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A SUM-PRODUCT THEOREM IN SEMI-SIMPLE

COMMUTATIVE BANACH ALGEBRAS

Mei-Chu Chang

0. Introduction

Let A be a finite subset of R. It was proven by Erdös and Szemerédi [E-S] that the
sumset A + A = {x + y : x, y ∈ A} and product set A ·A = {x · y : x, y ∈ A} cannot be
both ‘small’. More precisely, they showed that |A + A| + |A · A| > c1|A|1+C for some
constant c > 0 and they conjectured that |A + A| + |A · A| > cε|A|2−ε for all ε > 0.
This problem is still open and the best result to date due to Solymosi [Sol], stating
that

|A + A| + |A · A| > |A| 1411−ε (0.1)

Part of the interest nowadays in this type of questions comes from its relevance
to certain issues in Analysis centered around the dimension conjectures for ‘Kakeya
sets’ in Rd (d ≥ 3) and related problems (see [K-T], [T], [Bo] for more details on the
matter). Most of them are far from solved but methods from ‘arithmetic combinatorics’
permitted to make certain progress. Naturally, this circle of ideas has a counterpart in
the finite field setting, replacing R by Fq. If q is prime, a sum-product theorem of the
Erdös-Szemerédi type was obtained in [B-K-T], based on an argument due to Edgar
and Miller in their solution of the Erdös-Volkmann ring problem (see [E-M]). Besides
the applications in [B-K-T], that result turned out to be an interesting application to
Gauss-sum estimates over prime fields when the degree is large (see [B-K]). It is shown
in [B-K] that given ε > 0, there is δ > 0 such that for p prime and k < p1−ε, one has

max
a6=0(p)

∣

∣

∣

∣

p−1
∑

x=0

e
2πi

p axk

∣

∣

∣

∣

< cp1−δ. (0.2)

Sum-product problems for sets of complex numbers were considered in [Ch1], [Ch2],
[Ch3] and [E]. We will consider here a setting which is significantly different, in the
sense that zero-divisor problems do appear.
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Theorem 1. There is a constant ν > 0 such that if A is a finite set of a semi-simple
commutative Banach algebra R, then

|A + A| + |A · A| > c|A|1+ν . (0.3)

Since R admits a faithful representation as a function space on the regular maximal
ideal space M (the Gelfand representation),it is semi-simple. Theorem 1 is obviously
equivalent to the following more elementary statement.

Theorem 2. Let A be a finite subset of the infinite product-algebra
∏

R or
∏

C

with coordinate-wise addition and multiplication. Then (0.3) holds, for some absolute
constant ν > 0.

We don’t know the optimal exponent ν. However, and this is perhaps the most
interesting point, examples show that ν may not be taken arbitrarily close to 1. In
fact

Remark 0.4. Theorem 2 does not hold for ν > 1 − log 2
log 3 .

This is seen as follows. Let A = {1, · · · , M} × {0, 1}m ⊂ R × Rm, thus |A| = N =
M2m. Since

A + A ⊂ {1, . . . , 2M} × {0, 1, 2}m

A · A ⊂ {1, . . . , M2} × {0, 1}m

it follows that |A + A| ≤ 2M3m and |A · A| ≤ M22m.

Taking M ∼ ( 3
2)m gives the desired conclusion.

As mentioned, the issue of zero-divisors is a significant problem (although not the
only one). Notice that in case of bounded dimension, thus A ⊂ Rt with t fixed, this
problem is easily avoided. Indeed, there is a subset A′ ⊂ A, |A′| ≥ 2−t|A| such that
for each i = 1, . . . , t, the coordinate projection πi(A

′) is either {0} (in which case the
i-coordinate may be ignored) or πi(A

′) ⊂ R\{0}.
An important point when treating the general case, is the ‘dimensional reduction’

based on the smallness of the sumset. Freiman’s lemma implies indeed that if A ⊂
∏

R, |A| < ∞ satisfies |A+A| ≤ t|A|, then there is a subset I of the index set, |I| ≤ t,
such that the coordinate projection πI :

∏

R → ∏

I R is one-to-one when restricted

to A, It is therefore no surprise that the size of the additive doubling constant |A+A|
|A|

does play a significant role in the combinatorics. Our main technical lemma in this
respect is Lemma 3.1 below, which is the base of the multi-scale analysis (this lemma
is very similar to certain constructions in [B-C] but the context here is different).
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Finally, notice that the assumption of semi-simplicity is obviously necessary. The-

orem 1 clearly fails for R =
{

(

0 x
0 0

)

: x ∈ C
}

.

Acknowledgement. The author would like to thank the referee for helpful comments.

1. Sum-Product for Graphs on R

Proposition 1.1. Let S ⊂ R be a finite set, |S| = N and G ⊂ S × S with

|G| ≥ δN2.

Then
|S +

G
S| · |S ×

G
S| > cδ4N5/2. (1.1)

Proof. We use Elekes’ method.

Consider the points

{(x + z, yz) : (x, z) ∈ G, (y, z) ∈ G} ⊂ (S +
G

S) × (S ×
G

S).

Let n ∈ Z+ to be specified. From Szemerédi-Trotter

|S +
G

S|2|S ×
G

S|2 > cn3|{(x, y) ∈ S × S : |Gx ∩ Gy| ∼ n}|. (1.2)

Our aim is to make the right side of (1.2) large.

We have by Cauchy-Schwartz

δN2 ≤
∑

x∈S

|Gx| =
∑

z∈S

∑

x∈S

χ
Gx

(z) ≤ N1/2

[

∑

z∈S

(

∑

x∈S

χ
Gx

(z)

)2]1/2

≤ N1/2

(

∑

x,y∈S

|Gx ∩ Gy|
)1/2

,

hence
∑

x,y∈S

|Gx ∩ Gy | > δ2N3. (1.3)

Since |Gx ∩ Gy| ≤ N , (1.3) implies that for some n ∈ Z+

n · |{(x, y) ∈ S × S : |Gx ∩ Gy | ∼ n}| >
δ2N3

log 1
δ

. (1.4)
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From (1.4), we have in particular

n >
δ2N

log 1
δ

. (1.5)

Substituting (1.4) and (1.5) in (1.2), we have

|S +
G

S|2 · |S ×
G

S|2 >
δ6N5

(log 1
δ )3

which implies (1.1).

Remark 1.1.1. Proposition 1.1 fails in dimension 2. If A ⊂ R is a finite set, then
S ⊂ R × R as S = (A × {0}) ∪ ({0} × A). Let G ⊂ S × S be the graph

G = {
(

(x, 0), (0, y)
)

: x, y ∈ A}.

Then

S +
G

S = A × A and S ×
G

S = {(0, 0)}.

