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Abstract. Let A and B be two finite sets of numbers. The sum set and the product
set of A,B are A+B : = {a+b : a ∈ A, b ∈ B}, and AB : = {ab : a ∈ A, b ∈ B}. We
prove that A + B is as large as possible when AA is not too big. Similarly, AB is
large when A + A is not too big. The methods rely on the λp constant of A, bound
on the number of factorizations in a generalized progression containing A, and the
subspace theorem.

Let A and B be two finite sets of numbers. The sum set and the product set of
A,B are A + B : = {a + b : a ∈ A, b ∈ B}, and AB : = {ab : a ∈ A, b ∈ B}. (We
denote by jA the j-fold sumset A + · · ·+ A.) There has been a lot of studies of the
sizes of the sum and product sets for the case A = B (cf particularly, [BC], [BKT],
[C1]-[C5], [E], [ER], [ES], [F], [N1], [N2], [NT], [S]), since Erdös and Szemerédi [ES]
made their well-known conjecture that for |A| sufficiently large,

|A + A|+ |AA| > cε|A|2−ε for all ε > 0.

The conjecture is still open. The best result to date is due to J. Solymosi [S] and
states roughly that

|A + A|+ |AA| > |A| 1411−ε.

The method uses the Szemerédi-Trotter Theorem in incidence geometry. A similar
approach is used in [ER] to show that, if |A + A| < K|A|, then |AA| > |A|2−ε. We
point out that the geometric approach does not distinguish between sets of integers
and sets of real numbers. On the other hand, it does not provide nontrivial lower
bounds on |A+B|+ |AB|, if the set B is much smaller that A. It is also not enough
for showing that |AB| > (|A||B|)1−ε for all A, B such that |A + A| < K|A| and
log |A| ∼ log |B|, as we will prove here (Theorem 3).

In the paper [BKT], a sum-product theorem in prime fields Fp is established.
The original motivation was to make progress on the so-called Kakeya problem in
dimension 3. It turns out however that those results have quite significant appli-
cation to the theory of exponential sums over finite fields and lead to no nontrivial
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improvements in case where classical methods (such as Stepanov’s approach) do
not apply. (See [BGK]). But we will not discuss further the finite field setting here,
which relies on different techniques.

Returning to the Erdös-Szemerédi conjecture, we also mention the following more
general question brought up by Solymosi

Question. Is there an absolute constant c > 0 such that for every n ∈ N, there are
finite sets A,B and C, with |A| = |B| = |C| = n, |A+B| < n2−c, and |AC| < n2−c?

This question motivated the results established in this note.
It became increasingly clear that techniques such as the Szemerédi-Trotter The-

orem are unable to settle the conjecture or the above question and other ideas are
required. In earlier works, the author has brought several different approaches into
play. They will be further exploited in this paper.

First, in [C2] a connection is made with the factorization theory in algebraic
number fields. It was shown in [C2] that if A is a finite set of complex numbers
and |A + A| < K|A|, then not only |AA| > |A|2−ε but more generally |A(j)| >
|A|j−ε, where A(j) = A · · ·A is the j-fold product set. This is a contribution to the
generalized Erdös-Szemerédi conjecture

|jA|+ |A(j)| > cε|A|j−ε for all j ≥ 2 and ε > 0.

The main result of [C2] actually consists in a bound on the number of factorizations
in generalized arithmetic progressions, using the corresponding theory in algebraic
number fields and a transference argument.

Secondly, there is the paper [BC] involved in the proof of Theorem 1 below. In
[BC], which builds further on [C1], concepts and methods from harmonic analysis
are brought into play. Roughly speaking, assuming A a finite set of integers and
|AA| < |A|1+ε, it is shown that for any fixed exponent p > 2, the so-called Lambda-
p constant λp(A) of A is bounded by |A|δp(ε), where δp(ε) → 0 as ε → 0. From
this, it is shown that

(0) |jA|+ |A(j)| > |A|b(j)

where b(j) → ∞ for j → ∞. This is another contribution to the generalized
conjecture. Coming back to the problem of finding the lower bound on |A+B|+|AB|
brought up earlier, notice that the following is true.

