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A SUM-PRODUCT THEOREM IN SEMI-SIMPLE
COMMUTATIVE BANACH ALGEBRAS

MEI-CHU CHANG

0. Introduction

Let A be a finite subset of R. It was proven by Erdds and Szemerédi [E-S] that the
sumset A+ A={x+y:z,y€ A} and product set A- A ={zx-y:x,y € A} cannot be
both ‘small’. More precisely, they showed that |A + A| + |A - A| > ¢;|A|*TC for some
constant ¢ > 0 and they conjectured that |A + A| + |A - A| > c.|A|>7¢ for all ¢ > 0.
This problem is still open and the best result to date due to Solymosi [Sol], stating
that

A+ A|+ |A- A > |A]1T¢ (0.1)

Part of the interest nowadays in this type of questions comes from its relevance
to certain issues in Analysis centered around the dimension conjectures for ‘Kakeya
sets’ in R? (d > 3) and related problems (see [K-T], [T], [Bo] for more details on the
matter). Most of them are far from solved but methods from ‘arithmetic combinatorics’
permitted to make certain progress. Naturally, this circle of ideas has a counterpart in
the finite field setting, replacing R by F,. If ¢ is prime, a sum-product theorem of the
Erdos-Szemerédi type was obtained in [B-K-T], based on an argument due to Edgar
and Miller in their solution of the Erdés-Volkmann ring problem (see [E-M]). Besides
the applications in [B-K-T], that result turned out to be an interesting application to
Gauss-sum estimates over prime fields when the degree is large (see [B-K]). It is shown
in [B-K] that given ¢ > 0, there is § > 0 such that for p prime and k < p'~¢, one has

p—1
2ri  k
e » axr
0

max < ep'o. (0.2)

a7#0(p)

r=

Sum-product problems for sets of complex numbers were considered in [Chl], [Ch2],
[Ch3] and [E]. We will consider here a setting which is significantly different, in the
sense that zero-divisor problems do appear.
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Theorem 1. There is a constant v > 0 such that if A is a finite set of a semi-simple
commutative Banach algebra R, then

A+ Al +|A- Al > A, (0.3)

Since R admits a faithful representation as a function space on the regular maximal
ideal space M (the Gelfand representation),it is semi-simple. Theorem 1 is obviously
equivalent to the following more elementary statement.

Theorem 2. Let A be a finite subset of the infinite product-algebra [[R or [JC
with coordinate-wise addition and multiplication. Then (0.3) holds, for some absolute
constant v > 0.

We don’t know the optimal exponent v. However, and this is perhaps the most
interesting point, examples show that v may not be taken arbitrarily close to 1. In
fact

Remark 0.4. Theorem 2 does not hold for v > 1 — %ggg

This is seen as follows. Let A = {1,--- , M} x {0,1}™ C R x R™, thus |[A| = N =
M2™. Since

A+AcC{l,...,2M} x{0,1,2}™
A-Ac{l,...,M?*} x{0,1}™

it follows that |A + A| < 2M3™ and |A- A| < M?2™.
Taking M ~ (2)™ gives the desired conclusion.

As mentioned, the issue of zero-divisors is a significant problem (although not the
only one). Notice that in case of bounded dimension, thus A C R* with ¢ fixed, this
problem is easily avoided. Indeed, there is a subset A’ C A,|A’| > 27! A| such that
for each i = 1,... ,t, the coordinate projection m;(A’) is either {0} (in which case the
i-coordinate may be ignored) or m;(A’) C R\{0}.

An important point when treating the general case, is the ‘dimensional reduction’
based on the smallness of the sumset. Freiman’s lemma implies indeed that if A C
[IR,|A] < oo satisfies |A+ A| < t|A], then there is a subset I of the index set, |I| < t,
such that the coordinate projection 77 : [[R — []; R is one-to-one when restricted
to A, It is therefore no surprise that the size of the additive doubling constant |A|X|A|
does play a significant role in the combinatorics. Our main technical lemma in this
respect is Lemma 3.1 below, which is the base of the multi-scale analysis (this lemma
is very similar to certain constructions in [B-C] but the context here is different).
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Finally, notice that the assumption of semi-simplicity is obviously necessary. The-

orem 1 clearly fails for R = { <8 g) ‘T € (C}.

Acknowledgement. The author would like to thank the referee for helpful comments.

1. Sum-Product for Graphs on R

Proposition 1.1. Let S C R be a finite set, |S| =N and G C S x S with
IG| > §N2.

Then
\Sjgusw : |S>g<S\ > c6*N°/2. (1.1)

Proof. We use Elekes’ method.

Consider the points

{(z+ z,y2) : (x,2) € G, (y,2) € G} C (S—gS) X (S>g<S).

Let n € Z4 to be specified. From Szemerédi-Trotter

\S—QFSF\S >g< S12>enl{(z,y) € S x S:|G. NG| ~n}. (1.2)

Our aim is to make the right side of (1.2) large.
We have by Cauchy-Schwartz

SN? < Z Ga| = Z ZX% (z) < Nl/Q[Z (ZX% (z))2] v

€S zeSzeS ze€S “NzeS
1/2
< N1/2( A mgy|) ,
z,yeS
hence
> 16 NG, > 6>N?. (1.3)
z,yeS

Since |G, N G,| < N, (1.3) implies that for some n € Z

52 N3
log% '

n-{(e.y) €S x5 G, NG, ~n}| >
3

(1.4)



From (1.4), we have in particular

02N

n>-—-r.
log%

(1.5)

Substituting (1.4) and (1.5) in (1.2), we have

56 N'B
(log )3

1S+ S2-|S x 82 >
g g

which implies (1.1).