Thus

|S +
G

S| · |S ×
G

S| = N2.

2. Addition constant and multiplication constant.

Let

R =

t
∏

j=1

R.

Let A1, A2 ⊂ R be finite sets

|Ai| = Ni

and G ⊂ A1 × A2

|G| = δN1N2, 0 < δ < 1.

We define the sum and product sets of A1, A2 along the graph G

A1 +
G

A2 = {x + y = (xj + yj)j : (x, y) ∈ G}

A1 ×
G

A2 = {x · y = (xjyj)j : (x, y) ∈ G},
4



and addition and multiplication constants

K+(G) =

|A1 +
G

A2|
√

N1N2

(2.1)

K×(G) =

|A1 ×
G

A2|
√

N1N2

. (2.2)

Thus
δ max(N1, N2)√

N1N2

≤ K+(G) ≤ δ
√

N1N2 (2.3)

and
1√

N1N2

≤ K×(G) ≤ δ
√

N1N2.

Lemma 2.1. If G ⊂ A1 × A2, Ai ⊂ R, then

K+(G)1−θ · K×(G)θ > δ2(N1N2)
θ
4 for all 0 ≤ θ ≤ 2

15
.

Proof.

Let S = A1 ∪ A2 ⊂ R and consider G ⊂ A1 × A2 ⊂ S × S.

Assume N1 ≥ N2. Hence N = |S| ∼ N1 and |G|
N2 > δ · N2

N1
.

From (1.1)

K+ · K×N1N2 = |A1 +
G

A2| · |A1 ×
G

A2| > Cδ4

(

N2

N1

)4

N
5/2
1 > cδ4N

−3/2
1 N4

2

K+ · K× > cδ4N
−5/2
1 N3

2 . (2.4)

Also from (2.3)

δN1 ≤ K+

√

N1N2 ⇒ N2 >

(

δ

K+

)2

N1. (2.5)

From (2.4), (2.5)

K+ · K× > cδ4(N1N2)
1/4

(

N2

N1

)11/4

> cδ4

(

δ

K+

)11/2

(N1N2)
1/4

K
13
2

+ · K× > cδ
19
2 (N1N2)

1/4

K
1− 2

15
+ K

2
15
× > cδ

19
15 (N1N2)

1/30. (2.6)
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Also
K+ ≥ δ (2.7)

and (2.4) follows from interpolation between (2.6), (2.7).

3. Factorization Lemma

Fix 0 < θ < 2
15 .

Define
β(N, δ, K) = βθ(N, δ, K) = min K+(G)1−θK×(G)θN

1
2 . (3.1)

where the minimum is taken over all A1, A2 ⊂ R,G ⊂ A1 × A2 such that

|Ai| = Ni, for i = 1, 2 (3.2)

N = N1N2 (3.3)

|G| ≥ δN (3.4)

K+(G) < K.

Lemma 3.1.

β(N, δ, K) > min
δ11

(log K
δ )38

β(N ′, δ′, K ′)β(N ′′, δ′′, K ′′)

(

N

N ′N ′′

)
1
2+ θ

4

(3.5)

where the minimum is taken over

N ′, N ′′ <

(

K

δ

)15

N1/2 (3.6)

N ′N ′′ < N

δ′ · δ′′ > (log
K

δ
)−4δ

K ′ · K ′′ < δ−6(log
K

δ
)4K.

Proof.

For i = 1, 2, let Ai ⊂ R and G ⊂ A1 ×A2 satisfy (3.2)-(3.4). For each i, we want to
find a subset of Ai with ”regular” structure, i.e. the sizes of the fibers over points in
the subset, of certain coordinate projection, have the same magnitude.
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First, we want to construct A′
i ⊂ Ai with

|A′
i| >

3δ

4
|Ai| (3.7)

such that for any Bi ⊂ A′
i,

|G ∩ (B1 × A′
2)| >

δ

4
|B1||A′

2| (3.8)

|G ∩ (A′
1 × B2)| >

δ

4
|A′

1||B2| (3.9)

and

(G ∩ (A′
1 × A′

2)
c| ≤ δ

4
|(A1 × A2)\(A′

1 × A′
2)|. (3.10)

It is clear that (3.10) implies (3.7). Indeed,

|A′
1||A′

2| ≥ |G ∩ (A′
1 × A′

2)| > δN1N2 −
δ

4
N1N2 =

3δ

4
N1N2.

We obtain A′
i by removing any bad subset Bi. Assume |G ∩ (B1×A′

2)| ≤ δ
4
|B1| |A′

2|
for some B1 ⊂ A′

1. Let A′′
1 = A′

1\B1. We see that A′′
1 × A′

2 satisfies (3.10).

|G ∩ (A′′
1 × A′

2)
c| = |G ∩ (A′

1 × A′
2)

c| + |G ∩ (B1 × A′
2)|

≤ δ

4
|(A1 × A2)\(A′

1 × A′
2)| +

δ

4
|B1| |A′

2|

=
δ

4
|(A1 × A2)\(A′′

1 × A′
2)|.

Continuing removing the bad set Bi, (3.10) ensures that the remaining set is still
big enough, and the process gives the desired result.

Next, we want to split R =
∏t

j=1 R into two parts.

For 1 ≤ j ≤ t, consider the decreasing functions for i = 1, 2,

ni(j) = max
(x1,... ,xj)∈R

j
|Ai(x1, . . . , xj)|,

where Ai(x1, . . . , xj) = {(xj+1, . . . , xt) | (x1, . . . , xt) ∈ Ai} is the fiber of Ai over the
point (x1, · · · , xj).
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We take t′ such that
{

n1(t
′) + n2(t

′) ≥ N1/4

n1(t
′ + 1) + n2(t

′ + 1) ≤ N1/4.

We assume n1(t
′) ≥ n2(t

′), thus

n1(t
′) ≥ 1

2
N1/4. (3.11)

Let R1 =
∏t′

j=1 R, and R2 =
∏t

j=t′+1 R, and let π1 : R → R1 be the projection to

the first t′ coordinates.

Denote
x̄ = (x1, · · · , xt′).

In what follows, denote K+(G) by K.

Claim 1. There exists a set .¯̄A2 ⊂ A′
2 with | ¯̄A2| > c δ3

log K
δ

N2, such that for all x̄ ∈
π1(

¯̄A2), we have | ¯̄A2(x̄)| ∼ m2 > cδ5K−2N1/4, and |π1(
¯̄A2)| < Cδ−5K2 N2

N1/4 .

Proof. Let x̄ ∈ π1(A
′
1) such that

|A′
1(x̄)| = n1(t

′).