Let A,B ⊂ Z be finite and |A|r < |B| ≤ |A|. Then |A + B|+ |AB| > |A|1+δ(r).

Indeed, assume the contrary. Then the Plünnecke-Ruzsa inequality and (0) imply
there exist A′, A′′ ⊂ A such that

|A|rb(j) < |B|b(j) < |jB|+ |B(j)| < |A′ + jB|+ |A′′B(j)| < |A|1+jδ

for all j ∈ N. Hence δ > rb(j)−1
j and taking j > j(r) gives the conclusion. This

illustrates the power of the method. So far no full analogue of the [BC] result
is known for sets of real numbers, as we rely essentially on prime factorization.
Theorem 2 below provides the first contribution in this setting, under the stronger
assumption A ⊂ R, |AA| < K|A|. The main ingredient in its proof is the subspace
theorem, in its general and powerful form obtained in [ESS]. Roughly speaking,
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if |AA| < K|A|, then A is contained in a multiplicative group Γ generated by K
elements (by Freiman’s Lemma). The [ESS] result implies then that there are only
few additive relations among its elements, which is exactly what we need. Although
the relation between the sum-product problems and the subspace theorem is indeed
quite obvious, it was not pointed out earlier and this may be the main merit of this
note.

Next we state our main results.

Theorem 1. Let A ⊂ Z be a finite set such that

(1) |AA| < |A|1+ε.

Then for any B ⊂ Z, and any j ∈ N, we have

|jA + B| ≥ |A|j |B| (|A|+ |B|)−δj(ε)
,

where for fixed j, δj(ε) → 0 as ε → 0.

The next result gives a corresponding bound in the real setting, but requires a
stronger assumption on the product set.

Theorem 2. Let A ⊂ R be a finite set such that

(2) |AA| < K|A|.

Then for any B ⊂ R, any j ∈ N, and ε > 0, we have

|jA + B| > |A|j |B|1−ε,

provided K = oj,ε(log |A|).
Switching addition and multiplication, one may prove the following counterpart

of Theorem 2 (by a very different method).

Theorem 3. Let A ⊂ R+ be a finite set such that

(3) |A + A| < K|A|.

Let j ∈ N, and ε > 0. Assume K < Kε,j,|A|, where Kε,j,|A| → ∞ as |A| → ∞ for
ε, j fixed. Then for any B ⊂ R+ ,

|A(j)B| > |A|j |B| (|A|+ |B|)−ε
.

Remark. A more precise statement in Theorem 3 would require making in [C2]
the dependence of certain constants on K explicit. Following the argument in [C2],
the best one may hope for is a condition K < o(log log |A|).

The following result from [BC] will be used in the proof of Theorem 1.
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Proposition A. [BC] Given γ > 0 and p > 2, there is a constant Λ = Λ(γ, p)
such that if A ⊂ Z is a finite set, |A| = N, |AA| < KN , then

λp(A) < KΛNγ .

Recall that by λp(A), we mean the λp-constant of the finite set A ⊂ Z, defined
by

λp(A) = max
∥∥ ∑

n∈A

cn e2πinx
∥∥

Lp(T),

where T = R/Z and the max is taken over all sequences {cn}n∈A with (
∑

c2
n)

1
2 ≤ 1.

Remarks.
(i) By taking γ = ε1 and K = |A|ε in Proposition A, we see that if |AA| < |A|1+ε,
then for any ε1 > 0, we have

(4) λp(A) < |A|εΛ+ε1 ,

where Λ = Λ(ε1, p).
(ii) To apply Proposition A, we only need the case when cn = 1√

|A| for all n, but

we do not have a proof simpler than the (rather technical) argument in [BC].