Remark 1.1.1. Proposition 1.1 fails in dimension 2. If A C R is a finite set, then
SCRxRasS=(Ax{0})uU ({0} x A). Let G C S x S be the graph

G ={((z,0),(0,)) : @,y € A}.

Then

S~g|—S=A><AandS>g<S:{(0,0)}.

Thus
IS+ S|-]S x S| = N2,
g g

2. Addition constant and multiplication constant.

Let

t
R:HR.

Jj=1

Let Ay, Ay C R be finite sets
|Ail = N;

and G C Ay x Ay
|Q\ :(5N1N2, 0<d<1.

We define the sum and product sets of A, As along the graph G
Avt Ay ={z+y=(2;+y;);:(vy) €G}

Ay X Ay ={z -y = (v;y;); : (x,y) € G},
4



and addition and multiplication constants

|A17gLA2|
K. (G)= ————— 2.1
+(9) NV (2.1)
|A1>g<A2|
Ky (G) = ————. 2.2
x(9) NN (2.2)
Thus 5 (N, Ny)
max 1,4V2
< K < 64/ N1 N 2.3
VNN, +(0) < OV, (23)
and .
< 6v/ N1 N>.
NN, = 1

Lemma 2.1. IfG C Ay x Ay, A; C R, then

2
K+ (6)'? K (G)? > 6*(N1N3)¥ for all0< 0 < =
Proof.
Let S=A;UAy C R and consider G C A1 x Ay C S x S.
Assume N7 > Niy. Hence N = |S| ~ N; and | | > 6 - N2

From (1.1)

N 4
Ky KuNiNz = [A1§ A - [ A1 X Ay >054<ﬁ2) NP2 > 54NN
1

K, Ky > c5*N*>N3. (2.4)
Also from (2.3)
5 \2
(5N1<K+\/N1N2:>N2> (K ) Ni. (25)
+

From (2.4), (2.5)
N\ 11/4 11/2
Ky Ky > c6*(N1No)VA (22 > c6t | — (N7 N,) /4
M K,

K—’l_—; Ky > 0(51_29 <N1N2)1/4

K lsKi% e85 15 (N No) /% (2.6)



Also
K, >6¢ (2.7)

and (2.4) follows from interpolation between (2.6), (2.7).

3. Factorization Lemma
. 2
Fix 0 <0 < 5.

Define
B(N,5,K) = By(N,8,K) =min K, (G)' "K,(G)’N>=. (3.1)

where the minimum is taken over all A1, A3 C R,G C Ay x Ay such that

N = NN, (3.3)
|G| > 6N (3.4)
K (G) < K.
Lemma 3.1.
: ' ANV / "nogn " N A
6<N757K)>HHHW6(N757K)6<N 76 7K )(N/N,/) (35)
0

where the minimum s taken over

K 15
N'.N" < (5) N1/2 (3.6)
N'N" < N
K
8" 6" > (log ?)_45

K
K- K" <5 5(log F)‘*K.

Proof.

Fori=1,2,let A; C Rand G C A; X As satisfy (3.2)-(3.4). For each i, we want to
find a subset of A; with "regular” structure, i.e. the sizes of the fibers over points in

the subset, of certain coordinate projection, have the same magnitude.
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First, we want to construct A, C A; with

30
|43l > - |4l (3.7)
such that for any B; C A’,
/ 5 /
G N (B1x A3)| > £ [Bi]| 4] (3.8)
)

G (4; % Ba)| > 2| 41]|Bs| (3.9)

and 5
(G0 (A x Ay)] < TI(A X An)\(4f x D). (3.10)

It is clear that (3.10) implies (3.7). Indeed,

) 36
|AT[|A5] > |G N (A} x A5)[ > N1 Ny — ZN1N2 = ZN1N2~

We obtain A} by removing any bad subset B;. Assume |GN(By x A5)| < $|B1| |A)]
for some By C A). Let AY = A{\B1. We see that A} x A satisfies (3.10).

|G N (AT x Ag)| =[G N (A} x A5)°| +1G N (B x 4]

1)
< — (A1 x A2)\(A] x A5)| + Z|Bl| | A5

=l Sh =S

[(A1 x A)\(A] x A3)].

Continuing removing the bad set B;, (3.10) ensures that the remaining set is still
big enough, and the process gives the desired result.
Next, we want to split R = H§:1 R into two parts.

For 1 < j <'t, consider the decreasing functions for : = 1, 2,

nl(]): max ‘Al(xh 7xj)‘7
(ml,...,xj)ERJ

where A;(z1,...,2;) = {(zj41,...,2¢) | (z1,...,2¢) € A;} is the fiber of A; over the
point (z1,- -, ;).
7



We take ¢’ such that
ny(t') 4 na(t') > N/4
{ ny(t' +1) +no(t' +1) < N4,
We assume ni(t') > no(t'), thus

1
ni(t') > 5N1/4. (3.11)

Let Ry = H;lzl R, and Ry = HJ 41 R, and let m; : R — R; be the projection to
the first ¢’ coordinates.

Denote
= (x1, - ,zp).

In what follows, denote K, (G) by K.