It follows from (3.8) that

|G ∩ [
(

{x̄} × A′
1(x̄)

)

× A′
2]| >

δ

4
n1(t

′)|A′
2|

and hence there is a subset A′′
2 ⊂ A′

2 such that, by the Fact stated at the end of this
proof,

|A′′
2 | >

δ

8
|A′

2| >
3δ2

32
N2, (3.12)

and for z ∈ A′′
2

|G ∩ [
(

{x̄} × A′
1(x̄)

)

× {z}]) >
δ

8
n1(t

′). (3.13)

From (2.5) and (3.13), we get clearly

K2

δ
N2 ≥ K

√

N1N2 = |A1 +
G

A2|

≥ |
(

{x̄} × A′
1(x̄)

)

+
G

A′′
2 |

>
δ

8
|π1(A

′′
2)| · n1(t

′). (3.14)
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Let Ā2 ⊂ A′′
2 such that the fibers over any x̄ ∈ π1(Ā2) have size at least δ5n1(t′)

104K2 , i.e.

Ā2 =
⋃

|A′′
2 (x̄)|>10−4δ5K−2n1(t′)

{x̄} × A′′
2(x̄).

It follows from (3.14) that

|A′′
2\Ā2| ≤ |π1(A

′′
2)|10−4δ5K−2n1(t

′) < δ310−3N2 <
δ

10
|A′′

2 | (3.15)

The last inequality is by (3.7) and (3.12).

Since by (3.9)

|G ∩ (A′
1 × A′′

2)| >
δ

4
|A′

1| |A′′
2 |,

it follows from (3.15) that

|G ∩ (A′
1 × Ā2)| >

δ

4
|A′

1| |A′′
2 | −

δ

10
|A′

1| |A′′
2 | >

δ

10
|A′

1| |A′′
2 |.

Since |A′′
2(x̄)| ≤ n2(t

′) ≤ n1(t
′), we may specify m2 and ¯̄A2 as follows:

10−4δ5K−2n1(t
′) < m2 < n1(t

′), (3.16)

and
A′

2 ⊃ A′′
2 ⊃ Ā2 ⊃ ¯̄A2 =

⋃

|A′′
2 (x̄)|∼m2

(

{x̄} × A′′
2(x̄)

)

such that

|G ∩ (A′
1 × ¯̄A2)| > c

δ

log K
δ

|A′
1| |A′′

2 |. (3.17)

Thus ¯̄N2 : = | ¯̄A2| satisfies

¯̄N2 : = |¯̄A2| > c
δ

log K
δ

|A′′
2 | > c

δ3

log K
δ

N2. (3.18)

By (3.16) and (3.11)

| ¯̄A2(x̄)| ∼ m2 > cδ5K−2N1/4, (3.19)

and

|π1(
¯̄A2)| ∼

| ¯̄A2|
m2

<
|A2|
m2

< Cδ−5K2 N2

N1/4
. (3.20)
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Fact. Let |E| ≤ e and |F | ≤ f . If |G ∩ (E ×F )| > αef , then there exists F ′ ⊂ F with
|F ′| > α

2
f , such that for any z ∈ F ′, |G ∩ (E × {z})| > α

2
e.

Now we are ready to find subset of A′
1 with regular structure.

Claim 2. There exists a set ¯̄A1 ⊂ A′
1 with | ¯̄A1| > c δ2

(log K
δ )2

N1, such that for any

x̄ ∈ π1(
¯̄A1), we have | ¯̄A1(x̄)| ∼ m1 > cδ10K−5N1/4, |π1(

¯̄A1)| < Cδ−10K5 N1

N1/4 , and

| G ∩ ( ¯̄A1 × ¯̄A2)| > c δ
(log K

δ )2
| ¯̄A1| | ¯̄A2|.

Proof. We observe that for any Ã1 ⊂ A′
1, if

|G ∩ (Ã1 × ¯̄A2)| ∼ |G ∩ (A′
1 × ¯̄A2)|, (3.21)

then

m: = max
x̄∈π1(Ã1)

|Ã1(x̄)| > c
δ4

(log K
δ

)2
K−2m2. (3.22)

Indeed, from (3.21), (3.17) and the regular structure of ¯̄A2, there is x̄ ∈ π1(
¯̄A2) such

that

|G ∩
(

Ã1 ×
(

{x̄} × ¯̄A2(x̄)
))

| > c
δ

log K
δ

|A′
1| m2.

Hence by the Fact above, there is a subset A′′
1 ⊂ Ã1 ⊂ A′

1 satisfying

|A′′
1 | > c

δ

log K
δ

|A′
1| (3.23)

and for any z ∈ A′′
1

|G ∩ ({z} × ({x̄} × ¯̄A2(x̄)
))

| > c
δ

log K
δ

m2.

Same reasoning as in (3.14), we have

K2

δ
N1 ≥ K

√

N1N2 ≥ |A1 +
G

A2| ≥ |A′′
1 +

G

(

{x̄} × ¯̄A2(x̄)
)

|

> c|π1(A
′′
1)| δ

log K
δ

m2

> c
|A′′

1 |
m

δ

log K
δ

m2

> c
δ3

(log K
δ

)2
m2

m
N1.
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The last two inequalities are by the definition of m in (3.22) and (3.23), (3.7). Hence

m > c
δ4

(log K
δ )2

K−2m2.

Since the bound in (3.22) is bigger than δ5K−3m2. Therefore, in (3.17) we may replace
A′

1 by Ā1 defined as follows.

A′
1 ⊃ Ā1 =

⋃

|A′
1(x̄)|>δ5K−3m2

(

{x̄} × A′
1(x̄)

)

.

Thus, applying (3.22) to A′
1 − Ā1, we see that

|G ∩ (Ā1 × ¯̄A2)| > c
δ

log K
δ

|A′
1||A′′

2 |.

Recalling (3.16), for x̄ ∈ π1(Ā1)

δ5K−3m2 < |Ā1(x̄)| ≤ n1(t
′) < Cδ−5K2m2.

Keeping (3.17) and (3.21) in mind, we may thus again specify

δ5K−3m2 < m1 < Cδ−5K2m2 (3.24)

such that the regular set ¯̄A1 defined as

A′
1 ⊃ Ā1 ⊃ ¯̄A1 =

⋃

|Ā1(x̄)|∼m1

(

{x̄} × Ā1(x̄)
)

will satisfy

|G ∩ (¯̄A1 × ¯̄A2)| > c
δ

(log K
δ )2

|A′
1| |A′′

2 |. (3.25)

Now, (3.25), (3.7) and the fact that ¯̄Ai ⊂ A′′
i give

¯̄N1 : = | ¯̄A1| > c
δ2

(log K
δ )2

N1 (3.26)

and

| G ∩ ( ¯̄A1 × ¯̄A2)| > c
δ

(log K
δ )2

¯̄N1
¯̄N2. (3.27)

It follows from (3.20) and (3.24) that

m1 > cδ10K−5N1/4,

|π1(
¯̄A1)| ∼

| ¯̄A1|
m1

<
|A1|
m1

< Cδ−10K5 N1

N1/4
. (3.28)

Now, we will give regular structure to the graph G.

