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ABSTRACT In this paper we extend the exponential sum results from [B-K]

and [B-G-K] for prime moduli to composite moduli q involving a bounded number

of prime factors. In particular, we obtain nontrivial bounds on the exponential sums

associated to multiplicative subgroups H of size qδ, for any given δ > 0. The method

consists in first establishing a ‘sum-product theorem’ for general subsets A of Zq. If

q is prime, the statement, proven in [B-K-T], expresses simply that, either the sum-

set A + A or the product-set A.A is significantly larger than A, unless |A| is near

q. For composite q, the presence of nontrivial subrings requires a more complicated

dichotomy, which is established here. With this sum-product theorem at hand,the

methods from [B-G-K] may then be adapted to the present context with composite

moduli. They rely essentially on harmonic analysis and graph-theoretical results such

as Gowers’ quantitative version of the Balog-Szemeredi theorem. As a corollary,we do

get nontrivial bounds for the ‘Heilbronn-type’ exponential sums when q = pr (p prime)

for all r. Only the case r = 2 had been treated earlier in works of Heath-Brown and

Heath-Brown and Konyagin (using Stepanov’s method). We also get exponential sum

estimates for (possibly incomplete) sums involving exponential functions, as considered

for instance in [Konyagin-Shparlinski]

§0. Introduction.
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It was shown in [B-K], [B-G-K] (see also [B1], [B2]) how ‘sum-product’ theorems

in the prime field Fp imply new exponential sum estimates, for instance for small

subgroups H of F∗p, the multiplicative group of Fp. More precisely, it was proven that

if H < F∗p, |H| > pε then

max
(a,p)=1

∣∣∣∣
∑

x∈H

ep(ax)
∣∣∣∣ < |H|p−δ (0.1)

where δ = δ(ε) > 0, eq(y) = e2πiy/q and (a, p) = gcd(a, p).

Using Stepanov’s method, see for instance [K-S], estimate (0.1) was only obtained

under the assumption |H| > p
1
4+ε.

It is clear that this new method has many more applications to number theoretic

and cryptographical problems, as demonstrated in [B-G-K], [B1], [B2]. The purpose

of this paper is to explore the case of composite moduli. The initial step consists in

establishing a ‘sum-product’ result in the required context, which is a combinatorial

statement.

We first recall the sum-product theorem in the field Fp, p prime. The sumset of A,

{x + y : x, y ∈ A}, and productset of A, {xy : x, y ∈ A}, are denoted by A + A and

A.A, respectively. Let A ⊂ Fp be an arbitrary set and

pε < |A| < p1−ε (0.2)

for ε > 0. Then,

|A + A|+ |A.A| > c|A|1+δ (0.3)

where δ = δ(ε) > 0. This result was established in [B-K-T]. In fact, as shown in

[B-G-K], the assumption 1 < |A| < p1−ε may replace (0.2). The basic idea here is that

either the sum or product set of a given set A needs to be substantially larger than A.

Recall that in Z (or R) this ‘principle’ is expressed by the well-known Erdös-Szemeredi

conjecture [E-S], stating that if A is an arbitrary finite subset of Z, then always

|A + A|+ |A.A| À |A|2−ε. (0.4)
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The problem is unsolved at this point, the best result here being obtained by J. Soly-

mosi (using the Szemeredi-Trotter theorem)

|A + A|+ |A.A| À |A| 1411−ε. (0.5)

Returning to the finite field case, the research in [B-K-T] was originally motivated by

problems around the Kakeya conjecture in R3 and its discrete versions. But differ-

ent and very significant applications of the sum-product theorem in Fp emerged in

connection with exponential sums mod p, as mentioned above.

In [B2] the sum-product problem for product of fields, Fp × Fp is explored. For

subsets A ⊂ Fp × Fp, it turns out that (0.3) holds, unless |A| > p2−ε or p1−ε < |A| <
p1+ε and A has a ‘large’ intersection with a line.

The motivation of this extension to products was the generalization of the expo-

nential sum estimates from Gauss sum to binomial sums

p∑
x=1

ep(axk + bx`) (0.6)

and, more generally, ‘sparse’ exponential sums as considered by Mordell [M]

p∑
x=1

ep(a, xk1 + a2x
k2 + · · ·+ arα

kr ) (0.7)

where p−1 > k1 > k2 > · · · > kr and (a1, . . . , ar, p) = 1. In [B2] we establish nontrivial

bounds p1−δ on (0.7) under the essentially optimal conditions (ki, p − 1) < p1−ε and

(ki − kj , p− 1) < p1−ε for i 6= j.

In this paper, we start investigating this line of thought in the case of composite

moduli q = pα1
1 · · · pαr

r . We assume q has only a bounded number of prime factors

p1, . . . , pr, which are moreover ‘large’, i.e. pi > qε for some ε > 0 (hence α1+· · ·+αr <

1
ε ). In §1 we establish a satisfactory ‘sum-product’ theorem in the residue classes Zq,
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for q as above. Roughly speaking, it states that (0.3) always holds for A ⊂ Zq, unless

A has a ‘large’ intersection with a coset of a subring (see Theorem 1.10). The proof

uses ‘modern’ machinery in combinatorial number theory such as the Plűnnecke-Ruzsa

inequalities on iterated sum and product sets and also methods from [B-K-T] and [B2].

In the third section of the paper we clarify in greater generality (the case of a finite

commutative ring R) the relation between exponential sum estimates and the presence

of certain subsets S ⊂ R for which both S + S and S.S are ‘small’ (see Theorem 3.2).

The argument is basically an abstraction of the proofs of Theorems 5 and 7 from [B-G-

K], where Theorem 7 in [B-G-K] is replaced by Proposition 2.1. We use a refinement

of the Balog-Szemerédi-Gowers Theorem proven in Appendix (since we could not find

this precise statement in the literature).

Though in this paper we only give the proof for the case R =
∏

j Zqj , the results

from sections 2 and 3 do generalize almost verbatim to finite commutative rings R with

unit and a ‘canonical additive character e(.)’, which means that the set of characters

obtained by considering e(y.) and y varying in R gives all characters. This is equivalent

to saying that the ideal I = {x ∈ R : e(xy) = 1 for all y ∈ R} is trivial. We don

not know whether there is a more conceptual description of these rings. In fact the

existence of such a description is not so important by observing the following: If e(.)

is an arbitrary nontrivial character of R, then e(.) factors over R/I, for I defined as

above, and is a canonical character for R/I.

Let us briefly explain the heuristics of the argument. Let for simplicity H < Z∗q and

assume a ∈ Z∗q such that
∣∣∣∣
∑

x∈H

eq(ax)
∣∣∣∣ > q−ε|H| (0.8)

assuming log |H| ∼ log q and ε small. (Here log |H| ∼ log q means qc1 < |H| < qc2 for
4



some c1, c2 > 0.) Denote µ = µH the probability measure on Zq

µH =
1
|H|

∑

x∈H

δx. (0.9)

Thus (0.8) means that |µ̂H(a)| > q−ε. An important point is that µ is obviously

H-invariant, in the sense that

µ̂(ξ) = µ̂(xξ) for all ξ ∈ Zq, x ∈ H. (0.10)

Denote for δ > ε

Λδ = {ξ ∈ Zq| |µ̂(ξ)| > q−δ}

for which

|H| ≤ |Λδ| < q1+2δ

|H| (0.11)

(the left inequality results from (0.8), (0.10) and the right inequality from Parseval’s

identity).

Our aim is to give an oversimplified sketch of how we obtain a nontrivial subset S

of Zq violating the sum-product theorem (this method was also used in [B-G-K]).

Denote νk = µ(k) the k-fold (additive) convolution of µ, which we assume symmetric.

We have

‖νk‖22 ≡
∑

x∈Zq

νk(x)2 =
1
q

∑

ξ∈Zq

ν̂k(ξ)2 >
1
q

∑

ξ∈Λδ

ν̂k(ξ)2 > q−2δk |Λδ|
q

(0.12)

and also
1
q

∑

ξ∈Zq

ν̂k(ξ)2 <
1
q
(|Λ 1

k
|+ 1). (0.13)

We will use the notation ∼ to indicate factors qε′ where ε′ can be made arbitrary small

by taking ε in the assumption (0.8) small enough. Being more explicit about them

basically leads to the detailed argument that appears later in the paper.
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Based on (0.12), (0.13), we may choose k and δ ¿ k−2 suitably, such that

‖νk‖22 ∼
1
q

∑

ξ∈Λδ

ν̂k(ξ)2. (0.14)

The argument is straightforward. Take in (0.12) δ = 1
k1

< ε′
k2 , so that certainly

∑
ξ∈Λδ

ν̂k(ξ)2 > q−ε′ |Λδ|. Assume
∑

ν̂k(ξ)2 > qε′ |Λδ|, hence |Λ 1
k
| > qε′ |Λ 1

k1
| by

(0.13).

Replace k by k1. After at most [ 4
ε′ ]-steps, we obtain the desired result (0.14), where

k < k(ε′) and δ > δ(ε′) À ε.

It follows in particular from (0.14) that

‖νk ∗ νk‖2 ∼ ‖νk‖2 (0.15)

Indeed, by Cauchy-Schwarz and (0.14)

q‖νk‖22 . |Λδ|1/2

( ∑
ν̂k(ξ)4

)1/2

∼ √
q ‖νk‖2 √q ‖νk ∗ νk‖2

(while obviously ‖νk ∗ νk‖2 ≤ ‖νk‖2).

(0.15) roughly means that the support supp νk of νk is additively stable. The same

is true for supp ν2k.

Next, we invoke the invariance (0.10), implying that for all ξ ∈ Zq

∑
x

ν̂k(xξ)2µ(x) = ν̂k(ξ)2.