Claim 1. There exists a set Ag C A, with |A2| > et x Ng, such that for all T €

T1(Ay), we have | Ay(Z)| ~ my > c6® K2NY4, and |7T1(A2)\ <C§55K? N]\f§4

Proof. Let & € m1(A}) such that
|41 (2)] = na ().
It follows from (3.8) that

G1({) x 41(®) x 4] > Jma(t)]45)

and hence there is a subset A5 C AL such that, by the Fact stated at the end of this
proof,

|A5] > g\A’zl > %Nm (3.12)
and for z € A
G N[({z} x A1 (2)) x {z}]) > nl( ). (3.13)

From (2.5) and (3.13), we get clearly

K2
N2 = K\/NIN, = |4, + 4o
> |({a} x 44(@) + 4]

> gm(Ag)\ na (). (3.14)



8°ni(t) .
ToiRZ s 1€

Let Ay C AY such that the fibers over any Z € 71 (A3) have size at least
U {z} x Al (%).

Ay =
|AL (2)|>10-465 K —2n, (t/)

It follows from (3.14) that
3103 0 "
< 8*107°Np < 5143 (3.15)

| A9\ Aa| < [m1(AF)[10746° K~ na (t')

The last inequality is by (3.7) and (3.12).
Since by (3.9)
J
G0 (4] x 45| > 2143145,

it follows from (3.15) that
/ A 5 / 124 5 / 1! 5 / 12
|G N (A] x Ag)| > Z‘A1| |A5| — 1_0|A1‘ |Ag| > 1_0‘A1| |As].

Since |A4(Z)| < na(t') < ny(t'), we may specify my and A as follows:
(3.16)

10746° K 2ny(t') < ma < ny(t),

and
Ay DAY D A DAy = | ({2} x AY(2))
| AL (2)|~ma
such that 5
6.1 (A x Aa)] > e 43145 (3.17)
3
Thus N : = |A,] satisfies
N -—ﬁ|>cL|A”\>c * N (3.18)
2 lo % 2 log% * .
(3.19)

|Ay(Z)| ~ mo > 0 K2NY4,

= |Aa| | A 5.2 Vo
e

and
T (A
‘ 1< 2)‘ meo mo

By (3.16) and (3.11)
(3.20)
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Fact. Let |E| <e and |F| < f. If|GN(E x F)| > aef, then there exists F' C F with
|F'| > S f, such that for any z € F', |G N (E x {z})| > Se.

Now we are ready to find subset of A} with regular structure.

Claim 2. There ezists a set Ay C Al with |A;] > Clog )2

z € m(A;), we have ]Al( )~ my > eSOKSNYA |my(A))| < C§™ 10K5N1}4, and
G N (A1 x As)| > e K)Q\Al\ 4.

K)z Ny, such that for any

Proof. We observe that for any A; C A}, if

1GN (A x Ag)| ~ |G N (A] x Ay)], (3.21)
then
A o K2 (3.22)
‘= max |A(Z)] > c— . .
" ferjrll(}fh)‘ (@) C(log%)Q i

Indeed, from (3.21), (3.17) and the regular structure of A,, there is Z € m(45) such
that

- = )
G N (A1 x ({7} xAx(z)))] > K
S
Hence by the Fact above, there is a subset A7 C A; C A’ satisfying

| AL | my.

)
|AY| > c—— \A’| (3.23)
lo

8 6

and for any z € AY

61 ({2} x ({2} x Aa(@)))] > clog(s o,

Same reasoning as in (3.14), we have

K2
TN1 > K+/NiNy > | A4 +A2\ > |A” + ({7} x A5(2))]

J

> C\M(A/f)\l—K

0

mo

A
m log%
53
> e TN,

(log )2 m
10



The last two inequalities are by the definition of m in (3.22) and (3.23), (3.7). Hence

54
7 K2
(log )
Since the bound in (3.22) is bigger than 0° K ~®my. Therefore, in (3.17) we may replace
A} by A defined as follows.

Ay DA = U ({z} x A} (7).
|44 (2)]> 65 K ~3ms

Thus, applying (3.22) to A} — A;, we see that

m>c mso.

<= )
G N (A1 x Az)| > Cbg—K‘AllHAg"
5

Recalling (3.16), for Z € m1(A4;)
K 3my < |A1(Z)] < nq () < CSO K% my.
Keeping (3.17) and (3.21) in mind, we may thus again specify

K Pmy <my < C5 °K?my (3.24)
such that the regular set A; defined as
Ao A oA = ) ({3} xA4®@)

| A1 (T)|~my

will satisfy

= = 0
5
Now, (3.25), (3.7) and the fact that A; C AY give
_ _ 52
N]_ = ‘Al‘ > C@N]_ (326)
and
‘ g N (A]_ XA2)| > CleNQ. (327)
It follows from (3.20) and (3.24) that
my > 0P KON/,
1 V:ll| ‘A1| —1045 V1
~— < — 0K . 2
m@)|~ T < T <0 7 (3.28)

Now, we will give regular structure to the graph G.

Notation. For simplicity, we denote 14:11,;12 by A, As with cardinalities N ; satisfying
(3.18) and (3.26).