Notation. For simplicity, we denote ¯̄A1,
¯̄A2 by A1, A2 with cardinalities ¯̄N i satisfying

(3.18) and (3.26).
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Claim 3. There exists a graph G1,1 ⊂ π1(A1) × π1(A2) ⊂ R1 ×R1 with

| G1,1| > δ0|π1(A1)| |π1(A2)| , such that ∀(x̄1, x̄2) ∈ G1,1, we have

|A1(x̄1)+
G x̄1,x̄2

A2(x̄2)| ∼ L
√

m1m2, with L < L0, and | Gx̄1,x̄2
| ∼ δ1m1m2, where Gx̄1,x̄2

is the fiber of G over (x̄1, x̄2), and δ0, δ1 and L0 satisfy (3.33), (3.29) and (3.49)
respectively.

For x̄1, x̄2 ∈ R1, let Gx̄1,x̄2
be the fiber of G over (x̄1, x̄2),

Gx̄1,x̄2
= {(ȳ1, ȳ2) ∈ A1(x̄1) × A2(x̄2)|

(

(x̄1, ȳ1), (x̄2, ȳ2)
)

∈ G} ⊂ R2 ×R2.

Proof. It follows from (3.27) that we may restrict G to G1 × (R2 ×R2), where

G1 = {(x̄1, x̄2) ∈ π1(A1) × π1(A2)| |Gx̄1,x̄2
| > c

δ

(log K
δ

)2
m1m2}.

Thus
∑

(x̄1,x̄2)/∈G1

|Gx̄1,x̄2
| ≤ c

δ

(log K
δ )2

¯̄N1
¯̄N2,

and

c m1m2 ≥ |Gx̄1,x̄2
| > c

δ

(log K
δ

)2
m1m2, for (x̄1, x̄2) ∈ G1.

By (3.27),
∑

(x̄1,x̄2)∈G1

|Gx̄1,x̄2
| > c

δ

(log K
δ

)2
¯̄N1

¯̄N2.

Also, we may thus specify δ1,

1 > δ1 > c
δ

(log K
δ )2

(3.29)

such that if
G′

1 = {(x̄1, x̄2) ∈ G1| |Gx̄1,x̄2
| ∼ δ1m1m2},

then we have
∑

(x̄1,x̄2)∈G′
1

|Gx̄1,x̄2
| > c

δ

(log K
δ )3

¯̄N1
¯̄N2.

(Clearly, log
(log K

δ )2

δ < log K
δ .)
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Hence

| G′
1| > c

δ

δ1(log K
δ )3

|π1(A1)| |π1(A2)|, (3.30)

which is bigger than δ
(log K

δ )3
|π1(A1)| |π1(A2)|.

By further restriction of G ′
1, we will also make a specification on the size of the

sumset of Gx̄1,x̄2
.

For (x̄1, x̄2) ∈ G′
1, let K+(Gx̄1,x̄2

) be the addition constant of A1(x̄1) and A2(x̄2)
along the graph Gx̄1,x̄2

as defined in (2.1).

First, we see that if H ⊂ G′
1, with

|H| ∼ |G′
1| >

δ

(log K
δ

)3
|π1(A1)| |π1(A2)|,

then

min
(x̄1,x̄2)∈H

K+(Gx̄1,x̄2
) < L0: = c−1(log

K

δ
)

9
2 δ−

9
2 K. (3.31)

In fact, assume for all (x̄1, x̄2) ∈ H that K+(Gx̄1,x̄2
) > L0. Then

K
√

N1N2 ≥ |A1 +
G

A2| > min
(x̄1,x̄2)∈H

{|A1(x̄1) +
G x̄1,x̄2

A2(x̄2)|}|π1(A1) +
H

π1(A2)|

≥ L0
√

m1m2
|H|

√

|π1(A1)| |π1(A2)|

> L0
δ

(log K
δ )3

( ¯̄N1
¯̄N2)

1/2

> δ−1
√

N1N2K,

which is a contradiction. (The last inequality is by (3.18), (3.26) and (3.49).)

Hence, we may reduce G ′
1 to G′′

1 ⊂ G′
1, with |G′′

1 | ∼ |G′
1| such that

|A1(x̄1)+
G x̄1,x̄2

A2(x̄2)| < L0
√

m1m2 for (x̄1, x̄2) ∈ G′′
1 .

Therefore there is G1,1 ⊂ G′′
1 and 1 < L < L0 (see (3.49))

|G1,1| >
c |G′′

1 |
log K

δ

> δ0|π1(A1)| |π1(A2)|, (3.32)

13



where, by (3.30)

δ0 > c
δ

δ1(log K
δ )4

(3.33)

and
|A1(x̄1)+

G x̄1,x̄2

A2(x̄2)| ∼ L
√

m1m2 (3.34)

for (x̄1, x̄2) ∈ G1,1.

Since

K
√

N1N2 ≥ |π1(A1)+
G 1,1

π1(A2)||A1(x̄1)+
G x̄1,x̄2

A2(x̄2)|

≥ |π1(A1)+
G 1,1

π1(A2)| · L
√

m1m2

= K+(G1,1)L

√

¯̄N1
¯̄N2,

we have

K+(G1,1) · L < δ−
5
2 (log

K

δ
)

3
2 K < δ−3(log K)2K. (3.35)

In summary, G1,1 ⊂ π1(A1) × π1(A2) satisfies (3.32), (3.33) and for (x̄1, x̄2) ∈ G1,1,
the graph Gx̄1,x̄2

⊂ A1(x̄1) × A2(x̄2) satisfies

{(x̄1, x̄2)} × Gx̄1,x̄2
⊂ G

|Gx̄1,x̄2
| ∼ δ1m1m2, (3.36)

where δ1 is as in (3.29). The addition constants K+(G1,1) and L satisfy (3.31) and
(3.35).

Denote
G ⊃ G̃ =

⋃

(x̄1,x̄2)∈G1,1

({(x̄1, x̄2)} × Gx̄1,x̄2
) (3.37)

which satisfies

|G̃| > c
δ

(log K
δ

)4
¯̄N1

¯̄N2 (3.38)

where

¯̄N1
¯̄N2 >

δ5

(log K
δ

)3
N1N2. (3.39)

14



Next, we will estimate β (see (3.1) for the definition).