Letting ν = νk ∗ νk = ν2k, write

ν̂k(ξ)4 =
( ∑

x

ν̂(xξ)µ(x)
)2

≤
∑

x1,x2

ν̂
(
ξ(x1 − x2)

)
µ(x1)µ(x2)

=
∑

x

ν̂(ξx)ν2(x)
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and similarly

ν̂k(ξ)4k =
( ∑

x

ν̂(xξ)µ(x)
)2k

≤
∑

x

ν̂k(ξx)2ν2k(x). (0.16)

From the choice of δ and k, we also have

∑

ξ∈Λδ

ν̂k(ξ)4k+2 ∼ |Λδ|

and substituting (0.16)

∑

x,ξ

ν̂k(ξ)2ν̂k(xξ)2ν2k(x) ∼ |Λδ|. (0.17)

(The upper bound follows from (0.14), since the left-hand side is at most
∑

ξ ν̂k(ξ)2.)

Hence
∑

x

[∑
y

ν2k(xy)ν2k(y)
]
ν2k(x) ∼

∑
ν2k(x)2. (0.18)

Thus we see that ν2k has a large correlation with its multiplicative translates ν2k(x.)

for x ∈ supp ν2k. This permits us to obtain multiplicative stability of supp ν2k.

Thus we have established both additive and multiplicative stability of supp ν2k but

only in a ‘statistical sense’. In order to obtain a set S which satisfies (in a set-theoretical

way)

|S| ∼ |S + S| ∼ |S.S| (0.19)

and also

S ⊂ supp νk, νk(x) ∼ 1
|S| ∼

∥∥νk

∥∥
∞ for some k, (0.19’)

we rely on a key ingredient from graph theory, which is the Balog-Gowers-Szemeredi

theorem.

Since |Λδ| ≥ |H| in (0.12), it follows that

∑
νk(x)2 & |H|

q
(0.20)
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and by (0.19’) the set S obtained above satisfies |S| . q
|H| < q1−δ, since |H| > qδ.

We have therefore contradicted the sum-product theorem.

What we described above is an overview of the proof of Prop. 2.1 in the paper. Let

us next indicate another way of deriving the exponential sum estimate over subgroups,

which is perhaps conceptually more straightforward (it is a slightly different approach

and does not imply immediately the more general Prop. 2.1 which is of an independent

interest).

Assume q prime for simplicity.

Since the measure µ = µH in (0.4) is H-invariant, assuming µ̂(a) > q−ε for some

a ∈ Z∗q implies

µ̂(ξ) > q−ε, for all ξ ∈ aH

Starting from aH, one aim is to construct consecutively larger and larger sets Λ ⊂ Zq

such that µ̂(ξ) > q−ε for ξ ∈ Λ. (ε may get larger and larger.)

First, if ν is a probability measure on Zq, ν̂ ∈ R, ν = ν−,
(
notation: ν−(x) = ν(−x)

)

and ν̂(ξ) > q−τ for ξ ∈ Λ, then

∑

ξ1,ξ2∈Λ

ν̂(ξ1 − ξ2) > q−2τ |Λ|2 (0.21)

and hence, denoting

G =
{

(ξ1, ξ2) ∈ Λ× Λ : ν̂(ξ1 − ξ2) >
q−2τ

2

}

we have

|G| > q−2τ

2
|Λ|2.

Assume that the set

{ξ1 − ξ2 : (ξ1, ξ2) ∈ G}
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is not significantly larger then |Λ| (otherwise we succeeded in obtaining a larger set).

It follows then from the Balog-Szemeredi-Gowers (BSG) theorem that there is Λ′ ⊂ Λ

such that

|Λ′ + Λ′| ∼ |Λ′| ∼ |Λ|. (0.22)

Applying the preceding to ν = µ ∗ µ− and Λ = aH, it follows that either we obtained

a set Λ1 such that

|Λ1| > qε′ |H|, and µ̂(ξ) >
1
2
q−4ε for ξ ∈ Λ1

or there is a set Λ′ ⊂ aH with

|Λ′ + Λ′| ∼ |Λ′| ∼ |H|. (0.23)

Define next the probability measure ν′ on Zq

ν′(x) =
1
|Λ′|

∑

ξ∈Λ′
ν(xξ−1). (0.24)

Since ν is H-invariant, so is ν′. Moreover ν̂′(1) > q−2ε, hence ν̂′(ζ) > q−2ε for all

ζ ∈ H. This means that

∑

ζ∈H,ξ∈Λ′
ν̂(ζξ) > q−2ε|H||Λ′|.

Denote now

G1 = {(ζ, ξ) ∈ H × Λ′ : ν̂(ζξ) >
q−2ε

2
}

for which |G1| > 1
2q−2ε|H||Λ′|. Assume again {ζξ : (ζ, ξ) ∈ G1} is not substantially

larger then |H|. Applying now the BSG theorem in multiplicative form, we may then

obtain Λ′′ ⊂ Λ′ such that

|Λ′′. Λ′′| ∼ |Λ′′| ∼ |Λ′|. (0.25)

Hence

|Λ′′ + Λ′′| ∼ |Λ′| ∼ |Λ′′Λ′′| (0.25′)
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contradicting the sum-product theorem in Zq.

Summarizing, we proved that µ̂(ξ) ∼ 1 for ξ ∈ Λ, where Λ ⊂ Zq is a set satisfying

|Λ| > qε′ |H|.

Assume now we established that

(*) if ν is an H-invariant probability measure on Zq and ν̂(ξ0) ∼ 1 for some ξ0 ∈ Z∗q ,
then ν̂(ξ) ∼ 1 on a set Λ with |Λ| = qγ .

Assuming qγ . q
|H| = q1−ρ (which is the case for ν = µH), our aim is to upgrade

the statement (*) by enlarging γ to γ′ > γ + δ(ρ).

Follow the previous reasoning. If the first attempt based on (0.21) fails to enlarge Λ,

we obtain Λ′ ⊂ Λ satisfying (0.22). Define ν′ as in (0.24), hence again an H-invariant

measure and satisfying ν̂′(1) ∼ 1. Thus (∗) applies to ν′ and there is Λ̃ ⊂ Zq with

ν̂′(ξ̃) ∼ 1 for ξ̃ ∈ Λ̃ and |Λ̃| = qγ . Write

∑

ξ∈Λ′,ξ̃∈Λ̃

ν̂(ξξ̃) ∼ q2γ . (0.26)

From (0.26), if

G1 = {(ξ, ξ̃) ∈ Λ′ × Λ̃ : ν̂(ξξ̃) ∼ 1}

then |G1| ∼ q2γ . If also {ξξ̃ : (ξ, ξ̃) ∈ G} fails to be significantly larger than qγ ,

we obtain Λ′′ ⊂ Λ′ such that (0.25), (0.25′) hold. This contradicts the sum-product

theorem, since |Λ′′| < q1−ρ. In conclusion, we may conclude to the existence of a larger

set Λ1, |Λ1| > qγ+δ(ρ) where ν̂(ξ) ∼ 1, ξ ∈ Λ1. The increment δ(ρ) > 0 depends on the

specific statement in the sum-product theorem in Zq. Eventually we contradict the

second inequality in (0.11)

Returning to Proposition 2.1, the main application is the extension of the result from

[B-K], [G-G-K] to residue classes Zq where q is a composite number q = pν1
1 · · · pνr

r as

considered in §1.
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The required sum-product theorem for subsets A ⊂ Zq with q as above was obtained

in §1. Combining this with Theorem 3.2, it follows in particular that H < Z∗q , a

multiplicative group satisfying

|πp(H)| > qε for all primes p|q. (0.27)

(denoting πp : Zq → Zp the quotient map mod p), the estimate

max
a∈Zq\{0}

∣∣∣∣
∑

x∈H

eq(ax)
∣∣∣∣ < |H|q−δ with δ = δ(ε) > 0 (0.28)

holds (see Corollary 4.2 and Remark 4.6).

In fact, we show in Theorem 4.7 that if H < Z∗q and |H| > qδ, then

max
a∈Z∗q

∣∣∣∣
∑

x∈H

eq(ax)
∣∣∣∣ < q−ε|H|

where ε depends only on δ and the number of prime factors of q.

An interesting consequence are nontrivial bounds on the Heilbronn type exponential

sums as described in Odoni’s paper [O].

Take q = pm (m ≥ 1 a fixed integer). Then

max
(a,p)=1

∣∣∣∣
p∑

x=1

epm+1(axpm

)
∣∣∣∣ < Cmp1−δm (δm > 0) (0.29)

(the problem of estimating such sums is attributed in [O] to Davenport).

For m = 1, nontrivial bounds were obtained by Heath-Brown [H-B] and Heath-

Brown-Konyagin [H-B–K], using Stepanov’s method. No results for m ≥ 2 seem to

appear in the literature so far. S. Konyagin informed the first author recently of the

work of Malyhin (his student) who obtained the m = 2 case (with an explicit bound)

independently.
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Further applications are given to (possibly incomplete) exponential sums involving

exponential functions of the form
∑t

s=1 eq(aθs), with θ ∈ Z+
q , as considered in [K-S]

(see Theorem 4.5). Finally, in Section 5, we prove exponential sum estimates for a

typical modulus q noticing that ‘most’ q are of the form q = q1q2, where q1 is product

of a few prime factors and q2 < qε. In this situation, our methods are still applicable.

Notations.

kA = A + ·+ A, Ak = A. · · · .A

eN (θ) = e
2πi
N θ

For a ring R, R∗ = {r ∈ R : r is invertible}

A ¿k B means A < c(k)B for a constant c(k)

πp : Zq → Zp is the quotient map mod p

Let S be a set.

µ(S) =
∑

s∈S µ(s)

χS(x) = 1, if x ∈ S, 0 otherwise.

§1. The sum-product theorem in Zq.

Lemma 1.1. Let S ⊂ Z∗N and let p be the smallest prime factor of N . If |S| >

p−
1
4 N + N

3
4 , then ZN = 3S2.