11



Claim 3. There ezists a graph Gi1 C m1(A1) X m1(A2) C R1 x Ry with

| G11] > do|mi(A1)| |m1(A2)| , such that V(Z1,Z2) € G1.1, we have

|A1(Z1)+ As(Z2)| ~ Ly/mima, with L < Lo, and |Gz, z,| ~ 61mima, where Gz, z,
is the ﬁbZ?l"@;f G over (Z1,%2), and 69,01 and Lo satisfy (3.33), (3.29) and (3.49)

respectively.
For z;,Zs € Rq, let Gz, z, be the fiber of G over (z1, Z2),

Gz, 2, = {(U1,92) € A1(T1) X Ax(T2)|((71,91), (T2, 72)) € G} C Ra X Ra.

Proof. It follows from (3.27) that we may restrict G to G; X (R2 X R2), where

G1 = {(Z1,22) € m (A1) X m1(A2)] |Gz, 3| > c—5mama}.
(log 5)?
Thus 5
Z |g£1,£2| < C T K\2 ]\71]\727
(#1.72)8G1 (log )
and
> Yz, 75| > C—F— y f r1,%2) € .

cmimg > |Gz, 2| C(log%PmlmQ or (Z1,Z2) € Gy

By (3.27),

) =
Z Gz, 2| >C@N1Nz-

(Z1,22)€G1

Also, we may thus specify 1,

1>6 >c (3.29)

(log £)2

such that if
gi = {(jlan) € gl‘ |gi'1,j'2‘ ~ 51m1m2},

then we have

S -
2 Gsmil > e Nl

(Z1,%2)€0G] 3

K\2
(Clearly, log % < log %)

12



Hence

, 5
| G1] > Cm [m1 (A1) [m1(A2)], (3.30)

@\Wl(fh)\ w1 (A2)].

By further restriction of G7, we will also make a specification on the size of the
sumset of Gz, z,-

which is bigger than

For (z1,Z2) € G}, let K1 (Gz, z,) be the addition constant of A;(z1) and As(Z2)
along the graph Gz, z, as defined in (2.1).

First, we see that if H C G/, with

)
[H| ~|G1] > 7 [T (A1) 71 (A2)],
(lo gf)
then
min = K (Gz, 2,) < Lo:=c '(log=)36 ? K. (3.31)
(Z1,32)EH )

In fact, assume for all (Z1,z2) € H that K1 (Gz, z,) > Lo. Then

K\/NlNQ > |A1 —|—A2| > HllIl {‘A1< ) 2(532)|}|7T1(A1) :}’_{_71—1(14.2)|

Z1,T2)EH 951,70

|H|

L mimso
= oV T o)

) - -

> Lo———— (N1N,)'/?
(log &)?

> 61/ NINLK,

which is a contradiction. (The last inequality is by (3.18), (3.26) and (3.49).)
Hence, we may reduce G to G C G1, with |G{| ~ |G| such that

|A1(§31)—5 AQ(@Q)‘ < Logy/mims for ((171,@'2) € Q{’
2

Therefore there is G1 1 C G{ and 1 < L < Ly (see (3.49))

c g//
611l > £ > dolm (D) I ()| (3.32)
0

13




where, by (3.30)
(3.33)

and

‘Al(jl)‘gl‘ As(Z2)| ~ Ly/mima (3.34)

for (Z1,Z2) € G1.1.

Since

K N1N22\771(A1)Jgr m1(A2)|[A1(Z1) As(Z2)|
1

_.l_
1 9 %70

> \771(A1)4g- m1(A2)| - Ly/mimy
1,

1

= K, (G1,1) L/ NNy,

5 K 3
K. (Gi11) - L<d 2(log F)517( <6 3(log K)?K. (3.35)

we have

In summary, G 1 C m1(A;1) x m1(As2) satisfies (3.32), (3.33) and for (Z1,Z2) € G1.1,
the graph Gz, z, C A1(Z1) X A2(Z2) satisfies
{(Z1,72)} X Gz, 2, CG
|gi'1,i'2‘ ~ 51m1m27 (336)

where 07 is as in (3.29). The addition constants K (Gy 1) and L satisfy (3.31) and
(3.35).

Denote 3
g o g = U ({(‘@17532)} X gfl@z) (337)

(Z1,22)€G1,1

which satisfies

3 5 _
1G] > ¢ —— N1N» (3.38)
(log &)
where
VN> O NN (3.39)
NiNg > 11N>, )
(log &3



Next, we will estimate 3 (see (3.1) for the definition).
From (3.37)

Ay —é— Ay DAy —5 Ay = U [{2_31 + fg} X (Al(a_:l) + AQ(Q_TQ)”

(Z1,22)€G1,1 $1:92
Let Mz = ‘7?'1(141)‘ Then

| Ay —g Ao| > Ky (Gra)V MiMy - min  |A(Z1) +  Ax(Z2)]

(Z1,Z2)€G1,1

1,22
Z K_|_<g1’1)\/ M1M2 L A/ 1119 (340)
by (3.34).
Similarly
|A1 X A2| Z KX (glvl) M1M2 © mln KX (951@2) mime (341)
g (Z1,Z2)€G1 1

(notice that we did not regularize with respect to the product).