From (3.37)

A1 +
G

A2 ⊃ A1 +
G̃

A2 =
⋃

(x̄1,x̄2)∈G1,1

[

{x̄1 + x̄2} ×
(

A1(x̄1) +
Gx̄1,x̄2

A2(x̄2)
)]

.

Let Mi = |π1(Ai)|. Then

|A1 +
G

A2| ≥ K+(G1,1)
√

M1M2 · min
(x̄1,x̄2)∈G1,1

|A1(x̄1) +
Gx̄1,x̄2

A2(x̄2)|

≥ K+(G1,1)
√

M1M2 L
√

m1m2 (3.40)

by (3.34).

Similarly

|A1 ×
G

A2| ≥ K×(G1,1)
√

M1M2 · min
(x̄1,x̄2)∈G1,1

K×(Gx̄1,x̄2
)
√

m1m2 (3.41)

(notice that we did not regularize with respect to the product).

If we take some (x̄1, x̄2) ∈ G1,1 realizing the minimum in (3.41), it follows from
(3.34)

L1−θK×(Gx̄1,x̄2
)θ√m1m2 ∼ K+(Gx̄1,x̄2

)1−θK×(Gx̄1,x̄2
)θ√m1m2

≥ β(m1m2, δ1, L)

by definition (3.1) of β and (3.36).

Hence (3.40) and (3.41) give

K+(G)1−θK×(G)θ
√

N1N2 =

|A1 +
G

A2|1−θ|A1 +
G

A2|θ ≥ K+(G1,1)
1−θK×(G1,1)

θ
√

M1M2 · β(m1m2, δ1, L)

≥ β
(

M1M2, δ0; K+(G1,1)
)

· β(m1m2, δ1, L) (3.42)

The last inequality is by (3.32).

Recall that, by (3.39)

(M1M2)(m1m2) ∼ ¯̄N1
¯̄N2 >

δ5

(log K
δ

)3
N (3.43)
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and by (3.20) and (3.28)

M1M2 .

(

δ−10K5 N1

N1/4

)

·
(

δ−5K2 N2

N1/4

)

. δ−15K7N1/2. (3.44)

By (3.33) and (3.35)

δ0 · δ1 > c

(

log
K

δ

)−4

δ (3.45)

K+(G1,1) · L < δ−3(log K)2K. (3.46)

The only missing property at this point is the upper bound (3.7) on m1m2. We will
achieve this with one more decomposition.

Let Bi = Ai(x̄i).

For fixed (x̄1, x̄2) ∈ G1,1, consider the graph K = Gx̄1,x̄2
⊂ A1(x̄1) × A2(x̄2) ⊂

R2 ×R2 satisfying by (3.34) and (3.36)

K ⊂ B1 × B2 ⊂ R2 ×R2

|Bi| ∼ mi, i = 1, 2,

|K| ∼ δ1m1m2

K+(K) ∼ L.

Repeat the process in Claims 1-4 to the graph K with respect to the decomposition
R2 = R×∏t

t′+2 R with π2:R2 → R being the projection to the first coordinate. Thus
K gets replaced by (cf. (3.36)-(3.39))

K̃ =
⋃

(z1,z2)∈K1,1

(z1, z2) × Kz1,z2

where
K1,1 ⊂ R × R,

Kz1,z2
⊂ ¯̄B1(z1) × ¯̄B2(z2).

Also, (3.18), (3.19) and (3.6) give

mi = |Bi| ≥ | ¯̄Bi|: = ¯̄mi >
δ3
1

(log L
δ1

)2
mi (3.47)

| ¯̄Bi(zi)| ∼ `i ≤ |Bi(zi)| = |Ai(x̄i, zi)| < (N1N2)
1/4. (3.48)
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|Kz1,z2
| ∼ δ3`1`2

|K1,1| >
δ1

δ3(log L
δ1

)4

¯̄m1 ¯̄m2

`1`2

(cf. (3.32), (3.33))

K+(Kz1,z2
) < K+(K1,1) · K+(Kz1,z2

) < δ−3
1 (log L)2L (3.49)

(

cf. (3.35)
)

.

(We point out here that `i, ¯̄mi, δ3 > δ1

(log L
δ1

)4
do depend on the basepoint (x̄1, x̄2) ∈

R1 ×R1).

To estimate β(m1m2, δ1, L) in (3.42), we will give a lower bound on

K+(K)1−θK×(K)θ√m1m2.

First, we remark that from (3.45) and (3.46), we have

δ1 >
δ

(log K
δ

)4
, (3.50)

L <
K(log K)2

δ3
<
(K

δ

)3

, (3.51)

and

L

δ1
<

K(log K)2

δ3

(log K
δ

)4

δ
<
(K

δ

)4

. (3.52)

On the other hand, applying Lemma 2.1 to K1,1 ⊂ R × R, we have

K+(K1,1)
1−θK×(K1,1)

θ >

[

δ1

δ3(log L/δ1)4

]2( ¯̄m1 ¯̄m2

`1`2

)θ/4

(3.53)

Also, note that, from (3.48)

`1`2 < N1/2. (3.54)
17



Thus

K+(K)1−θK×(K)θ√m1m2

= |B1 +
K

B2|1−θ|B1 ×
K

B2|θ

≥ | ¯̄B1 +
K̃

¯̄B2|1−θ| ¯̄B1 ×̃
K

¯̄B2|θ

≥ K+(K1,1)
1−θK×(K1,1)

θ

(

¯̄m1 ¯̄m2

`1 · `2

)
1
2

β
(

`1`2, δ3, δ
−3
1 (log L)2L

)

>
δ2
1

δ2
3(log L

δ 1
)8

(

¯̄m1 ¯̄m2

`1`2

)
1
2+ θ

4

β
(

`1`2, δ3, δ
−3
1 (log L)2L

)

>
δ6
1

(log L
δ 1

)11

(

m1m2

`1`2

)
1
2+ θ

4

β
(

`1`2, δ3, δ
−3
1 (log L)2L

)

> δ6(log
K

δ
)−35

(

m1m2

`1`2

)
1
2+ θ

4

β

(

`1`2,
δ1

(log K
δ )4

, δ−3
(

log
K

δ

)2
L

)

> min
N ′′

{

δ6(log
K

δ
)−35

(

m1m2

N ′′

)
1
2+ θ

4

β

(

N ′′,
δ1

(log K
δ

)4
δ−3
(

log
K

δ

)2
L

)}

,
(3.55)

where the minimum is taken over all N ′′ < min{m1m2, N
1
2 }. starting from the second

inequality, we use (3.49), (3.53), (3.47), (3.50)-(3.52), (3.54).

We replace in (3.42), β(m1m2, δ1, L) by (3.55) and set

N ′ = M1M2, δ′ = δ0, δ′′ =
δ1

(log K
δ )4

, K ′ = K+(G1,1), K ′′ = (log
K

δ
)2δ−3L

Using (3.43), we get the following estimate.