Proof of Theorem 1. For k ∈ R, we let r(k) be the number of representatives of
k in jA + B.

(5) r(k) = |{(a1, . . . , aj , b) ∈ Aj ×B: k = a1 + · · ·+ aj + b}|

Let

(6) F (x) =
∑

a∈A

e2πiax, and G(x) =
∑

b∈B

e2πibx.

Then the following properties hold. (Here q′ = q
q−1 .)

(7) |jA + B| ≥ |A|2j |B|2∑
r(k)2

(8)
∑

r(k)2 =
∫ 1

0

|F (x)jG(x)|2

(9)
∫
|F |2j |G|2 ≤

( ∫
|F |2jq

) 1
q
(∫

|G|2q′
) 1

q′

(10)
( ∫

|F |2jq
) 1

q

< |A|j+2j(εΛ+ε1)
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(11)
( ∫

|G|2q′
) 1

q′ ≤ |B|1+ 1
q

In fact, inequality (7) follows from the Cauchy inequality:

|A|j |B| = |Aj ×B| =
∑

k∈jA+B

r(k) ≤ |jA + B| 12 (∑
r(k)2

) 1
2 .

Equality (8) holds because

F jG =
∑

e2πi(a1+···+aj+b)x =
∑

r(k)e2πikx,

and Parseval’s equality. Inequality (9) is Hölder’s inequality. Inequality (10) follows
from the definition of λ2jq(A) (with cn = 1√

|A| , for all n ∈ A), and inequality (4).

Inequality (11) follows from the following easy estimate.

(12)
( ∫

|G|2q′
)
≤

∥∥G
∥∥2(q′−1)

∞

∫
|G|2 ≤ |B|2(q′−1)+1

Putting (8)-(11) together, we have

(13)
∑

r(k)2 ≤ |A|j+2j(εΛ+ε1)|B|1+ 1
q .

Therefore, (7) and (13) give

|jA + B| ≥ |A|2j |B|2
|A|j+2j(εΛ+ε1)|B|1+ 1

q

> |A|j |B|(|A|+ |B|)−2j(εΛ+ε1)− 1
q .

Let
δj(ε) = 2j(εΛ + ε1) +

1
q
.

Here j is fixed. Recall that Λ = Λ(ε1, 2jq), and thus, for all ε1 > 0, q > 0, there
is an ε0 such that δj(ε) < 3jε1 + 1

q for all ε < ε0. Hence, by taking ε1 small and q

large, we may clearly make δj(ε) → 0. ¤

Notation. d ¿h f means d ≤ c(h)f , where c(h) is a function of h.

Next, we pass to Theorem 2.
We recall that f : R → R is an almost periodic function, if for any ε > 0, there

exists ` = `(ε) > 0 such that every interval [t0, t0 + `] contains τ for which |f(t)−
f(t+τ)| < ε. Equivalently, f can be uniformly approximated by a finite combination
of exponential functions. To prove Theorem 2, instead of periodic functions, we
need to consider almost periodic functions, which will appear simply as a finite
combination of exponential functions. The integral

∫ 1

0
needs to be replaced by the

mean ∫ ′
f = lim

T→∞
1
T

∫ T

0

f,
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where f is an almost periodic function on R.
The Lp norm and Lambda-p constant are defined accordingly. If A ⊂ R is a

finite set, we have in particular

(14)
∫ ′

|
∑

a∈A

caeiax|2 = ‖
∑

a∈A

caeiax‖22 =
∑

a∈A

|ca|2.

Also Hölder’s inequality applies. ( We apply with fixed T and then letting T →∞.)
We need the following proposition to prove Theorem 2.

Proposition B. Let A ⊂ R, and |AA| < K|A|. Then

(15) λ2h(A) ¿h 1 +
ecK

|A| 1
2h

.

Here c = c(h).

Proof of Theorem 2.
Let

F (x) =
∑

a∈A

eiax, and G(x) =
∑

b∈B

eibx.