Proof. Let f, g : ZN → R be functions. We define the following terms

(a.) f̂(m) = 1
N

∑
x∈ZN

f(x)eN (−xm),

(b.) f ∗ g(x) = 1
N

∑
y∈ZN

f(x− y)g(y).

Then the following are easy to verify:
12



(c.) f(x) =
∑

m∈ZN
f̂(m)eN (xm),

(d.) f̂ ∗ g(m) = f̂(m)ĝ(m),

(e.)
∑

m∈ZN
|f̂(m)|2 = 1

N

∑
x∈ZN

|f(x)|2,

(f.) supp (f ∗ g) ⊂ Supp f + Supp g.

Let

f(x) =
1
|S|

∑

y∈S−1

χs(yx), for x ∈ ZN . (1.1)

(Note that 0 ≤ f(x) ≤ 1.)

Then the following properties hold.

(i.) Supp f ⊂ S2,

(ii.) f̂(m) = 1
|S|

∑
y∈S−1 χ̂s(my−1),

(iii.) (f ∗ f ∗ f)(x) =
∑

m∈ZN
f̂(m)3eN (xm),

(iv.) |f̂(m)| ≤ |S|−1/2(
∑

y∈S−1 χ̂s(my−1)2)
1
2 ,

(v.) If m ∈ Z∗N , then |f̂(m)| ≤ 1√
N

,

(vi.)
∑

x∈ZN
f(x) = |S|,

(vii.)
∑

m∈ZN
|f̂(m)|2 ≤ |S|

N .

Properties (i) and (ii) are obvious; (iii) follows from (c) and (d); (iv) follows

from (ii) and Cauchy-Schwartz, (v) follows from (iv) and (e) (which is applied to
∑

`∈ZN
χ̂s(`)2 ≥

∑
y∈S−1 χ̂s(my−1)2). (vi) follows from the estimate

∑

x∈ZN

f(x) =
1
|S|

∑

y∈S−1

∑

x∈ZN

χs(yx) =
1
|S| |S

−1| |S| = |S|

To see (vii), we observe that, by (e), the left-hand side is

1
N

∑

x∈ZN

|f(x)|2 ≤ 1
N

∑

x∈ZN

f(x) =
|S|
N

.
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This is because 0 ≤ f(x) ≤ 1 and (vi).

Claim. Supp f ∗ f ∗ f ⊃ ZN .

Proof of Claim. We rewrite (iii) as

(f ∗ f ∗ f)(x) = f̂(0)3 +
∑

m∈ZN\Z∗N\{0}
f̂(m)3eN (xm) +

∑

m∈Z∗N
f̂(m)3eN (xm). (1.2)

By (a) and (vi), we have

f̂(0) =
1
N

∑

x∈ZN

f(x) =
|S|
N

. (1.3)

By (v) and (vii), we have
∑

m∈Z∗N
|f̂(m)|3 ≤ 1√

N

∑

m∈Z∗N
|f̂(m)|2 ≤ N− 3

2 |S|. (1.4)

To bound the first summation in (1.2), we use (iv) and observe that when y varies,

my−1 represents the same element in ZN at most gcd(N, m) many times. Hence (iv)

gives

|f̂(m)| ≤ |S|−1/2

(
N

p

∑

`∈ZN

χ̂s(`)2
)1/2

= |S|−1/2

(
N

p

|S|
N

)1/2

=
1√
p
, (1.5)

where p is the smallest prime factor of N . The first equality follows from (e).

Hence, (1.5) and (vii) imply
∑

m∈ZN\Z∗N\{0}
|f̂(m)|3 ≤ 1√

p

∑

m∈ZN

|f̂(m)|2 ≤ |S|√
pN

. (1.6)

Putting (1.2), (1.3), (1.4) and (1.6) together, we have

|f ∗ f ∗ f(x)| ≥ |S|3
N3

− |S|
N

3
2
− |S|√

pN
,

which is positive if |S|2 > N
3
2 + p−

1
2 N2, or if |S| > N

3
4 + p−

1
4 N . ¤

Finally, the Claim, Properties (f) and (i) imply

ZN ⊂ Supp f ∗ f ∗ f ⊂ 3 Supp f ⊂ 3S2. ¤

Ruzsa’s inequality If |A + B| ≤ c|A|, then |hB − kB| ≤ ch+k|A|.

In Particular, |L− L| |L| ≤ |2L|2.
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Lemma 1.2. Let F be a finite abelian group, and let L ⊂ F . If

|L| > |F |
mα

for some m ∈ N and α >
1
5
, (1.7)

and

L− L = F (1.8)

then for some ` < 10α, |2`L| > |F |
m

1
5
.

Proof. First, we prove

Claim. For any nonnegative `, one of the following cases hold

(a) |2`+1L| ≥ m
`+1
10 |L|,

(b) |2`L| > |F |
m

1
5
.

Proof of Claim. We will use induction on `. For ` = 0, if |L+L| ≥ m
1
10 |L|, then (a)

holds. Otherwise Ruzsa’s inequality (see [N] Theorem 7.8) and (1.8) imply that

|F | = |L− L| < m
1
5 |L|.

This is Case (b).

Now we assume either |2`L| ≥ m
`
10 |L| or |2`−1L| > |F | m− 1

5 . The latter in

particular implies |2`L| > |F | m− 1
5 . For the former, we repeat the initial case. If

|2`L + 2`L| ≥ m
1
10 |2`L|, then

|2`+1L| ≥ m
1
10 m

`
10 |L| = m

`+1
10 |L|.

If |2`L + 2`L| < m
1
10 |2`L|, then Ruzsa’s inequality and (1.8) give |F | = |2`L− 2`L| <

m
1
5 |2`L|, which is Case (b). ¤

To see that the Claim implies the lemma, we use (1.7) on Case (a)

|F | ≥ |2`+1L| ≥ m
`+1
10 |L| > m

`+1
10 −α|F |.

Therefore, the process has to stop for some ` < 10α. ¤

The next sum-product theorem for Zp is a combination of a theorem in [BKT] and

a theorem in [BGK].
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Theorem. [BKT − BGK] Given ε > 0, there is δ = δ(ε) > 0 such that if A ⊂ Zp

and

1 < |A| < p1−ε. (1.9)

Then

|2A|+ |A2| > c(ε)|A|1+δ. (1.10)

Remark. Instead of(1.10), a more convenient conclusion is

|2A2| = |A(A + A)| À |A|1+δ.

Lemma 1.3. Given ε > 0 and α < 1, there is k = k(ε, α) ∈ N such that if A ⊂ Zp

with |A| > pε then |kAk| > pα.

Proof. We may assume |A| ≤ pα and take ε = 1− α in(1.9). Then as in the Remark

above, |2A2| À |A|1+δ for some δ = δ(α). If |2A2| ≤ pα, we apply Theorem BKT-BGK

again and obtain |2(2A2)2| À |2A2|1+δ À |A|(1+δ)2 . After ` steps, we get

|22`−1A2` | > |A|(1+δ)`

.

The process stops for some ` such that |A|(1+δ)`

> pε(1+δ)`

> pα with k ≤ 22`−1. ¤

Proposition 1.4. Let A ⊂ Z∗N and N = pα1
1 · · · pαr

r . If there is ε > 0 such that

|πp(A)| > pε for all p|N, (1.11)

then kAk = ZN for all k ≥ k(ε,m), where m = α1 + · · ·+ αr.

Proof. We do induction on the number of prime factors. For the initial case when

N = p, a prime, the proposition follows from Lemma 1.3 (with α > 3
4 ) and Lemma

1.1.
16



Let p be the smallest prime factor of N , and let N ′ = N
p .

Since prime factors of N ′ are prime factors of N ,(1.11) holds for πN ′(A) ⊂ Z∗N ′ .

The induction hypothesis implies πN ′(kAk) = k
(
πN ′(A)

)k = ZN ′ for k ≥ k0 = k0(ε).

In particular, |kAk| ≥ N ′.

Claim 1. |kAk| > N ′ for some k ≤ 2k0.

Proof of Claim 1. Assume |kAk| = N ′ for all k ≤ 2k0.

Take z0 ∈ k0A
k0 and let P = k0A

k0 − z0. Then 0 ∈ P ⊂ P + P. Since N ′ = |P | ≤
|P +P | ≤ |2k0A

2k0 | = N ′, we have |P | = |P +P | and P is closed under addition. Hence

P = (p), the subring generated by p. Therefore, k0A
k0 = z0 +(p) and |πp(k0A

k0)| = 1

contradicting to assumption (1.11). ¤

Let k ≤ 2k0 be given by the Claim such that |kAk| > N ′. So πN ′ is not one-to-one

on kAk and there exists nN ′ ∈ kAk − kAk such that nN ′ 6= 0 in ZN , i.e., 0 < n < p.

Claim 2. n(kAk)N ′ + kA2k = ZN .

Proof of Claim 2. Since N = pN ′, every element in ZN is represented as a + bN ′,

where 1 ≤ a ≤ N ′ and 1 ≤ b ≤ p. From the earlier steps of induction, we have

πN ′(kA2k) = ZN ′ and πp(kAk) = Zp. The former implies that for 1 ≤ a ≤ N ′, there

exists ` ∈ Z such that

a + `N ′ ∈ kA2k. (1.12)

Since n 6= 0 in Zp, for any b = 1, · · · , p, there exists 1 ≤ c ≤ p such that

` + cn ≡ b (mod p). (1.13)

Also, πp(kAk) = Zp implies that there exists m such that

c + mp ∈ kAk. (1.14)

Combining (1.12), (1.13) and (1.14), we see that in n(kAk)N ′ + kA2k there exists

n(c + mp)N ′ + a + `N ′ ≡ a + (` + cn)N ′ ≡ a + bN ′ (mod pN ′). ¤
17



Claim 2 implies (kAk−kAk)kAk +kA2k = ZN . Let L = k1A
k1 , where k1 = 2k2. Then

L− L = ZN . Using Ruzsa’s inequality, we have

|2L| ≥ (N |L|)1/2 ≥
(

N
N

p

)1/2

= p−
1
2 N.