β(N, δ, K) > δ6(log
K

δ
)−35 β(N ′, δ′, K ′) · β(N ′′, δ′′, K ′′)

(

δ5

(log K
δ

)3
N

N ′N ′′

)
1
2+ θ

4

>
δ11

(log K
δ

)38
β(N ′, δ′, K ′) · β(N ′′, δ′′, K ′′) ·

(

N

N ′N ′′

)
1
2+ θ

4

,
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where, by (3.44), (3.55), (3.45) and (3.46),

N ′, N ′′ <

(

K

δ

)15

N1/2

δ′ · δ′′ >

(

log
K

δ

)−8

δ

K ′ · K ′′ < δ−6

(

log
K

δ

)16

K. �

This proves Lemma 3.1.

Ignoring the dependence on K, define

β(N, δ) = βθ(N, δ) = min{K+(G)1−θK×(G)θN
1
2 },

where the minimum is taken over all A1, A2 ⊂ R,G ⊂ A1 × A2 such that

|Ai| = Ni, N = N1N2, |G| > δN.

Thus β(N, δ) = minK β(N, δ, K).

Corollary 3.1.1. Let 0 < θ < 10−3 be a constant. Then

β(N, δ) > min

{

δN
1
2+ 1

120 , δ11(log N)−38β(N ′, δ′)β(N ′′, δ′′)

(

N

N ′N ′′

)
1
2+ θ

4
}

where the minimum is taken over

N ′, N ′′ < N5/8, N ′N ′′ < N

δ′ · δ′′ > (log N)−8δ.

Proof. We distinguish 2 cases.

If K+(G)
δ > N

1
120 , obviously K+(G)1−θK×(G)θN

1
2 > δN

1−θ
120 N− θ

2 N
1
2 > δN

1
2+ 1

120 by
assumption on θ.

If K+(G)
δ < N

1
120 , apply (3.5) with K = K+(G). We obtain the lower bound

δ11(log N)−38β(N ′, δ′)β(N ′′, δ′′)

(

N

N ′, N ′′

)
1
2+ θ

4
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with N ′, N ′′, δ′, δ′′ subject to the constrains

N ′N ′′ < N ; N ′, N ′′ < N
1
2+ 1

8

δ′ · δ′′ > (log N)−4δ

from (3.5), (3.6). �

For technical reason, we redefine βθ(N, δ, K) and βθ(N, δ) by taking

β̃θ(N, δ, K) = min
M<N

(

N

M

)
1
2+ θ

4

βθ(M, δ, K) (3.56)

and

β̃θ(N, δ) = min
M<N

(

N

M

)
1
2+ θ

4

βθ(M, δ). (3.57)

Lemma 3.1 and Corollary 3.1.1 may then be restated in the following simpler form.

Lemma 3.2. Let 0 < θ < 10−3 be a constant.

β̃(N, δ, K) > min
δ11

(log K
δ )38

β̃(N ′, δ′, K ′) · β̃(N ′′, δ′′, K ′′)

with minimum taken over

(

K

δ

)−15

N1/2 < N ′, N ′′ <

(

K

δ

)15

N1/2; N ∼ N ′N ′′ (3.58)

δ′ · δ′′ >

(

log
K

δ

)−8

δ (3.59)

K ′ · K ′′ < δ−6

(

log
K

δ

)16

K. (3.60)

Lemma 3.3. Let 0 < θ < 10−3 be a constant.

β̃(N, δ) > min δ11(log N)−38 · β̃(N ′, δ′)β̃(N ′′, δ′′)

with minimum taken over

N ′, N ′′ < N5/8, N ∼ N ′N ′′

δ′ · δ′′ > (log N)−4δ.
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4. Finite Products

Assume G ⊂ A1 × A2 where Ai ⊂
∏t

1 R.

Denote
β̃(t)(N, δ)

the quantity (3.39), but under the restriction of an index set of size t. Going back to
the proof of the factorization Lemma 3.1, we split the index set into {1, · · · , t′}∪{t′ +
1} ∪ {t′ + 2, · · · , t}. Hence Lemma 3.3 may be restated as

Lemma 4.1.

β̃(t)(N, δ) > min δ11(log N)−38β̃(t′)(N ′, δ′)β̃(t′′)(N ′′, δ′′) (4.1)

with minimum taken over

t′ + t′′t′, t′′ < t (4.2)

N ′, N ′′ < N5/8, N = N ′N ′′

δ′ · δ′′ > (log N)−8δ. (4.3)

Lemma 4.2. Let 0 < θ < 10−3 be a constant. Then

β̃(t)(N, δ) > δ11t(log N)−45t2N
1
2+ θ

4 .

Proof.

We proceed by induction on t.

If t = 1. Lemma 2.1 gives β(1)(N, δ) > δ2N
1
2+ θ

4 .

By (4.2), (4.3)

(δ′)11t′(δ′′)11t′′ ≥ (δ′δ′′)11(t−1) > (log N)−88(t−1)δ11(t−1)

For Lemma 4.1 and inductive assumption for t′, t′′ < t, it follows that right hand
side of (4.1) is at least

δ11(log N)−38(δ′)11t′(log N ′)−45(t′)2(δ′′)11t′′(log N ′′)−45(t′′)2N
1
2+ θ

4

> δ11t(log N)−38−45(1+(t−1)2)−88(t−1)N
1
2+ θ

4

> δ11t(log N)−45t2N
1
2+ θ

4 . �

5. Use of Freiman’s Lemma

Dimensional reduction in terms of additive doubling constant will be achieved using
Freiman’s Lemma.
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Lemma 5.1. (Freiman): If A is a finite subset of a real vector space E satisfying
|A + A| ≤ K|A|, then dim[A] ≤ K.

It follows that if A ⊂ R =
∏

R satisfies |A| < ∞, |A + A| ≤ K|A|, then after

reorganizing the index set, the restriction of the coordinate map π|A :
∏

R →
∏t

1 R

is one-to-one on A.

As the first dimensionless lower bound on β̃(N, δ, K), we obtain

Lemma 5.2. Let 0 < θ < 10−3 be a constant. Then

β̃(N, δ, K) > (log N)−103( K
δ )120N

1
2+ θ

4 .

Proof.

Let G ⊂ A1 × A2 ⊂ R, |G| > δN1N2.

Assume N1 ≥ N2. By (2.5), since K+(G) ≤ K

N2 >

(

δ

K

)2

N1.