Obviously, (7) still holds. By (14), we may write (8) replacing
∫ 1

0
by

∫ ′ and
apply Hölder’s inequality to get (9). Instead of (10), we have, by (15) applied with
h = jq

( ∫ ′
|F |2jq

) 1
q ¿jq |A|j

(
1 +

ec0K

|A| 1
2jq

)2j

¿jq |A|j
(

1 +
ec1K

|A|1/q

)
,

where c0, c1 depend on jq. Clearly, (11) and (12) remain valid.
In conclusion, it follows that

|jA + B| ≥ |A|2j |B|2
|A|j |B|1+ 1

q

(
1 +

ec1K

|A| 1q

)−1

(16)

≥ |A|j |B|1− 1
q

(
1 +

ec1K

|A| 1q

)−1

.

Returning to the statement in Theorem 2, take q = [ 1ε ] so that c1 = c1(j, ε). The
last factor in (16) may then be dropped provided K < ε

2c1
log |A|. ¤

The proof of Proposition B is based on the subspace theorem, which gives a
bound on the number of solutions of a linear equation in a multiplicative group.
Let

(17)
m∑

i=1

cixi = 1, ci ∈ C∗

be a linear equation over C. A solution (x1, · · · , xm) is called nondegenerate if∑k
j=1 cij xij 6= 0, for all k.
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Theorem (Subspace Theorem, [ESS]). Let Γ < 〈(C∗)m, ·〉 be a subgroup of
(C∗)m of rank s. Then

|{nondegenerate solutions of (17) in Γ}| < e(s+1)(6m)3m

.

Remark. Let Γ < 〈C∗, ·〉 be a subgroup of rank r, with γ1, . . . , γr as a set of
generators. Then Γ′ = Γ × Γ × · · · × Γ < (C∗)m is generated by the rm elements
(1, · · · , γi, · · · , 1) with γi at the j-th coordinate and 1 elsewhere (i = 1, · · · , r, and
j = 1, · · · ,m). The right hand side of the inequality in the Subspace Theorem
becomes e(rm+1)(6m)3m

.

Lemma. Let Γ < 〈C∗, ·〉 be a subgroup of rank r, with −1 ∈ Γ. Let A ⊂ Γ with
|A| = N . Let σ1(m) and σ0(m) be the numbers of solutions in A of

x1 + · · ·+ xm = 1

and
x1 + · · ·+ xm = 0

respectively. Then for h ≥ 1,
1. σ1(2h + 1), σ0(2h) ¿h Nh−1erc + Nh,
2. σ1(2h), σ0(2h− 1) ¿h Nh−1erc.

Remark. In the lemma above, c = c(h) (which will be of the form hCh) may refer
to different constants depending on h.

Proof of Lemma. By induction.
The number of nondegenerate solutions of x1 + x2 + x3 = 1 is bounded by

e189(3r+1), according to the Subspace Theorem. The number of degenerate solutions
is clearly bounded by 3

(
σ1(2) + σ0(2)

) ¿ e126(2r+1) + N , contributed from the
solutions of equations of types x1 + x2 = 1 and x1 + x2 = 0. Therefore, σ1(3) ¿
e189(3r+1)+e126(2r+1)+N ¿ e189(3r+1)+N . By assuming that one of the unknowns
of x1 + x2 + x3 = 0 is nonzero and reducing the equation to x1 + x2 = 1, we see
that σ0(3) ¿ Nσ1(2) ¿ Ne126(2r+1).