If we take some (Z1,Z2) € G1, realizing the minimum in (3.41), it follows from

(3.34)
L' K (Gay ) Vimainz ~ Ky (G 20)' ™ K x (G 2) /2
> B(mima,d1, L)
by definition (3.1) of 5 and (3.36).
Hence (3.40) and (3.41) give
K (9K« (G)'VNiN2 =

|Aq gAz\l_e\fh —g Asl? > K (G11) 'K (G11)° /M1 My - B(mimag, 61, L)

> (M1 Mz, 80; K (G1,1)) - B(mamsg, 61, L) (3.42)

The last inequality is by (3.32).
Recall that, by (3.39)

_ 55

(MlMg)(mlmQ) NN]_N2 > MN (343)
)

15



and by (3.20) and (3.28)

N N,
—10 15 1 -5 72 2 —15 77 A71/2
MlMgg(a K N1/4)'(5 K N1/4)55 KTN'/2, (3.44)
By (3.33) and (3.35)
K —4
do - 01 > c<log F) o (3.45)
K (Gi1) L <6 ?(logK)*K. (3.46)

The only missing property at this point is the upper bound (3.7) on mi;ms. We will
achieve this with one more decomposition.

Let Bl = Al<fl)

For fixed (Z1,Z2) € Gi1, consider the graph K = Gz, z, C A1(Z1) X A2(Z2) C
Ra2 x R satisfying by (3.34) and (3.36)

I C By X Bs C Ra X Ro
|B| ~mi, i=1,2,

IIC| ~ d1myime

K. (K) ~ L.

Repeat the process in Claims 1-4 to the graph K with respect to the decomposition
Ro =R x H§,+2 R with m9: Ro — R being the projection to the first coordinate. Thus
IC gets replaced by (cf. (3.36)-(3.39))

K= U (21,2 x Kz ey
(z1,22)EK1 1

where

Kjl’l CRx R,
ICZ1732 Cél(zl) X EQ(ZQ).
Also, (3.18), (3.19) and (3.6) give

- B 53
(log §)?
B;(2)| ~ €; < |Bi(2)| = |Ai(Zi, )| < (N Np)/4, (3.48)

16



oy 20| ~ 030102

01 M1 Mo
d3(log é)‘* b1ty

|/C1,1‘ >

(cf. (3.32), (3.33))
K+<ICZ1,22) < K+<IC1,1) 'K+(ICZ1,Zz) < 51_3(10gL)2L (3‘49)

(cf. (3.35)).

(We point out here that ¢;,m;, o3 >
Rl X Rl)

— 9 do depend on the basepoint (Z1,Z2) €
(log E)4

To estimate 3(myma,d1, L) in (3.42), we will give a lower bound on
K+(]C)1_0KX (]C)e mimeso.

First, we remark that from (3.45) and (3.46), we have

)
0> —F, 3.50
7 (log K (350
K(log K)? K\3
and
L  K(logK)? (log £)* K\4
— — ) . 3.52
n o > < () (3:52)
On the other hand, applying Lemma 2.1 to K;; C R x R, we have
Ko (Ki1) 'K (K11)? > o1 " (1 ma " (3.53)
+ 1.1 % L1 53(10g L/51)4 6162 .
Also, note that, from (3.48)
Ul < N1/2. (354)
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Thus

K, (K"K, (K)/mima
= ‘Bl - Bg‘l_e|Bl X B2|0
K K

> | §1 f§2\1_9| §1 >~<§2\9
K K

01 b
522)(10221)8 (”222) 3+4 B(162, 83,673 (log L)*L)

> 56(log%)_35 (%)%+% ﬁ(ﬁlﬁg,ﬁﬁ_?’(log%flz)

> r}rlvi/p{56(10g§)_35<m]¥,?2)%Jr%ﬂ(N”,@5_3(10g§)21/)}, 555

where the minimum is taken over all N < min{myms, N2 }. starting from the second
inequality, we use (3.49), (3.53), (3.47), (3.50)-(3.52), (3.54).

We replace in (3.42), B(mima, 61, L) by (3.55) and set

01

N' = MMy, § =&, 8" = —2
(log )4

K'=K(G1,), K" = (log %)26‘%

Using (3.43), we get the following estimate.

+

N=
ENEY

K & N
N,6,K) > §°(log —)~% B(N',&',K') - B(N",8" , K"
ﬁ( ,5, )>(5 (Og6> ﬂ( 757 ) ﬁ( 757 )((log%)gN/N//)

+

N
ﬁ(N/,(S/,K/> . ﬂ(NH,(SH,KN) . (N/N”) ,
18

NI
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511
(log )58

>



where, by (3.44), (3.55), (3.45) and (3.46),

15
NI’NN < (%) N1/2

-8
8 8" > <log%) 5

/ " —6 K 10
K -K'"<)d logF K. O

This proves Lemma 3.1.

Ignoring the dependence on K, define
BN, 8) = (N, 8) = min{K . (G)'~"K ()’ N*},
where the minimum is taken over all Ay, A5 C R,G C Ay x As such that
|A;| = N;y N = N1 N, |G| > dN.
Thus B(N,d) = ming B(N, 6, K).
Corollary 3.1.1. Let 0 < # < 1073 be a constant. Then

+

D=

NS
N——

1 1 N
B(N,8) > min {cwﬂm 5" (log N) ~33B(N", 8") B(N", 6" ( - N,,)

where the minimum s taken over
N/,NN < N5/8,N/NN <N
§' - 6" > (log N)~%6.

Proof. We distinguish 2 cases.

1f K9 > Nwo | obviously K4 (G)' K (G)? N3 > 6N N"3 N3 > §N3 0 by
assumption on 6.