Let A = A1 ∪ A2 and consider G ⊂ A × A. Thus |A| ∼ N1 and

|G| >
δ3

K2
N2

1 : = δ1N
2
1 (5.1)

|A +
G

A| ≤ KN2
1 . (5.2)

From (5.1), (5.2) and the Balog-Szemerédi-Gowers theorem, there is a subset A′ ⊂ A
satisfying the properties

|A′ + A′| <

(

K

δ1

)20

|A′| <

(

K

δ

)60

|A′| (5.3)

|(A′ × A′) ∩ G| >

(

δ1

K

)20

N2
1 >

(

δ

K

)60

N2
1 . (5.4)

Hence

|A′| >

(

δ

K

)60

N1. (5.5)
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From (5.3) and Lemma 5.1, there is an index set of size t

t <

(

K

δ

)60

(5.6)

and π|A′ is one-to-one. Denoting G ′ = (A′ × A′) ∩ G and H = (π × π)(G′) ⊂ π(A′) ×
π(A′), by (5.4), (5.6), (4.7) and (5.5), we get

|A1 +
G

A2|1−θ|A1 ×
G

A2|θ ≥ |A′ +
G′

A′|1−θ|A′ ×
G′

A′|θ

≥ |π(A′) +
H

π(A′)|1−θ|π(A′) ×
H

π(A′)|θ

≥ β̃(t)

(

|A′|2,
(

δ

K

)60)

>

(

δ

K

)660t

(log N)−45t2 |A′|1+ θ
2

>

(

δ

K

)103t

(log N)−45t2N
1+ θ

2
1 .

Therefore, (5.6) implies

β(N1N2, δ, K) ≥
(

δ

K

)103( K
δ )60

(log N)−45( K
δ )120 (N1 N2)

1
2+ θ

4

and also
β̃(N, δ, K) > (log N)−103( K

δ )120N
1
2+ θ

4 .

This proves (5.2).

Dependence of (5.2)-estimate on K is very poor. Next we get an improved behavior
combining (5.2) and (3.45).

6. First Improvement

We establish the following improvement of Lemma 5.2.

Lemma 6.1. Let 0 < θ < 10−3 be a constant. Then

β̃(N, δ, K) > (log N)−(log K
δ )C/θ

N
1
2+ θ

8 . (6.1)
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Thus the dependence on K/δ is considerably improved.

Proof. We will make an iterated application of Lemma 3.1.

Fix N, δ, K and choose an integer t of the form 2` (to be specified). Starting from
the expression

φ(N, δ, K) = φo(N, δ, K) = (log N)−103( K
δ )120N

1
2+ θ

4 + 1 (6.2)

obtained in Lemma 5.2, define recursively for `′ = 0, 1, . . . , ` − 1

φ`′+1(N, δ, K) = δ11(log
K

δ
)−38 min φ`′(N

′, δ′, K ′)φ`′(N
′′, δ′′, K ′′) (6.3)

with N ′, N ′′, δ′, δ′′, K ′, K ′′ subject to restrictions (3.67)-(3.69).

We evaluate φ̃ = φ`.

Iterating (6.3), we obtain clearly

φ̃(N, δ, K) =
∏

ν∈ ∪
`′<`

{0,1}`′

δ11
ν (log

Kν

δν
)−38

∏

ν∈{0,1}`

φ(Nν , δν , Kν) (6.4)

where (Nν)ν∈ ∪
`′≤`

{0,1}`′ , (δν)ν∈ ∪
`′≤`

{0,1}`′ satisfy by (3.67)-(3.48) the following constraints

Nφ = N, δφ = δ, Kφ = K

Nν ∼ Nν,0 · Nν,1 (6.5)

Nν,0 + Nν,1 ≤
(

Kν

δν

)15

N1/2
ν (6.6)

δν,0 · δν,1 ≥
(

log
Kν

δν

)−4

δν (6.7)

Kν,0, Kν,1 < δ−6
ν

(

log
K0

δ0

)4

Kν . (6.8)

From (6.7), (6.8)

log
Kν,0

δν,0
+ log

Kν,1

δν,1
< 8 log

Kν

δν

and iteration implies

max
ν∈{0,1}`′

log
Kν

δν
≤

∑

ν∈{0,1}`′

log
Kν

δν
< 8`′ log

K

δ
. (6.9)
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Iteration of (6.7) gives

∏

ν∈{0,1}`′

δν >
∏

ν∈{0,1}`′−1

(

log
Kν

δν

)−4
∏

ν∈{0,1}`′−1

δν

> 8−2`′2`′
(

log
K

δ

)−2·2`′

∏

ν∈{0,1}`′−1

δν

> 8−2(`′2`′+(`′−1)2`′−1+··· )

(

log
K

δ

)−2(2`′+2`′−1+··· )

δ

> 8−4`′2`′
(

log
K

δ

)−4·2`′

δ. (6.10)

The second inequality follows from (6.9).

Next, iterate (6.8). Thus, by (6.9) and (6.10) that

∏

ν∈{0,1}`′

Kν ≤
∏

ν∈{0,1}`′−1

δ−6
ν (log Kν)4

∏

ν∈{0,1}`′−1

Kν

<

(

8−2`′2`′
(

log
K

δ

)−2·2`′

δ

)−6
(

8`′ log
K

δ

)2·2`′
(

∏

ν∈{0,1}`′−1

Kν

)

< 814·`′2`′
(

log
K

δ

)14·2`′

δ−6`′K. (6.11)

From (6.5)
∏

ν∈{0,1}`

Nν > C−2`

N. (6.12)

From (6.7) (which implies that δν,0, δν,1 > (log Kν

δν
)−4δν) and (6.9) that

δν > 8−4`2
(

log
K

δ

)−4`

δ (6.13)

and from (6.8) (which implies that Kν,0, Kν,1 ≤ δ−6
ν (log Kν)4Kν), (6.9) and (6.13)

that

Kν < 825`3
(

log
K

δ

)25`2

δ−6`K. (6.14)
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From (6.6), (6.13), (6.14)

Nν,0 + Nν,1 ≤ 8450`3
(

log
K

δ

)450`2

δ−90`K15N1/2
ν

hence

Nν < 10103`3
(

log
K

δ

)103`2

δ−103`K30N1/t. (6.15)

From (6.2), (6.4), (6.9), (6.10)

φ̃(N, δ, K) ≥ 8−44`2`

(

log
K

δ

)−44 2`

δ11`

(

8` log
K

δ

)−38 2`
∏

ν∈{0,1}`

φ(Nν , δν , Kν)

>

(

8` log
K

δ

)−82 2`

δ11`
∏

ν∈{0,1}`

[1 + (log N)−103( Kν
δν

)120N
1
2+ θ

4
ν ]

(6.16)

To control the last factor in the expression above, we decompose

{0, 1}` = I ∪ J

with

I = {ν ∈ {0, 1}`

∣

∣

∣

∣

Kν

δν
< A}

and A to be specified.