Since L − L = ZN implies 2L − 2L = ZN , we can apply Lemma 1.2 to 2L to obtain

|32L| ≥ p−
1
5 N . Now Lemma 1.1 gives ZN = 3(32L)2. ¤

Let A,B, A1, A2, A3 be subsets of a finite commutative ring F . The following facts

will be used to prove Proposition 1.9.

Fact 1.5. Let S ⊂ A×B with |S| > |A| |B|
K for some K > 0. Let

T = {a ∈ A : |({a} ×B) ∩ S| > |B|
2K

}.

Then

|T | > |A|
2K

.

Fact 1.6. χB ≤ 1
|A|

∑
x∈A+B χx−A.

Fact 1.7. (Ruzsa’s triangle inequality)

Let Ai ⊂ F for i = 1, · · · , 4. Then

|A1 + A2| ≤ |A1 + A3| |A2 + A4| |A3 + A4|
|A3| |A4|

Fact 1.8. Let A ⊂ F ∗. Then |A|2 ≤ |A2| 12 (
∑

x,x′∈A |xA ∩ x′A|)1/2.

Facts 1.5 and 1.6 are obvious. Fact 1.7 can be seen by restricting the map ρ :

(A1 + A3) × (A2 + A4) × (A3 + A4) → F , defined by ρ(x, y, z) = x + y − z, to

S = {(a1 + a3, a2 + a4, a3 + a4) : ai ∈ Ai}, and noticing that the fibers of ρ contains

A3 ×A4 and ρ(S) = A1 + A2.
18



To see Fact 1.8, we notice that supp
∑

x∈A χxA = A2 and use Cauchy-Schwartz

inequality for the following series

|A|2 =
∑

x∈A

|xA| =
∑

x∈A

∑

y∈A2

χxA(y) =
∑

y∈A2

( ∑

x∈A

χxA(y)
)

.

Proposition 1.9. Let F be a commutative ring and let A ⊂ F ∗ with

|2A|+ |A2| < K |A| (1.15)

for some K > 0. Then for k ∈ N, there is A1 ⊂ A with

|A1| > 1
2K

|A| and |kAk
1 | ¿k KC |A|, (1.16)

where C = (8k + 9)(k + 1) + k.

Proof. Fact 1.8 and the assumption that |A2| < K|A| imply

∑

x,x′∈A

|xA ∩ x′A| > K−1|A|3.

Hence there is x̄ ∈ A such that

∑

x∈A

|xA ∩ x̄A| > K−1|A|2.

Let

A1 = {x ∈ A : |xA ∩ x̄A| > |A|
2K

}. (1.17)

Then Fact 1.5 implies

|A1| > |A|
2K

. (1.18)

Claim. For all k ≥ 1, for y1, y2 ∈ Ak
1A−1

1 ,

|y1A + y2A| ¿k Kc|A|,
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where c = 4k + 5.

Proof of Claim. First, we do induction on k to show

|y1A + y2A| < 22kK4k+1|A| , for all y1, y2 ∈ Ak
1 . (1.19)

For k = 1. In Fact 1.7 we take Ai = yiA and Ai+2 = yiA ∩ x̄A for i = 1, 2. Then

|Ai + Ai+2| ≤ |yiA + yiA| = |A + A| < K|A| , and |Ai+2| > |A|
2K

for i = 1, 2.

The last inequality is by (1.17). On the other hand,

|A3 + A4| ≤ |x̄A + x̄A| < K|A|.

Therefore, Fact 1.7 gives

|y1A + y2A| < 22K5|A|.

For the general case, for i = 1, 2, let yi = xixi+2 ∈ Ak
1 with xi ∈ Ak−1

1 and xi+2 ∈ A1.

We use Fact 1.7 again by taking

Ai = yiA = xixi+2A, and Ai+2 = yiA ∩ xix̄A = xi(xi+2A ∩ x̄A).

Then similarly,

|Ai + Ai+2| < K|A| , and |Ai+2| = |xi+2A ∩ x̄A| > |A|
2K

.

On the other hand, by the induction hypothesis,

|A3 + A4| < |x̄(x1A + x2A)| < 22(k−1)K4k−3|A|.

Now, (1.19) follows from Fact 1.7.

To conclude the proof of the Claim, for yi ∈ Ak
1A−1

1 , we write yi = xix
−1
i+2 with

xi ∈ Ak
1 and xi+2 ∈ A1, and observe that |y1A + y2A| = |x1x4A + x2x3A| and use

(1.19) for x1x4, x2x3 ∈ Ak+1
1 . ¤
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Using Fact 1.6 for B = Ak
1 , A = A−1

1 , we have

χAk
1+Ak

1
≤ 1
|A1|2

∑

yi∈A−1
1 Ak

1

χy1A1+y2A1 .

(For any a + b ∈ Ak
1 + Ak

1 , there are |A1|2 many representations (c−1a)c + (d−1b)d in

y1A1 + y2A1.)

Hence

|Ak
1 + Ak

1 | ≤
|A−1

1 Ak
1 |2

|A1|2 |y1A1 + y2A1| < 24k+14K4k+4K4k+5|A|. (1.20)

For the second inequality, we use Ruzsa’s inequality and the bounds (1.15), (1.18) to

see that

|A−1
1 Ak

1 | ≤
( |A2

1|
|A1|

)k+1

|A1| ≤
( |A2|
|A1|

)k+1

|A1| ≤
(

K · 2K|A1|
|A1|

)k+1

|A1|.

To see the second inequality in (1.16), again we apply Ruzsa’s inequality (see the

version stated before Lemma 1.2) to (1.20).

|kAk
1 | ≤ |kAk

1 −Ak
1 | ≤

(
24k+14K8k+9 |A|

|Ak
1 |

)k+1

|Ak
1 |

≤ (24k+14K8k+9)k+1(2K)k|A|.

In the last inequality, we use that |A|
|Ak

1 |
< |A|

|A1| < 2K. ¤

Theorem 1.10. Let A ⊂ ZN with |A| > Nε0 , ε0 > 0, and N = pα1
1 · · · pαr

r . Let

ε < δ < ε0. Assume

|2A|+ |A2| < Nε|A|, ε > 0. (1.21)

Let m = α1 + · · ·+ αr. Then one of the following holds.

(a.) |A| > N1−c(δ)ε, where c(δ) also depends on m.

(b.) |A ∩ a + (p)| > (23Nεpδ)−1|A| for some a ∈ A, and some prime p|N .
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(c.) |A ∩ (p)| > (2r)−1|A|, for some prime p|N .

Proof of the Theorem.

Case 1. |A ∩ Z∗N | > 1
2 |A|.

Proposition 1.9 provides A1 ⊂ (A ∩ Z∗N ) with

|A1| > 1
23Nε

|A| (1.22)

and

|kAk
1 | < N cε|A|, for all k (1.23)

where c = c(k).

Case 1(a). |πp(A1)| > pδ for all p|N .

Proposition 1.4 implies kAk
1 = ZN for all k ≥ k(δ,m). This together with (1.23),

we have

N cε|A| > |kAk
1 | = N, for k ≥ k(δ,m),

hence |A| > N1−c(δ)ε.

This is Case (a).

Case 1(b). |πp(A1)| ≤ pδ for some p|N .

Then there is a ∈ Zp such that |A1 ∩ π−1
p (a)| ≥ |A1|

pδ > |A|
23Nεpδ .

This is Case (b).

Case 2. |A ∩ Z∗N | ≤ 1
2 |A|.

Since more than half of the elements of A are zero divisors, we have |π−1
p (0)| ≥ |A|

2r

for some p|N . This is Case (c). ¤

Remark 1.11. Under assumption (1.21), Case (b) is equivalent to the following

statement.
22



(b’) there is p|N such that

|πp(A)| < Nd, for some d = d(δ) > 0.

It is clear that (b’) implies (b) without additional assumptions. To see (b) and (1.21)

imply (b’), first, we note that |πp(A)| |A ∩ π−1
p (a)| ≤ |2A|. Indeed, 2A contains {b1 +

y1P, · · · , bm + ymp} + {a + x1p, · · · , a + xnp}, where m = |πp(A)|, n = |A ∩ π−1
p (a)|,

and bj ’s are all distinct. Therefore (bj + yjp) + (a + xip) = (bm + ymp) + (a + x`p)

implies that bj + a = bm + a. Hence j = m and i = `.

By (1.21), |πp(A)| |A ∩ π−1
p (a)| < Nε|A|, which implies

|πp(A)| < 23N2εpδ < 23N3δ. (1.24)

Similarly for Case (c), under assumption (1.21), we have

|πp(A)| < 2rNε < Nd, (1.25)

if d satisfies 1
2Nd−ε > r. Hence, in the statement of the Theorem, (b) and (c) can be

replaced by (b’).

Theorem 1.12. Let A ⊂ ZN with |A| > Nε0 , ε0 > 0, and N = pα1
1 · · · pαr

r . Let

ε < δ < ε0. Assume

|2A|+ |A2| < Nε|A|, ε > 0.

Let m = α1 + · · ·+ αr be bounded by a constant 1
α . Then one of the following holds.

(a.) |A| > N1−c(δ)ε, where c = c(δ) also depends on m.

(b′.) |πp(A)| < N c′(δ), for some prime p|N.

§2. A general estimate for mixed additive and multiplicative convolutions.
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The goal of this section is to prove Proposition 2.1. (See also Remark 2.2.) For

convenience, we will use the following notions which are different by a constant multiple

from those in Section 1.