If —K+5(g) < Nﬁlo, apply (3.5) with K = K, (G). We obtain the lower bound

+

N
N

514 (log N) (V85 ()
19



with N’, N 4’ 6" subject to the constrains
N'N" < N;N',N" < N2*5
§ - 6" > (logN)~46§

from (3.5), (3.6). O
For technical reason, we redefine 3y(N, 6, K) and Fy(N, ) by taking

N=
ENEY

N N\
and
~ N 3+4
Bo(N,6) = Inin (M) Bo (M, ). (3.57)

Lemma 3.1 and Corollary 3.1.1 may then be restated in the following simpler form.

Lemma 3.2. Let 0 < 6 < 1072 be a constant.

B(N, 6, K) > min @B(Ma’, K')-B(N",8" K"
with minimum taken over
(%) _15N1/2 < N',N" < (%) 15N1/2; N ~ N'N" (3.58)
§ 8" > (log %) _85 (3.59)
K - K'<¢§6 <10g %) 16K. (3.60)

Lemma 3.3. Let 0 < 6 < 1072 be a constant.
B(N,5) > min ' (log N) =28 . B(N',6")3(N", ")
with minimum taken over
N'.N" < N5/8 N ~ N'N"

&' - 6" > (log N)~46.
20



4. Finite Products
Assume G C A; x Ay where A; C Hi R.

Denote _
FO(N.4)

the quantity (3.39), but under the restriction of an index set of size t. Going back to
the proof of the factorization Lemma 3.1, we split the index set into {1,--- ,¢'} U{t' +
1}Uu{t’'+2,---,t}. Hence Lemma 3.3 may be restated as

Lemma 4.1.

BB(N,8) > min ' (log N) =33 (N', 8¢ (N, 6" (4.1)
with minimum taken over
'+t < t (4.2)
N/ N// < N5/8 N = N/N//
§ - 6" > (logN)~8s. (4.3)

Lemma 4.2. Let 0 < 0 < 1072 be a constant. Then
B(t)(N, 5) > 611t(10g N)—45t2N%+%‘

Proof.
We proceed by induction on .
If t = 1. Lemma 2.1 gives 3V (N, ) > 02Nz T4,
By (4.2), (4.3)
(5/)11t’(5//)11t” > (5/5//)11@—1) > (lOgN)—Ss(t—1)511(t—1)

For Lemma 4.1 and inductive assumption for ¢,t" < ¢, it follows that right hand
side of (4.1) is at least

511(10g N)—38(5/)11t’(10g N/)_45(t’)2 (5’/)11t//(log N”)—45(t”)2N%+%
> 511t(10g N)—38—45(1+(t—1)2)_88(t—1)N%+%

> 11 (log N) =454 N3 +5 0

5. Use of Freiman’s Lemma

Dimensional reduction in terms of additive doubling constant will be achieved using
Freiman’s Lemma.
21



Lemma 5.1. (Freiman): If A is a finite subset of a real vector space E satisfying
|A+ A| < K|A|, then dim[A] < K.

It follows that if A C R = []R satisfies |A| < o0,|A + A| < K|A|, then after

reorganizing the index set, the restriction of the coordinate map n|4 : [[R — [[} R
is one-to-one on A.

As the first dimensionless lower bound on 3(N, §, K), we obtain

Lemma 5.2. Let 0 < § < 1072 be a constant. Then
B(N,8,K) > (log N) 10 () Na+i,

Proof.
Let G C A1 x Ay C R, |Q\ > dN1Ns.
Assume N7 > Ny. By (2.5), since K1 (G) < K

5 2
Ny > (E) Ni.

Let A= A; U A, and consider G C A x A. Thus |A| ~ N; and

53

|A ;L A| < KN2. (5.2)

From (5.1), (5.2) and the Balog-Szemerédi-Gowers theorem, there is a subset A’ C A
satisfying the properties

K\ 20 K\ 60
A"+ A| < (E) 1A' < (?) A (5.3)
/ , 5 20 ) 5\ 60 ,
Hence
5 60
1A > (?) Ny (5.5)

22



From (5.3) and Lemma 5.1, there is an index set of size ¢

' < (%)60 (5.6)

and 7|4+ is one-to-one. Denoting G’ = (A’ x A')NG and H = (7 x 7)(G") C w(A’) x
w(A’), by (5.4), (5.6), (4.7) and (5.5), we get

‘Al +A2|1—0|A1 % AQ‘G > |AI+AI|1_9‘A, > A/‘G
g g g’ g’

> r(A') 4 m(A)!m(A) x m(A)

B 5 60
(i (£)")

5 660t ) 0
> (K) (lOgN)—45t |A/|1+5

5\ 107 2 140
>(§) (log N)™*" N, "2,

Therefore, (5.6) implies

5 103(%)60 K \120 1
BN O )2 (1) (o) (v, N

ENEY

and also ) o
B(N,5,K) > (log N)10° (5™ Na+i,

This proves (5.2).

Dependence of (5.2)-estimate on K is very poor. Next we get an improved behavior
combining (5.2) and (3.45).

6. First Improvement

We establish the following improvement of Lemma 5.2.

Lemma 6.1. Let 0 < 6 < 1072 be a constant. Then

B(N,5,K) > (log N)~(ee 5)" Na+§, (6.1)
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Thus the dependence on K/§ is considerably improved.
Proof. We will make an iterated application of Lemma 3.1.

