ |B|δ1−(1+ε)δ−(1+ε)δ,

because of (1.10) and Claim 5.

Remark 6.1. Denoting BzQ by BQ, we have

BQ = (B ∩Q) ∩ (
z + (B ∩Q0)− (B ∩Q0)

)
. (1.25)

Hence
BQ −BQ ⊂ 2(B ∩Q0)− 2(B ∩Q0). (1.26)

Now, we will do the same construction with the product sets.

Claim 7. We assume
|B2| < |B|1+δ, (1.27)

and let
P2 ≡ {Q ∈ P1 : |(B ∩Q)(B ∩Q0)| < |B|δ1+(1+ε)δ}. (1.28)

Then
|P2| > |P1| − |B|1−δ1−εδ.

In particular, if |2B|+ |B2| < |B|1+δ, then

|P0| ∼ |P1| ∼ |P2| ∼ |B|1−δ1 . (1.29)

Proof. The same as Claim 4.

Fix Q ∈ P2, and let Y ′ be a maximal subset of B ∩Q, such that the sets y′(B ∩Q0) for
y′ ∈ Y ′ are all disjoint.
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Claim 8. |Y ′| < |B|(1+ε)δ.

Proof. The same as Claim 5.

Remark 8.1. Here we use the fact that |B ∩Q0| = |y′(B ∩Q0)|. This property holds for
V in Theorem 3, because (y′)−1 exists.

Since our results hold for the case when multiplication is not commutative, we will use
the notation of inverse set.

Notation 2. A−1 = {a−1 : a ∈ A}
Claim 9. For z′ ∈ BQ, we define Cz′ = BQ ∩ z′(B ∩ Q0)(B ∩ Q0)−1. Then there is a
point z′Q ∈ BQ, such that

|Cz′Q | > |B|δ1−3(1+ε)δ. (1.30)

Proof. The same as Claim 6.

Remark 9.1. Denoting Cz′Q by CQ, we have

CQ = BQ ∩ z′(B ∩Q0)(B ∩Q0)−1, (1.31)

and
C−1

Q CQ ⊂ (B ∩Q0)(B ∩Q0)−1(B ∩Q0)(B ∩Q0)−1. (1.32)

Moreover, Remark 6.1 and (1.31) give

CQ − CQ ⊂ 2(B ∩Q0)− 2(B ∩Q0). (1.33)

Proof of Theorem 2. For any Q ∈ P2 and for any z 6= z′ ∈ CQ, (1.33) implies that there
are z1, . . . , z4 ∈ B ∩Q0, such that

z′ − z = z1 + z2 − z3 − z4, (1.34)

and (1.32) implies that there are z5, . . . , z8, such that

z−1z′ = z5 z−1
6 z7 z−1

8 . (1.35)

Therefore, given (z1, . . . , z8) ∈ (B ∩Q0)×· · ·× (B ∩Q0), (1.34) and (1.35) determine z, z′

uniquely.

z = (z1 + z2 − z3 − z4)(z5 z−1
6 z7 z−1

8 − 1)−1

z′ = (z1 + z2 − z3 − z4)
(
(z5 z−1

6 z7 z−1
8 − 1)−1 + 1

)
. (1.36)

Namely, (1.34) and (1.36) define a map on (B∩Q0)×· · ·× (B∩Q0) whose image contains
CQ × CQ. Thus, we have

|B ∩Q0|8 ≥
∑

Q∈P2

|CQ|2 & |B|1+δ1−6(1+ε)δ. (1.37)

The last inequality follows from (1.29) and (1.30).
Now, the theorem follows from (1.5) and (1.37).
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Remark. To prove Theorem 3, we observe that

z(z5z
−1
6 z7z

−1
8 − 1) = z1 + z2 − z3 − z4 ∈ V \ {0}.

Hence (z5z
−1
6 z7z

−1
8 − 1)−1 exists for z5, · · · , z8 ∈ B ∩Q0.

Section 2. The General Case.

In this section we will use Theorem 2 to prove Theorem 1.

First, according to (1.1), we may assume that

A ⊂ { z : 1 < |z| }.