Let µ, ν : Zq → R be functions.

(2a.) µ̂(ξ) =
∑

x µ(x)eq(xξ),

(2b.) µ ∗ ν(x) =
∑

y µ(x− y)ν(y).

Then the following are easy to verify:

(2c.) µ(x) = 1
q

∑
ξ µ̂(ξ)eq(−xξ),

(2d.)
∑

ξ |µ̂(ξ)|2 = q
∑

x |µ(x)|2,

(2e.) If
∑

µ(x) = 1 and µ(x) ≥ 0, then |µ̂(ξ)| ≤ 1 and (µ ∗ ν)(S) ≤ maxx ν(x + S).

Let R =
∏

j Zqj . Denote for x ∈ R,

e(x) =
∏

j

eqj (xj),

where eqj (xj) = exp( 2πi
qj

xj). Then the above notions and properties still make sense.

Fact 2.1.1. Let T = {x : φ(x) > λ}. Then |T | < 1
λφ(T ) = 1

λ

∑
x∈T φ(x).

Proposition 2.1. Let R =
∏

j Zqj be a commutative ring with |R| = q. Let µ be a

probability measure on R. (i.e.
∑

µ(x) = 1 and µ ≥ 0.) Let ε > 0. Then one of the

following alternatives hold:

(i.)
∑

ξ,y∈R

|µ̂(ξ)|2|µ̂(yξ)|2µ(y) < q−ε
∑

ξ∈R

|µ̂(ξ)|2

(ii.) max
x∈R

µ
(
x + (R\R∗)) > cq−2ε

(iii.) There is a subset S̄ of R∗ such that

|S̄|.
( ∑

|µ̂(ξ)|2
)

< 10q1+ε, (2.2)
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|S̄ + S̄|+ |S̄.S̄| < qCε|S̄|, (2.3)

max
x∈R

µ(x + S̄) > q−Cε, (2.4)

where c, C are some constants
(
cf.(2.15)

)
.

Proof. We adapt the argument from [B-G-K]. We will use Balog-Szemeredi-Gowers

Theorem in both multiplicative and additive forms to find a set S̄ satisfying (iii) by

assuming (i) and (ii) fail. Namely, we assume
∑

ξ,y

|µ̂(ξ)|2|µ̂(yξ)|2µ(y) > q−ε
∑

ξ

|µ̂(ξ)|2, (2.5)

and

µ(R\R∗) <
1
2
q−ε. (2.6)

Defining µ−(x) = µ(−x), we denote
(
cf. (2c)

)

φ(x) = q(µ ∗ µ−)(x) =
∑

ξ

|µ̂(ξ)|2e(xξ), φ(x) ≥ 0. (2.7)

Then
∑

x∈R

φ(x) = q, and φ(0) =
∑

ξ

|µ̂(ξ)|2 = max φ(x) (2.8)

Claim 1.
∑

x∈R
y∈R∗

φ(x)φ(xy)µ(y) >
1
2
q1−εφ(0). (2.9)

Proof of Claim 1. For y fixed, (2.7) gives
∑

x

φ(x)φ(xy) =
∑

ξ,η

|µ̂(ξ)|2|µ̂(η)|2
∑

x

e(xη + xyξ) = q
∑

ξ

|µ̂(ξ)|2|µ̂(−yξ)|2.

Therefore, multiplying the above expression by µ(y) and summing over y, by (2.5) and

(2e), the left-hand side of (2.9) is
∑

y

−
∑

y∈R\R∗
> q

(
q−ε

∑

ξ

|µ̂(ξ)|2 −
∑

ξ

|µ̂(ξ)|2
∑

y∈R\R∗
|µ̂(−yξ)|2µ(y)

)

> q

(
q−ε − µ(R\R∗)

) ∑
|µ̂(ξ)|2.
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Now Claim 1 follows from (2.6) and (2.8). ¤

Define the set

S = {x ∈ R : φ(x) >
1
10

q−εφ(0)}. (2.10)

We have
∑

x∈S, y∈R∗, xy∈S

φ(x)φ(xy)µ(y) >
1
4
q1−εφ(0). (2.11)

Indeed, by (2.8)

∑

x/∈S

φ(x)φ(xy)µ(y) ≤ 1
10

q−εφ(0)
∑
x,y

φ(xy)µ(y) ≤ 1
10

q1−εφ(0).

Similarly,
∑

xy/∈S

φ(x)φ(xy)µ(y) ≤ 1
10

q1−εφ(0).

Hence Claim 1 implies (2.11).

Claim 2.
1
4
q1−εφ(0)−1 < |S| < 10q1+εφ(0)−1. (2.12)

Proof of Claim 2.

|S| =
∑

|S| µ(y) ≥
∑

y∈R∗
|S ∩ y−1S| µ(y) >

1
4
q1−εφ(0)−1. (2.13)

The last inequality is because of (2.11) and that, by (2.8), the left-hand-side of (2.11)

is bounded above by φ(0)2
∑ |S∩y−1S| µ(y). On the other hand, Fact 2.1.1, (2.8) and

(2.7) imply

|S| < 10qεφ(0)−1

[ ∑

x∈S

φ(x)
]
≤ 10q1+εφ(0)−1, (2.14)

which is the upper bound on |S| in Claim 2. ¤

Assuming moreover

max
x

µ
(
x + (R\R∗)) <

1
103

q−2ε, (2.15)
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Claim 3.

|S\R∗| < 10−2q1−εφ(0)−1. (2.16)

Proof of Claim 3. By (2.10), Fact 2.1.1, (2.7), (2e) and (2.15),

|S\R∗| ≤ 10qεφ(0)−1

[ ∑

x∈S\R∗
φ(x)

]

= 10q1+εφ(0)−1(µ ∗ µ−)(S\R∗)
≤ 10q1+εφ(0)−1 max

x
µ
(
x + (S\R∗))

≤ 10q1+εφ(0)−1 max
x

µ
(
x + (R\R∗)) < 10−2q1−εφ(0)−1. ¤

Let

S∗ = S ∩R∗

Then Claims 2 and 3 imply

|S∗| > 10−1q1−εφ(0)−1 > 10−2q−2ε|S|. (2.17)

Write

S ∩ y−1S = (S∗ ∩ y−1S∗) ∪ (
S∗ ∩ y−1(S\S∗)) ∪ (

(S\S∗) ∩ y−1S
)
,

and note that, by Claim 3,

∑
y

|(S\S∗) ∩ y−1S| µ(y) ≤ |S\R∗|
∑

µ(y) ≤ 10−2q1−εφ(0)−1.

Similarly,
∑

y

|S∗ ∩ y−1(S\S∗)| µ(y) ≤ 10−2q1−εφ(0)−1.

Putting together with the second inequality of (2.13), we have

∑

y∈R∗
|S∗ ∩ y−1S∗| µ(y) >

1
20

q1−εφ(0)−1. (2.18)
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Defining

Λ = {y ∈ R∗ : |S∗ ∩ y−1S∗| > 1
40

q1−εφ(0)−1}. (2.19)

Claim 4.

|Λ| > 10−7q−5ε|S|. (2.20)

Proof of Claim 4. Claim 2 imply

|S∗| µ(Λ) = |S∗|
∑

y∈Λ

µ(y) ≥
∑

y∈Λ

|S∗ ∩ y−1S∗| µ(y) >
1
40

q1−εφ(0)−1 > 10−3q−2ε|S|.

The second inequality is because of (2.18) and that, by (2.19),
∑

y/∈Λ < 1
40q1−εφ(0)−1.

Therefore, Cauchy-Schwartz, (2d) and (2.8) give

10−3q−2ε < µ(Λ) ≤ |Λ|1/2

( ∑
µ(x)2

)1/2

=
( |Λ|

q

)1/2( ∑
|µ̂(ξ)|2

)1/2

=
( |Λ| φ(0)

q

)1/2

.
(2.21)

Namely,

|Λ| φ(0) > 10−6q1−4ε. (2.22)

The Claim follows from (2.12). ¤

Consequently, (by shrinking Λ, if necessary) there is Λ ⊂ R∗, with |S∗| ≥ |Λ| >

10−7q−5ε|S∗| such that for any y ∈ Λ,

|S∗ ∩ y−1S∗| > 10−3q−2ε|S∗|.

We will use the multiplicative form of the following refinement of Balog-Szemerédi-

Gowers Theorem. (See [T-V].)

Theorem BSG’. Let A,B be finite sets with |A| ≥ |B| and let G ⊂ A × B with

|G| > K−1|A|2. Denote

A
G
+ B = {a + b : (a, b) ∈ G}.
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If |A G
+ B| < K|A|, then there are subsets A′ ⊂ A, and B′ ⊂ B such that

|A′ + A′|+ |B′ + B′|+ |A′ + B′| < Kc|B|

and

|(A′ ×B′) ∩ G| > K−c|A|2,

where c is an absolute constant.

For the convenience of the readers, we give the deduction of Theorem BSG’ from

the usual statement of the Balog-Szemerédi-Gowers Theorem in the Appendix.

We take G = {(x, y) : y ∈ Λ, x ∈ S∗∩y−1S∗} ⊂ Λ×S∗ in Theorem BSG’. Keeping

in mind that |G| > 10−7q−5ε|S∗| · 10−3q−2ε|S∗|, and |AG. A| ≤ |S∗|, we obtain from

Theorem BSG’ a subset S1 ⊂ S∗ ⊂ S satisfying

|S1| > q−C1ε|S∗| > q−(C1+2)ε|S| (2.23)

|S1.S1| < qC1ε|S1|. (2.24)

Next, we pass to the additive property.