Fix N,d, K and choose an integer ¢ of the form 2° (to be specified). Starting from
the expression

O(N,5,K) = ¢o(N, 5, K) = (log N) 10" (5 Nati 41 (6.2)

obtained in Lemma 5.2, define recursively for ¢/ =0,1,... ,/—1

b1 (N6, K) = 5% (log =) min g (N, ', K)o (N", " K")  (63)

with N/, N” §',6"”, K', K" subject to restrictions (3.67)-(3.69).
We evaluate QE = ¢y.
Iterating (6.3), we obtain clearly

~ K, _
(N, 6, K) = H 5, (log 5—) ’® H ¢(Ny, 0y, Ky) (6.4)
ve U {01} v ve{0,1}¢

where (Ny),¢ {0,135 (0v)e U 10,13 satisty by (3.67)-(3.48) the following constraintsl
el <e er<e

N¢:N,5¢:5,K¢:K

N, ~ NII,O : Nl/,l (65)
K\
Nyo+ Ny < (5—) N2 (6.6)
K\
61,’0 . 5,/’1 2 (lOg (5—) 61, (67)
Ko\ 4
Ko, K1 <86 <10g 5—0) K,. (6.8)
0
From (6.7), (6.8)
Kl/ 0 Kl/ 1 Kl/
1 ’ 1 ’ 8log —
°8 51/,0 * o8 51/,1 < o8 51/
and iteration implies
K, K, / K
max log — < Z log =~ < 8% log —. (6.9)
ve{0,11¢ 0w ) 5, 5
ve{0,1}¢
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Iteration of (6.7) gives

Moa- 11 (=) 11 s

ve{0,1}¥ ve{0,1}¢ -1 vef{0,1}¢' -1

1o’ K _2.22/
> 8_2€ 2 (log ?) H (5,/

vef{0,1}¢' -1

’ ’ _2(22/"_2[/_1"_“')
S §2(028 +(¢'=1)2" T4 <log %)

4 K —4:2f
> g2 (log ?) 6. (6.10)

The second inequality follows from (6.9).
Next, iterate (6.8). Thus, by (6.9) and (6.10) that

II &< I &ftgk)' [ K

ve{0,1}¢ ve{0,1}¢ -1 ve{0,1}¢ -1
—2.2¢ \ 6 2.2¢
—20'2" K oo B
< (8 (log F) 5) (8 log?) ( 1T | KV)
ve{0,1}¢' -1
Z’
L KO\ 142 ,
< g2’ (log F) s K. (6.11)
From (6.5)
[T m>c?w (6.12)
ve{0,1}¢

From (6.7) (which implies that d,.0,0,1 > (log ?—:)_45,,) and (6.9) that

—a¢
5, > 84 (log %) o (6.13)

and from (6.8) (which implies that K, o, K, 1 < §,%(log K,)*K,), (6.9) and (6.13)
that

)
25

2503 K e —6¢
K, <8 log — K. (6.14)



From (6.6), (6.13), (6.14)

4506°
NII,O + Ny’l < 845053 <10g %) 5—90€K15N3/2

hence

10343 K o —10%£ 130 p71/t
N, <10 logg ) K°"N/*, (6.15)

From (6.2), (6.4), (6.9), (6.10)

B K\ M4 2 K\ 38 2
(N0, K) = 874 (1og F) oHt (85 log 3) I o6, K.)
ve{0,1}¢

¢ K —822° 114 103 ( Kz )120 l+§
> (8 log?) ST [+ (log N) M S TNET
ve{0,1} (6.16)

To control the last factor in the expression above, we decompose

{0,1} =TuJ
with "
I={veio,1} 5—” < A}
and A to be specified.
First, we want to bound |J|.
By (6.10), (6.11)
e KO\ 18t
Al —— log — K. 1
< H (5,,<<80g5 ) (6.17)
ve{0,1}¢
Take %
2t =t ~ log < (6.18)
and fixing 0 < v < 1, take
log A ~ vy~ 1t (6.19)
With this choice, (6.17) implies
103t log t
7] < log A
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Thus

[T 1+ (og ) 050 v
ve{0,1}¢
_ 103 A1209¢ %—i_%
> (log N) I R2
vel
K

> c(log N)_103A120t[1010353 (log ?)10362 5—103£K30N1/t]—|J|N%+%
> (log N)—103A120t10—103wt(10g t)3 (10g N)—103~yt(log t)2(51037t 1OgtN%+§—w.

The second inequality follows from (6.12) and (6.15).
Thus by (6.16) and (6.18), (6.19), letting v = &

H(N.6,K) > (log N) 7" . N2+

> (log N)~(lez $)%" N3+8

which is (6.1).

Remark. Notice that proof of (6.1) relies on Lemma 3.2, Replacing (3.47) by the
cruder bound §’§" > W, we would obtain the bound (log N)~ (s MY N3+E in

(6.1), which is useless.

7. Sum-Product Theorem in R b We prove the following

Lemma 7.1. Fiz a constant 0 < 6 < 1073. There are positive constants by, bo, bs
such that
B(N, 5, K) < J¢—b1gb2loglog N ebg(loglogN)2 N%ﬂ%_ (7.1)

Proof.
We proceed in 2 steps.
Choose a large integer N and let

(log N)'735C = by < by < by ~ (log N)'~ 30 (7.2)
where C' is the constant in (6.1). The precise choice of by, by, b3 will be specified later.