First, we want to bound |J |.
By (6.10), (6.11)

A|J| <
∏

ν∈{0,1}`

Kν

δν
<

(

8` log
K

δ

)18t

δ−7`K. (6.17)

Take

2` = t ∼ log
K

δ
(6.18)

and fixing 0 < γ < 1, take
log A ∼ γ−1t. (6.19)

With this choice, (6.17) implies

|J | <
103t log t

log A
< γt.
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Thus

∏

ν∈{0,1}`

1 + (log N)−103( Kν
δν

)120N
1
2+ θ

4
ν

> (log N)−103A1202`

(

∏

ν∈I

Nν

)
1
2+ θ

4

> c′(log N)−103A120t[10103`3(log
K

δ
)10

3`2δ−103`K30N1/t]−|J|N
1
2+ θ

4

> (log N)−103A120t10−103γt(log t)3(log N)−103γt(log t)2δ103γt log tN
1
2+ θ

4−γ .

The second inequality follows from (6.12) and (6.15).

Thus by (6.16) and (6.18), (6.19), letting γ = θ
8

φ̃(N, δ, K) > (log N)−tC/γ · N 1
2+ θ

4−γ

> (log N)−(log K
δ )C/θ

N
1
2+ θ

8

which is (6.1).

Remark. Notice that proof of (6.1) relies on Lemma 3.2, Replacing (3.47) by the

cruder bound δ′δ′′ > δ
(log N)4 , we would obtain the bound (log N)−(log N)C/θ

N
1
2+ θ

8 in

(6.1), which is useless.

7. Sum-Product Theorem in R b We prove the following

Lemma 7.1. Fix a constant 0 < θ < 10−3. There are positive constants b1, b2, b3

such that
β̃(N, δ, K) > K−b1δb2 log log N eb3(log log N)2 N

1
2+ θ

10 . (7.1)

Proof.

We proceed in 2 steps.

Choose a large integer Ñ and let

(log N̄)1−
θ

3C = b1 < b2 < b3 ∼ (log N̄)1−
θ

3C (7.2)

where C is the constant in (6.1). The precise choice of b1, b2, b3 will be specified later.
We verify (7.1) assuming log N ∼ log N̄ .
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We distinguish 2 cases.

(i) log K
δ < (log N̄)

θ
2C

For N̄ large enough, (6.1) gives

β̃(N, δ, K) > (log N)−(log K
δ )C/θ

N
1
2+ θ

8 . (7.4)

& (log N̄)−(log N̄)1/2

N
1
2+ θ

8

> eb3(log log N)2 N
1
2+ θ

10 ,

which is bigger than the right hand side of (7.1). The last inequality is by (7.2)

(ii) log K
δ ≥ (log N̄)

θ
2C

Again, by (7.2), the right hand side of (7.1) is

(7.1) <

(

δ

K

)(log N̄)1−
θ

3C

eb3(log log N)2 N
1
2+ θ

10

< e−(log N̄)1+
θ

6C N̄ < 1

so that inequality (7.1) becomes trivial.

Next, having (7.1) for log N ∼ log N̄ , we verify (7.1) for all N ≥ N̄ using Lemma
3.2 and induction on the size of N .

Thus, according to Lemma 3.2

β̃(N, δ, K) > δ11(log N)−38 β̃(N ′, δ′, K ′) · β̃(N ′′, δ′′, K ′′) (7.3)

where

N ∼ N ′N ′′,

(

K

δ

)−15

N1/2 < N ′, N ′′ <

(

K

δ

)15

N1/2 (7.4)

δ′δ′′ > (log N)−4δ (7.5))

K ′K ′′ < δ−6(log N)4K. (7.6)

We may obviously assume K
δ < N10−4

since otherwise (7.1) is trivial. From (7.4),

we get then N ′, N ′′ < N3/5 for which the validity of (7.1) is assumed (notice that if
N ≥ N̄ , log N ′ ∼ log N ′′ & log N̄).
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Since N2/5 < N ′, N ′′ < N3/5,(using ‘``’ to denote log log)

``N − log
5

2
< ``N ′, ``N ′′ < ``N − log

5

3
.

Thus

(δ′)b2``N ′

(δ′′)b2``N ′′

> (δ′δ′′)b2``N−b2 log 5
3

> (log N)−8b2``Nδb2``N−b2 log 5
3 .

The last inequality is by (7.5)

Therefore, (7.3) gives

β̃(N, δ, K)

> δ11(log N)−38(K ′K ′′)−b1(δ′)b2``N ′

(δ′′)b2``N ′′

eb3[(``N
′)2+(``N ′′)2](N ′N ′′)

1
2+ θ

10

> δ11+6b1(log N)−38−4b1K−b1(δ′)b2``N ′

(δ′′)b2``N ′′

eb3[(``N
′)2+(``N ′′)2]N

1
2+ θ

10

> δ11+6b1−b2 log 5
3 (log N)−38−4b1−8b2``Ne

19
10 b3(``N)2K−b1 · δb2``N · N 1

2+ θ
10

> K−b1δb2``N eb3(``N)2N
1
2+ θ

10 .

The second inequality is by (7.6).

Lemma 7.1 is proved by choosing

b2 =
11 + 6b1

log 5
3

. �

Theorem 2. There is an absolute constant τ > 0 such that if A ⊂ R =
∏

R is a
finite set, with |A| = M large enough, then either |A+ A| > M 1+τ or |A ·A| > M1+τ .

Proof. In (7.1), set δ = 1, K = |A+A|
|A|

, N = M2, we have

β(M2, 1, K) > K−b1M1+ θ
5 .

Hence,

|A + A|1−θ|A · A|θ = K+(A × A)1−θK×(A × A)θM ≥ β(M2, 1, K)

> K−b1M1+ θ
5

=

(

M

|A + A|

)b1

M1+ θ
5
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Therefore
|A + A|1−θ+b1 |A · A|θ > M1+b1+

θ
5 ,

and
max(|A + A|, |A · A|) > M

1+ θ
5(1+b1) .

The theorem is proved by taking τ = θ
5(1+b1)

. �

Remark. In the proof of Theorem 2, the only place we use the assumption A ⊂ R

is in Proposition 1.1. If we accept Toth’s proof of the Szemerédi-Trotter theorem for
the complex plane, statement and proof of Proposition 1.1 are identical. Alternatively,
we may adjust the argument from [Ch3] (in the spirit of the original Erdös-Szemerédi
proof in [E-S]) to get in the C case a statement of the form

|S +
G

S| · |S ×
G

S| > δc1N2+Cc2 (7.13)

for certain constants c1, c2 > 0. This is much weaker but equally suffices for proving
Theorem 2.
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