Claim 5.
∑

x1,x2∈S1

φ(x1 − x2) > 10−2q−2εφ(0)|S1|2. (2.25)

Proof of Claim 5. Since S1 ⊂ S, from (2.10), (2.7), and (2b),

q
∑

x∈S1

∑
y

µ(x + y)µ(y) >
1
10

q−εφ(0)|S1|

and hence Cauchy-Schwartz, (2d) and (2.8) imply

∑
y

[ ∑

x∈S1

µ(x + y)
]2

>

(
10−1q−1−εφ(0)|S1|

)2

∑
µ(y)2

= 10−2q−1−2εφ(0)|S1|2. (2.26)
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The left-hand-side of (2.26) is
∑

x1,x2∈S1

∑
y µ(x1 + y)µ(x2 + y), which by (2.7), is

q−1
∑

x1,x2∈S1
φ(x1 − x2). ¤

Define

S′ = {x ∈ R : φ(x) > 10−3q−2εφ(0)}. (2.27)

Then Fact 2.1.1, (2.8), (2.12) and (2.23) imply

|S′| < 103q1+2εφ(0)−1 < 104q3ε|S| < 104q(5+C1)ε|S1|.

Let

G = {(x1,−x2) ∈ S1 × (−S1) : x1 − x2 ∈ S′}.

Then (2.8), Claim 5 and (2.27) imply

|G| φ(0) ≥
∑

(x1,−x2)∈G

φ(x1 − x2)

≥
∑

x1,x2∈S1

φ(x1 − x2)−
∑

(x1,−x2)/∈G

φ(x1 − x2)

> (10−2 − 10−3)q−2εφ(0)|S1|2.

Hence

|G| > 10−3q−2ε|S1|2. (2.28)

Another application of Theorem BSG’ (in additive form) yields S̄ ⊂ S1 satisfying

|S̄| > q−C2ε|S1| (2.29)

|S̄ + S̄| < qC2ε|S̄|. (2.30)

Recalling also (2.23), (2.24), the set S̄ ⊂ R∗ satisfies thus

|S̄| > q−(C1+C2+2)ε|S| (2.31)

|S̄ + S̄| < qC2ε|S̄| (2.32)

|S̄.S̄| < q(C1+C2)ε|S̄|. (2.33)
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Note that (2.32) and (2.33) are (2.3). S̄ satisfies (2.2), because S̄ ⊂ S, and (2.12)

and (2.8) give

|S̄| ≤ |S| < 10
q1+ε

∑ |µ̂(ξ)|2 . (2.34)

For (2.4), by (2e), it suffices to see (µ ∗ µ−)(S̄) > q−Cε. By (2.7), this is the same as

φ(S̄) > q1−Cε. Fact 2.1.1, (2.10), (2.31), and (2.12) give

φ(S̄) >
1
10

q−εφ(0) |S̄| > 1
10

q−εφ(0) · q−(C1+C2+2)ε|S| > q1−(C1+C2+5)ε.

Summarizing, recall assumptions (2.6), (2.15), we showed that if (i) fails, then there

exists S̄ satisfying (2.2)-(2.4). This proves the proposition. ¤

Remark 2.2. The statement of Proposition 2.1 is still true for a commutative ring R

such that (2a)-(2e) hold.

§3. Estimation of the Fourier transform of measures associated to iterated

product sets.

In this section we will prove a technical theorem which relates sum-product theorem

and the exponential sum estimates.

Fact 3.1.1. If
∑

ai = 1, then (
∑

Aiai)r ≤ ∑
Ar

i ai. A special case is (
∑n

i=1 Ai

n )2 ≤
∑

A2
i

n , for A1, · · · , An ∈ R.

Proof. Use Hőlder inequality on
∑

(Aia
1
r
i ) a

r−1
r

i .

Theorem 3.1. Let R =
∏

j Zqj be a commutative ring with |R| = q and let A ⊂ R∗

with |A| = qδ for 0 < δ ≤ 1. Assume there exist 0 < κ0, κ1 < δ
20 such that the following

properties hold

(i.) maxx

∣∣A ∩ (
x + (R\R∗))

∣∣ < q−κ0 |A|.

(ii.) maxx

∣∣A ∩ (x + S)
∣∣ < q−κ0 |A|, whenever S ⊂ R∗ satisfies
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(a.) |S| < q1−κ1 ,

(b.) |S + S|+ |S.S| < qκ0 |S|.

Denote µk the probability measure on R

µk = |A|−k
∑

x1,... ,xk∈A

δx1...xk
, (3.2)

where δz is the Dirac measure at z ∈ R.

Then there is k = k(κ0) and ε = ε(κ0) such that

max
ξ∈R∗

|µ̂k(ξ)| < q−ε. (3.3)

Proof. We again follow essentially [B-G-K].

The following can be checked straightforwardly from (3.2).
(
Use (3a) and Fact 3.1.1

for (3b).
)

(3a.) µ̂k+`(ξ) =
∑

y µ̂k(yξ)µ`(y).

(3b.)
∑

ξ |µ̂k+l(ξ)|s ≤
∑

ξ |µ̂k(ξ)|s, and |µ̂k(ξ)| ≤ 1.

We denote ν−(x) = ν(−x) and ν(r) the r-fold convolution of ν. Then

(3c.) (ν ∗ ν−)(r)(z) =
∑

y1−y2+···−y2r=z ν(y1)ν(y2) · · · ν(y2r).

Define for k ∈ Z+, and ε > 0 the set

Ωk,ε = {ξ ∈ R : |µ̂k(ξ)| > q−ε}. (3.4)

Claim 1. If ξ ∈ Ω2k,ε, then

∑

z,ξ

|µ̂2k(ξ)|4r|µ̂k(zξ)|4r(µk ∗ µ−k )(r)(z) > q−12εr2 |Ω2k,ε|. (3.5)
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Proof of Claim 1. For ξ ∈ Ω2k,ε, (2a) and (3a) imply

∑
x

∣∣ ∑
y
eq(xyξ)µk(y)

∣∣µk(x) > q−ε

and hence for r ∈ Z+, by Fact 3.1.1,

∑
x

∣∣ ∑
y
eq(xyξ)µk(y)

∣∣2r
µk(x) > q−2εr. (3.6)

By (2a) and (3c), the left-hand side of (3.6) equals

∑
y1,... ,y2r

µ̂k

(
(y1 − y2 + · · · − y2r)ξ

)
µk(y1) · · ·µk(y2r) =

∑
z

µ̂k(zξ)(µk ∗ µ−k )(r)(z).

Therefore, by Fact 3.1.1 again,

∑
z

|µ̂k(zξ)|4r(µk ∗ µ−k )(r)(z) > q−8εr2
. (3.7)

The Claim follows from multiplying (3.7) with

|µ̂2k(ξ)|4r > (q−ε)4r > q−4εr2
,

and summing over ξ ∈ Ω2k,ε. ¤

Define δk,r such that
∑

ξ
|µ̂k(ξ)|4r = q1−δk,r . (3.8)

Then

(3d.) δ1,1 > δ,

(3e.) δk,r is an increasing function in both k and r.

In fact, (3d) follows from the following observation

q1−δ1,1 =
∑

|µ̂1(ξ)|4 ≤
∑

|µ̂1(ξ)|2 = q
∑

µ1(x)2 =
q

|A| = q1−δ,
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while (3e) follows from (3b).

We want to apply Proposition 2.1 with

µ =
1
2
[(µk ∗ µ−k )(r) + (µ2k ∗ µ−2k)(r)]. (3.9)

By Fact 3.1.1,

∑
ξ
|µ̂(ξ)|2 =

∑

ξ

( |µ̂k(ξ)|2r + |µ̂2k(ξ)|2r)
2

)2

≤ 1
2

∑
ξ
(|µ̂k(ξ)|4r + |µ̂2k(ξ)|4r). (3.10)

Hence, together with (3b) and (3.8), we have

1
4
q1−δk,r <

∑
|µ̂(ξ)|2 ≤ q1−δk,r . (3.11)

Claim 2. Alternatives 2.1.(ii) and 2.1.(iii) in Proposition 2.1 cannot hold under

assumptions 3.1.(i) and 3.1.(ii), if

Cκ = κ0. (3.12)

and

δk,r < 1− δ

10
(3.13)

Proof of Claim 2. First, it is clear that (3.13) and the assumption that κ0, κ1 < δ
20

imply

κ0 < 1− κ1 − δk,r. (3.14)

Then (3.14) and (3.12) imply

κ < κ0 < 1− κ1 − δk,r. (3.15)

Next we observe that by (2e), if S ⊂ R, and µ is introduced as in (3.9), then

µ(S) ≤ 1
2

max
x∈R

(µk + µ2k)(x + S)

≤ max
x∈R,y∈R∗

µ1(x + yS). (3.16)
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Note that y(R\R∗) = R\R∗. Also, if S satisfies ( 2.2) and ( 2.3), so does yS. In order

to rule out 2.1.(ii), and (2.4) in 2.1.(iii), we need thus to assume

max
x∈R

µ1

(
x + (R\R∗)) = max

x∈R

A ∩ (x + (R\R∗)|
|A| < cq−2κ (3.17)

and

max
x∈R

µ1(x + S) = max
x∈R

A ∩ (x + S)|
|A| < q−Cκ (3.18)

whenever S ⊂ R∗ satisfies

|S| <
( ∑

|µ̂(ξ)|2
)−1

10q1+ε <
(1
4
q1−δk,r

)−110q1+κ < qκ+δk,r (3.19)

and

|S + S|+ |S.S| < qCκ|S|. (3.20)

(The equalities in (3.17) and (3.18) are by the definition of µ1.)