For the general case, we let µ1(2h+1) = µ0(2h) = Nh−1erch +Nh and µ1(2h) =
µ0(2h− 1) = Nh−1erc′h . Now

σ1(m) ≤ e(mr+1)(6m)3m

+
m−1∑

i=1

(
m

i

)
σ1(i)σ0(m− i)

¿me(mr+1)(6m)3m

+
m−1∑

i=1

(
m

i

)
µ1(i)µ0(m− i)

¿mµ0(m− 1) = µ1(m)

and
σ0(m) ≤ mNσ1(m− 1) ¿m Nµ1(m− 1) ≤ µ0(m). ¤

In order to apply the lemma, we need the following theorem. (See [Fr], [R], [Bi].)
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Freiman-Ruzsa Lemma. Let 〈G, ·〉 be a torsion-free abelian group and A ⊂ G
with |AA| < K|A|. Then

(18) A ⊂ {gj1
1 · · · gjd

d : ji = 1, · · · , `i, and gi ∈ G},

where d ≤ K, and
∏

`i < c(K)|A|.

We may assume A ⊂ 〈R∗, ·〉. Hence, assumption (2) implies that (18) holds with
gi ∈ R∗. Let Γ ⊂ 〈C∗, ·〉 be the subgroup generated by {−1, g1, . . . , gd}. Then

r = rk(Γ) ≤ d + 1 ≤ K + 1.

Corollary. Let A ⊂ R, |A| = N , and |AA| < K|A|. Then for h ≥ 2

|{ solutions of
2h∑

i=1

xi = 0 in A}| ¿h Nh−1ecK + Nh,

|{ solutions of
2h−1∑

i=1

xi = 0 in A}| ¿h Nh−1ecK .

Here c = c(h).

Proof of Proposition B. Let rh(k) be the number of representatives of k in hA.

rh(k) = |{(a1, · · · , ah) ∈ Ah : k = a1 + · · ·+ ah}|

To bound λ2h(A), we see that

∫ ′
|
∑

eiax|2h =
∫ ′

|
∑

ei(a1+···+ah)x|2

=
∫ ′

|
∑

k∈hA

rh(k)eikx|2

=
∑

k∈hA

rh(k)2

= |{(a1, · · · , a2h) ∈ A2h : a1 + · · · ah = ah+1 + · · ·+ a2h}|
¿h Nh−1ecK + Nh.

The third equality is (14) and the last inequality follows from the corollary above.
Hence

‖
∑

eiax‖2h ¿h N
1
2− 1

2h ec K
2h + N

1
2 . ¤

We will use the following proposition to prove Theorem 3.
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Proposition C. [C2] Let A ⊂ C be a finite set such that

|A + A| < K|A|

for some constant K. For n ∈ C, let

π`(n) = |{(a1, · · · , a`) ∈ A` : n = a1 · · · a`}|.

Then
π`(n) < |A|

C`(K)
log log |A| .

Here C`(K) is a constant depending on K and ` only.

Proof of Theorem 3. We will consider the sets log A, and log B in order to
replace multiplication by addition. Also, as in Theorem 2, we will use

∫ ′
f instead

of
∫

f . Returning to the argument in Theorem 1, we replace (5)-(8) and (10) by
the following.

(5’) π(k) = |{(a1, · · · , aj , b) ∈ Aj ×B: k = a1 · · · ajb}|

(6’) F (x) =
∑

a∈A

ei(log a)x, and G(x) =
∑

b∈B

ei(log b)x

(7’) |A(j)B| > |A|2j |B|2∑
π(k)2

(8’)
∑

k

π(k)2 =
∫ ′

|F (x)j G(x)|2dx.

( ∫ ′
|F (x)|2jq

) 1
q

=
( ∑

n∈R
πjq(n)2

) 1
q

(10’)

<
(
|A|jq |A|

2Cjq(K)
log log |A|

) 1
q

≤ |A|j |A|
cjq(K)

q log log |A| ,(19)

where in (19) we used Proposition C with l = jq and
∑

n πjq(n) = |A|jq.
We obtain that

(20) |A(j)B| > |A|j |B|1− 1
q |A|

−cjq(K)
log log |A| .

Take q = [ 3ε ]. The last factor in (20) will be at least |A|− ε
2 , provided K satisfies

cj[ 3ε ](K) < ε
2 log log |A|. ¤
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