We verify (7.1) assuming log N ~ log N.
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We distinguish 2 cases.
(i) log & < (log N)zc
For N large enough, (6.1) gives

%)C/Q

B(N,5,K) > (log N)~ (o2 N=ts, (7.4)

> (log N)~(oeM)"* N3+3

> ebg(loglog N)2 N%—’_l%,

which is bigger than the right hand side of (7.1). The last inequality is by (7.2)
(i) log X > (log N) 7o
Again, by (7.2), the right hand side of (7.1) is

_ )
5 (log N)' ™30 )
) Jalloglog N)? ard+

(7.1) < <E

_ 0
< e—(logN)H'R’N <1

so that inequality (7.1) becomes trivial.

Next, having (7.1) for log N ~ log N, we verify (7.1) for all N > N using Lemma
3.2 and induction on the size of N.

Thus, according to Lemma 3.2

B(N, 6, K) > 6t (log N)™38 B(N', 8" K')- B(N",6" K" (7.3)
where s 15
N ~ N'N", (%) NY2 < N' N" < <%) N1/2 (7.4)
§'6" > (log N)™45 (7.5))
K'K" <5 %log N)*K. (7.6)

We may obviously assume % < N0 gince otherwise (7.1) is trivial. From (7.4),
we get then N/, N” < N3/5 for which the validity of (7.1) is assumed (notice that if
N > N, log N’ ~ log N > log N).
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Since N2/5 < N',N" < N3/5 (using ‘¢’ to denote loglog)

VN — logg < UUN' UIN" < t{N —log g
Thus
(8)02LON" (§7)02lEN" (51 57)battN bz log §
> (log N)~8b200N balN—by log §

The last inequality is by (7.5)
Therefore, (7.3) gives

B(N, 0, K)
> 511(10g N)—38<K/K//)—b1 (5/)b2€£N’(5//)b2£€N”eb3[(éEN’)z—i—(MN”)z](N/N//)%+1%
> 511+6b1(10g N)—38—4b1K—b1(5/)62££N’(5//)b2££N”eb3[(KZN’)2+(£ZN”)2]N%+%
> §LI+6b1—bs 1ogg(log N)—38—4b1—8b2£€N6%b3(€£N)2K—b1 L §h2UN | N3t TS

> K—bl 5b2£fNeb3(UN)2N%+% ‘

The second inequality is by (7.6).

Lemma 7.1 is proved by choosing

_11+46by

by = U

log g

Theorem 2. There is an absolute constant 7 > 0 such that if A C R = [[R is a
finite set, with |A| = M large enough, then either |A+ A| > M7 or |A- A] > M7,

Proof. In (7.1),set § =1, K = |A|X|A|,N = M?, we have

B(M2,1,K) > K~ MFs,
Hence,
A+ A A AP = KL (Ax AV 'K (Ax AM > p(M?,1,K)
> KU M

b
_ M ' 1+¢
‘(\A+A|) M
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Therefore
\A+A|1_9+b1\A-A\9 > M1+b1+§,

and ,
max(|A+ Al |A- A]) > M smeT

The theorem is proved by taking 7 = U

__0
5(1+b1) "
Remark. In the proof of Theorem 2, the only place we use the assumption A C R
is in Proposition 1.1. If we accept Toth’s proof of the Szemerédi-Trotter theorem for
the complex plane, statement and proof of Proposition 1.1 are identical. Alternatively,
we may adjust the argument from [Ch3] (in the spirit of the original Erdds-Szemerédi
proof in [E-S]) to get in the C case a statement of the form

E T S|-|S X S| > g1 N2+Cez (7.13)

for certain constants ci,co > 0. This is much weaker but equally suffices for proving
Theorem 2.

REFERENCES
[Bo]. J. Bourgain, On the Erdds-Volkmann and Katz-Tao ring conjectures, Geom. Funct.
Anal. 13 No 2, (2003), 334-365.
[B-C]. J. Bourgain, M. Chang, On the size of k-fold sum and product sets of integers, (preprint).|}
-K-T|. J. Bourgain, N. Katz, T. Tao.
B-K-T]. J. B in, N. K T. T

[B-K]. J. Bourgain, S. Konjagin, FEstimates for the number of sums and products and for
exponential sums over subgroups in fields of prime order, C. R. Acad. Sci. Paris, (to

appear).

[Chl]. M. Chang, Erdés-Szeremedi sum-product problem, Annals of Math. 157 (2003), 939-
957.

[Ch2]. , Factorization in generalized arithmetic progressions and applications to the
Erdos-Szemerédi sum-product problems, Geom. Funct. Anal. (to appear).

[Ch3]. , A sum-product estimate in algebraic division algebras over R, Israel J. Math,

(to appear).

[E-M]. G. Edgar, C. Miller, Borel subrings of the reals, Proc. Amer. MAth. Soc. 131 No 4,
(2003), 1121-1129.

[E]. G. Elekes, On the number of sums and products, Acta Arithmetica 81, Fase 4 (1997),
365-367.

[E-S]. P. Erdé8s, E. Szemerédi, On sums and products of integers, In P. Erdds, L. Alpar,
G. Haldsz (editors), Studies in Pure Mathematics; to the memory of P. Turdn, p. 213—
218.

30



[K-T]. N. Katz, T. Tao, Some connections between the Falconer and Furstenburg conjectures,
New York J. Math..

[Sol]. J. Solymosi, On the number of sums and products,, (preprint) (2003).

[T]. T. Tao, From rotating needles to stability of waves: emerging connections between
combinatorics, analysis, and PDE, Notices Amer. Math. Soc..

31