(3.17) holds because of (3.12) and 3.1.(i). For S ⊂ R∗ satisfies (3.19) and (3.20),

(3.15) and (3.12) imply that S satisfies 3.1.(ii)(a) and 3.1.(ii)(b). Therefore, (3.18)

holds because of assumption 3.1.(ii). ¤

Claim 3. Assuming (3.12) and (3.13), we take ε = κ
100r2 , and let

r̄ =
[
1
ε

]
. (3.21)

Then

δ2k,r̄ > δk,r +
κ

4
. (3.22)

Proof of Claim 3. Under the assumptions, Claims 1, 2, Proposition 2.1 and (3.10)

imply

q−κ
∑

|µ̂(ξ)|2 >
∑

|µ̂(ξ)|2|µ̂(yξ)|2µ(y) > 2−5q−12εr2 |Ω2k,ε|. (3.23)

By (3.11), this is

|Ω2k,ε| < 25q1−δk,r−κ+12εr2
. (3.24)
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With ε as chosen, for q large, we have

|Ω2k,ε| < q1−δk,r−κ
2 (3.25)

Let r̄ be as in (3.21). Then

q1−δ2k,r̄ =
∑

ξ

|µ̂2k(ξ)|4r̄ ≤
∑

ξ

|µ̂2k(ξ)|2r̄

=
∑

ξ∈Ω2k,ε

+
∑

ξ/∈Ω2k,ε

≤ |Ω2k,ε|+ q · q−ε·2r̄ < q1−δk,r−κ
4 . ¤

Returning to conditions (3.12), (3.13) and assumptions 3.1.(i), 3.1.(ii) assume thus

δ2k,r̄ > δk,r + c̄κ0 (3.26)

with

r̄ < C̄
r2

κ0
. (3.27)

Starting from k = 1, r = 1, assuming δ1,1 < 1− δ
10 , we perform an iteration based on

(3.26), (3.27), until

δ2s′ ,rs′
> 1− δ

10
. (3.28)

We obtain

δ2s,rs > δ2s−1,rs−1 + c̄κ0 (3.29)

rs < C̄
r2
s−1

κ0
. (3.30)

Hence,

δ2s,rs > δ2s−1,rs−1 + c̄κ0 > c̄sκ0 (3.31)

rs < C̄
r2
s−1

κ0
<

(
C̄

κ0

)2s

(3.32)

s′ < C̄κ−1
0 (3.33)

rs′ < exp exp
C̄

κ0
. (3.34)
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Denoting k′ = 2s′ , r′ = rs′ , we obtained that

∑

ξ

|µ̂k′(ξ)|4r′ < qδ/10. (3.35)

It follows from (3a), Fact 3.1.1, and (3b), that for all ξ0 ∈ R∗ and k > k′,

|µ̂k(ξ0)|4r′ ≤ 1
|A|

∑

x∈A

|µ̂k−1(xξ0)|4r′

≤ 1
|A|

∑

ξ

|µ̂k−1(ξ)|4r′

≤ q−δ
∑

ξ

|µ̂k′(ξ)|4r′ < q−
9
10 δ. (3.36)

Hence

|µ̂k(ξ0)| < q−ε.

with

k < exp C̄/κ0 (3.37)

ε =
δ

5r′
>

(
exp exp

C̄

κ0

)−1

. (3.38)

This proves the theorem. ¤

Define for k ∈ Z+

Sk(ξ, A) =
∑

x1,... ,xk∈A

eq(x1 . . . xkξ). (3.39)

Thus

|A|−k Sk(ξ,A) = µ̂k(ξ)

We conclude
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Theorem 3.2. Let R =
∏

j Zqj
be a commutative ring with |R| = q and let A ⊂ R∗

with |A| = qδ for 0 < δ ≤ 1. Assume there exist 0 < κ0, κ1 < δ
20 such that the following

properties hold

(i.) maxx

∣∣A ∩ (
x + (R\R∗))

∣∣ < q−κ0 |A|.

(ii.) maxx

∣∣A ∩ (x + S)
∣∣ < q−κ0 |A|, whenever S ⊂ R∗ satisfies

(a.) |S| < q1−κ1 ,

(b.) |S + S|+ |S.S| < qκ0 |S|.

Then there is k = k(κ0) and ε = ε(κ0) such that

max
ξ∈R∗

|Sk(ξ,A)| < |A|kq−ε. (3.40)

§4. Exponential sum estimates on Zq and Heilbronn type sums.

Let q =
∏β

α=1 pνα
α ∈ Z+. We say q has few prime factors, if

∑
α≤β να < C0 for some

constant C0.

We will use Theorem 1.12 which characterize subsets of Zq with small sum product

set.

Observe also that Zq\Z∗q =
⋃

α π−1
pα

(0).

Theorem 4.1. Let q ∈ Z+ have few prime factors and A ⊂ Zq, |A| = qδ. Assume

max
p|q,t∈Zp

|A ∩ π−1
p (t)| < q−γ |A| (4.1)

with 0 < γ < δ
25 .

Then for k > k(γ), ε = ε(γ)

max
ξ∈Z∗q

|Sk(ξ, A)| < |A|kq−ε. (4.2)
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Proof. We will use Theorem 3.2. Assume 3.2.(i) fails. Since the number of prime

factors is bounded by C0, there is p|q such that (4.1) fails. Assume 3.2.(ii) fails.

Namely, there exists S ⊂ R∗ satisfying 3.2.(ii) (a) and (b), and

max
x

∣∣A ∩ (x + S)
∣∣ > q−κ0 |A|. (4.3)

Theorem 1.12 and 3.2.(ii)(a), (b) imply that

|πpα
(S)| < qκ′0 for some α, (4.4)

and κ′0 = κ′0(κ0).

Hence (4.3) and (4.4) give

max
t,α

|A ∩ π−1
pα

(t)| > q−κ0−κ′0 |A|. (4.5)

Take κ0 such that

κ0 + κ′0 < γ (4.6)

and κ1 = κ′0 < δ
50 . Then, by (4.1), Theorem 3.2(ii) will hold and Theorem 3.2 applies.

¤

The following Corollary is immediate.

Corollary 4.2. Let q ∈ Z+ have few prime factors, and let H < Z∗q be a subgroup

with |H| = qδ and

min
p|q

|πp(H)| > qδ′ . (4.7)

Then

max
ξ∈Z∗q

∣∣∣∣
∑

x∈H

eq(ξx)
∣∣∣∣ < |H|q−ε (4.8)

with ε = ε(δ′).
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Indeed, if p|q and Hp := πp(H) < Z∗p, then

|(πp|H)−1(t)| = |H|
|Hp| (4.9)

for all t ∈ Hp and we may take γ = δ′ in (4.1). Also,

Sk(ξ, H) = |H|k−1
∑

x∈H

eq(xξ).

Of course, (4.7) already presumes that log p ∼ log q, if p|q.

Considering in particular Gauss sums, we get:

Corollary 4.3. Let q =
∏

α pνα
α have few prime factors and k ∈ Zq satisfy

(k, pα − 1) < (pα − 1)q−δ for all α, for some δ. (4.10)

Then

max
ξ∈Z∗q

∣∣∣∣
q−1∑
x=0

eq(ξxk)
∣∣∣∣ < q1−δ′ (4.11)

where δ′ = δ′(δ, C0).

Proof. First we note that (4.10) implies pα > qδ for all α.

Consider first x ∈ Zq\Z∗q . Thus the contribution to the exponential sum is at most

|Zq\Z∗q | =
β∏

α=1

pνα
α −

β∏
α=1

(pα − 1)pνα−1
α < q

( β∑
α=1

1
pα

)
< βq1−δ. (4.12)

The last inequality is because of (4.10).

For p|q, let

H = {xk : x ∈ Z∗q} < Z∗q .

Since πp(H) = {xk : x ∈ Z∗p}, (4.10) implies

|πp(H)| = p− 1
(k, p− 1)

> qδ.
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Corollary 4.2 gives ∣∣∣∣
∑

y∈H

eq(ξy)
∣∣∣∣ < |H|q−ε(δ). (4.13)

Hence
∣∣ ∑

x∈Z∗q
eq(ξxk)

∣∣ =
|Z∗q |
|H|

∣∣ ∑

y∈H

eq(ξy)
∣∣ <

q

|H| |H|q
−ε(δ) = q1−ε(δ) (4.14)

Putting together (4.12) and (4.14), we see that the left-hand side of (4.11) is bounded

by βq1−δ + q1−ε(δ). ¤

A particular application of Corollary 4.3 with q = p2 is Heilbronn’s exponential sum

p∑
x=1

ep2(ξxp). (4.15)

A nontrivial bound on (4.15) was first established in [H-B] and later improved in

[H-B-K] (both arguments are based on Stepanov’s method). We apply Corollary 4.3

with k = p and observe that for x, y ∈ Z

(x + py)p ≡ xp (mod p2)

and hence it suffices in (4.11) to consider the restricted sum (4.15).

More generally, we may take k = pm−1, q = pm (where m < C0), and note that

pm∑
x=1

epm(ξxpm−1
) = pm−1

p∑
x=1

epm(ξxpm−1
)

Applying Corollary 4.3, we get (cf. [O]):

Corollary 4.4.

max
(ξ,p)=1

∣∣
p∑

x=1

epm(ξxpm−1
)
∣∣ < p1−δm (4.16)

for some δm > 0 and p large enough.
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Theorem 4.1 applies to more general structures and we get in particular bounds on

sums of the form
t∑

s=1

eq(aθs)

with θ ∈ Z∗q (cf. [B-G-K], [B]). Considering condition (4.1) with

A = {θs : s = 1, . . . , t} ⊂ Z∗q .