We define, for any k ∈ N,

Ak = {z ∈ A : 2k−1 < |z| ≤ 2k}. (2.1)

Claim 1. There is a set K ⊂ N such that for any k ∈ K, we have

|Ak| > |A|
2|K| log2 |A|

, (2.2)

where log2 |A| ≡ dlog2 |A|e.
Proof. For l = 1, · · · , log2 |A|, we define

Kl = {k | 2l−1 ≤ |Ak| < 2l}. (2.3)

Therefore, ∑

l

2l|Kl| > |A|,

and there is l̄ such that

2l̄|Kl̄| >
|A|

log2 |A|
.

Let K = Kl̄. Then for any k ∈ K,

|Ak| ≥ 2l̄−1 >
|A|

2|K| log2 |A|
.
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Claim 2. To estimate |2Ak| and |A2
k|, we may assume that Ak is contained in one of the

quadrants, and

|Ak| > |A|
23|K| log2 |A|

. (2.4.)

Furthermore, for any z1, z2 ∈ Ak,

|z1 + z2| ≥ max{|z1|, |z2|}. (2.5)

Proof. One of the four quadrants contains at least 1
4 |Ak| elements of Ak. To see (2.5),

we note that
√

(<z1 + <z2)2 + (=z1 + =z2)2 ≥
√

(<z2
i + =z2

i ), because z1, z2 are in the
same quadrant implies that |<z1 + <z2|2 ≥ max{|<z1|2, |<z2|2} and |=z1 + =z2|2 ≥
max{|=z1|2, |=z2|2}.

Claim 3. Every element of 2A lies in at most two of the sets 2Ak, and every element of
A2 lies in exactly one of the sets A2

k.

Proof. Let z1, z2 ∈ Ak. Then

2k−1 < |z1 + z2| ≤ 2k+1, (2.6)

and
4k−1 < |z1z2| ≤ 4k. (2.7)

The first inequality in (2.6) follows from (2.5). Let z be an element with norm between
2k−1 and 2k for some k. Then z can only be in 2Ak−1 and 2Ak.

Claim 4. Let δ be the absolute constant given in Theorem 2. Then

|2A|+ |A2| > |A|1+δ

24+3δ|K|δ(log2 |A|)1+δ
. (2.8)

Proof. Claim 3 gives the following inequalities.

|2A| > |
⋃

k∈K

2Ak| ≥ 1
2

∑

k∈K

|2Ak|, (2.9)

|A2| > |
⋃

k∈K

A2
k| ≥

∑

k∈K

|A2
k|. (2.10)

Adding (2.9) and (2.10) together, and applying Theorem 2 to Ak, we have

|2A|+ |A2| > 1
2

∑

k∈K

|Ak|1+δ >
|A|1+δ

24+3δ|K|δ(log2 |A|)1+δ
. (2.11)



ERDÖS-SZEMERÉDI THEOREM 11

The last inequality follows from (2.4).

We divide the proof into two cases.

Case 1. |K| < |A| 12+ε.

Then from (2.11)

|2A|+ |A2| & |A|1+δ−( 1
2+ε)δ

(log2 |A|)1+δ
& |A|1+( 1

2−2ε)δ. (2.12)

Case 2. |K| > |A| 12+ε.

For each k ∈ K, we pick zk ∈ Ak. We may assume that there is K1 ⊂ K with |K1| > 1
2 |K|

such that
1√
2

2k−1 < <zk < 2k, for all k ∈ K1. (2.13)

Hence,

|2A| ≥ |{ zk + zk′ : k, k′ ∈ K1}|
≥ | { <zk + <zk′ : k, k′ ∈ K1}|
>

1
3
|K1|2

& |A|1+2ε

> |A|1+( 1
2−2ε)δ. (2.14)

The third inequality is by the same reasoning as that in Claim 1 in Section 1. The last
inequality follows from our assumption (0.7).

Finally, (2.12), (2.14), and (0.7) conclude the proof of the theorem.

Remark 5. If A ⊂ K, then in (2.4), (2.8), and (2.11), 23 and 24+3δ are replaced by 25 and
26+5δ. Also in (2.13), 1√

2
2k−1 and |K1| > 1

2 |K| are replaced by 1√
4
2k−1 and |K1| > 1

4 |K|.
For the normed space V , we have 2m+1, 2(m+1)(δ+1)+1, 1√

m
2k−1, 1

m |K| instead.
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