Clearly for p|q,
πp(θs) = πp(θs′)

if and only if

ordp(θ)| (s− s′),

where ordp(θ) denotes the multiplicative order of θ mod p. Therefore,

|πp(A)| ≥ min{t, ordp(θ)}, (4.17)

and we have

Corollary 4.5. Let q =
∏

α pνα
α have few prime factors, and θ ∈ Z∗q such that

ordp(θ) > qδ for all p|q. (4.18)

Then, for t > qδ

max
ξ∈Z∗q

∣∣∣∣
t∑

s=1

eq(ξθs)
∣∣∣∣ < t1−ε. (4.19)

Proof. The assumptions and (4.17) imply

|πp(A)| > qδ. (4.20)

Since the elements of A are distributed evenly among the fibers of πp, (4.20) implies

inequality (4.1). The corollary follows from Theorem 4.1. ¤
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Remark 4.6. In (4.8) (see Corollary 4.2) and (4.11) (see Corollary 4.3), one may

take ξ ∈ Zq \ {0}. In fact, the assumption in Corollary 4.2 obviously carries over to

πq′(H) < Z∗q′ for any nontrivial divisor q′ of q.

Corollary 4.2 may actually be formulated in the stronger form.

Theorem 4.7. Let q ∈ Z+ have few prime factors and let H < Z∗q satisfy |H| = qδ.

Then

max
ξ∈Z∗q

∣∣∣∣
∑

x∈H

eq(ξx)
∣∣∣∣ < q−ε|H|. (4.21)

where ε > 0 depends on the numbers of prime factors of q and δ > 0 only.

Similarly in Corollary 4.3, it suffices to assume that

(
k, φ(q)

)
< q−δφ(q), (4.22)

where φ(q) =
∏

α pνα−1
α (pα − 1), and in Corollary 4.5 that ordq(θ) > qδ, provided we

take t = ordq(θ) in (4.19).

Note that for incomplete sums, i.e. t < ordq(θ) in Corollary 4.5, the stronger

assumption (4.18) is still necessary. As an example, take

q = p2, and θ = 1 + p.

Then ordq(θ) = p but letting t = [ p
10 ],

∣∣∣∣
t∑

s=1

ep2(θs)
∣∣∣∣ =

∣∣∣∣
t∑

s=1

ep(s)
∣∣∣∣ ∼ t. (4.23)

Proof of Theorem 4.7.

Let q =
∏

α∈I pνα
α with να ≥ 1 and denote q′ =

∏
α∈I pα.
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Claim. If πq′ |H is not one-to-one. then

∑

x∈H

eq(ξx) = 0 for all ξ ∈ Z∗q . (4.24)

Proof of Claim. Under the assumption, there is a nontrivial subgroup H ′ of H such

that πq′(H ′) = {1}. Since Z∗q '
∏

(Zpνα−1
α

× Zpα−1), H ′ has to be a subgroup of
∏

να≥2 Zpνα−1
α

. Therefore there is a further nontrivial subgroup H ′′ of H ′ of order pα

for some α ∈ I, with να ≥ 2. Hence H ′′ is of the form

H ′′ =
{

1 + y
q

pα
: y = 0, 1, · · · , pα − 1

}
(4.25)

and for ξ ∈ Z∗q , we have

∣∣∣∣
∑

x∈H′′
eq(ξx)

∣∣∣∣ =
∣∣∣∣

pα−1∑
y=0

epα(yξ)
∣∣∣∣ = 0.

Now the claim follows from partitioning H in H ′′-cosets.

Therefore, we may assume that πq′ |H is one-to-one.

Suppose thus |H| = |πq′(H)|. Define

τ =
δ

10 |I| . (4.26)

We make the following construction.

If |πpα(H)| > qτ for all α ∈ I, we apply Corollary 4.2 with δ′ = τ .

Therefore, we further assume that there exists α1 ∈ I with |πpα1
(H)| ≤ qτ and

define

H1 = {x ∈ H : πpα1
(x) = 1} < H

for which

|H1| ≥ q−τ |H| > qδ−τ > q
δ
2 . (4.27)
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Assume further that

|πpα
(H1)| > qτ for all α ∈ I \ {α1}. (4.28)

At this stage, application of Corollary 4.2 is not immediate and requires some extra

work. For ξ ∈ Z∗q , assume

∣∣∣∣
∑

x1∈H1

eq(ξx1)
∣∣∣∣ > q−κ |H1|. (4.29)

Squaring (4.29) gives
∣∣∣∣

∑

x1,y1∈H1

eq

(
ξ(x1 − y1)

)∣∣∣∣ > q−2κ |H1|2. (4.30)

Since H1 is a group, the sum remains preserved if we replace ξ by ξz, with z ∈ H1.

Therefore,

∑

x1,y1∈H1

eq

(
ξ(x1 − y1)

)
=

1
|H1|

∑

x1,x2,y1∈H1

eq

(
ξ(x1 − y1)x2

)
,

and from (4.30)

∑

x1,y1∈H1

∣∣ ∑

x2∈H1

eq

(
ξ(x1 − y1)x2

)∣∣ > q−2κ |H1|3. (4.31)

By Cauchy-Schwartz inequality,

∑

x1,y1,x2,y2∈H1

eq

(
ξ(x1 − y1)(x2 − y2)

)
=

∑

x1,y1∈H1

∣∣ ∑

x2∈H1

eq

(
ξ(x1 − y1)x2

)∣∣ > q−4κ|H1|4.

(4.32)

Iterating, we see that

∣∣∣∣
∑

xi,yi,z∈H1

eq

(
ξ

ν∏

i−1

(xi − yi)z
)∣∣∣∣ > q−2νκ|H1|2ν+1, (4.33)
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where we take ν = να1 .

For any choice of xi, yi ∈ H1, let x = (x1, · · · , xν), y = (y1, · · · , yν), and let

ξx,y = ξ

ν∏

i=1

(xi − yi), (4.34)

Note that since xi − yi = 0 (mod pα1), necessarily

ξx,y = 0 (mod p
να1
α1 ).

Fixing xi, yi ∈ H1, we denote

q1 =
q

p
να1
α1

, and ξ′x,y =
ξx,y

p
να1
α1

.

The x-sum in (4.33) becomes

∑

z∈H1

eq(ξx,y z) =
∑

z∈H1

eq1(ξ
′
x,y z) =

|H1|
|πq1(H1)|

∑

z∈πq1 (H1)

eq1(ξ
′
x,y z). (4.35)

Since by assumption πq1(H1) < Z∗q1
satisfies the conditions of Corollary 4.2 (with

δ′ = τ), we get for some ε = ε(τ) and for those ξ′x,y ∈ Z∗q1
,

∣∣∣∣
∑

z∈πq1 (H1)

eq1(ξ
′
x,y z)

∣∣∣∣ < q−ε
1 |πq1(H1)|.

Hence, by (4.35) ∣∣∣∣
∑

z∈H1

eq(ξx,yz)
∣∣∣∣ < q−ε

1 |H1|. (4.36)

For those x = (x1, · · · , xν), y = (y1, · · · , yν) such that ξ′x,y = 0 /∈ Z∗q1
, necessarily

xi = yi (mod pα) for some i = 1, · · · , ν and some α ∈ I \ {α1}. Therefore, by (4.27)

and (4.28), the left-hand-side of (4.33) is clearly bounded by

q−ε
1 |H1|2ν+1 + c q−τ |H1|2ν+1 < |H1|2ν+1−ε < q−

εδ
2 |H1|2ν+1. (4.37)
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By (4.33), this shows that in (4.33)

κ >
εδ

4να1

. (4.38)

Namely, if we choose κ ≤ εδ
4να1

, then |∑z∈H1
eq(ξz)| < q−κ|H1|.

Again, partitioning H in H1-cosets shows that
∣∣∣∣
∑

z∈H

eq(ξz)
∣∣∣∣ < q−κ|H| (4.39)

under the assumption (4.28).

If (4.28) fails, there is again α2 ∈ I \ {α1} such that |πpα2
(H1)| < qτ .

Define

H2 = {x ∈ H : πpα1
(x) = πpα2

(x) = 1} < H1

for which

|H2| ≥ q−τ |H1| ≥ q−2τ |H|. (4.40)

If |πpα(H2)| > qτ for all α ∈ I \ {α1, α2}, the previous considerations permit again

to establish (4.39). Otherwise, we repeat the process, and obtain subgroups

H > H1 > · · · > Hs (with s ≤ |I|)

satisfying

|Hs| > q−sτ |H| > qδ−|I|τ > q
δ
2 (4.41)

and πpα1
(Hs) = · · · = πpαs

(Hs) = {1}.

If the process only terminates at s = |I|, necessarily πq′(Hs) = {1}. Therefore, by

(4.41) πq′ |Hs and πq′ |H are not one-to-one and (4.24) holds.

Remark 4.8. It is shown in [B3] that Theorem 4.7 holds for H < Z∗q , |H| > qδ and q

arbitrary, with ε in (4.21) only dependent on δ. This argument is considerably more

complicated.
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§5. The case of a typical modulus.

The results from §3 do allow us to treat more general moduli. For instance, the

following extension holds

There following two facts will be used in the proof of Theorem 5.1 and are easy to

check.

Fact 5.1.1. If
∑

x f(x) = 1, then
( ∑

ξ f̂(ξ)
)2 ≤ ∑

ξ1,ξ2
f̂(ξ1 − ξ2).

Fact 5.1.2. |H|−2r
∑

xi∈H f(x1 − x2 + · · · − x2r) =
∑

y f(y)(µ ∗ µ−)(r)(y).

Theorem 5.1. Let q ∈ Z+ and H < Z∗q be a subgroup. Assume q factorizes as

q = q1 · q2, where q1 is a product of a bounded number of large prime factors (as in

§4), thus

q1 = pν1
1 · · · pνr

r with ps > qε0 for all 1 ≤ s ≤ r (5.1)

and

q2 < q
1
2−ε0 . (5.2)

Assume further that

|πp(H)| > qε1 for all primes p|q1. (5.3)

Then

max
ξ∈Z∗q

∣∣∣∣
∑

x∈H

eq(ξx)
∣∣∣∣ < C|H|q−δ with δ = δ(ε1) > 0. (5.4)

Proof. Recall that, as in (3.39),
∑

x∈H eq(ξx) = S1(ξ,H) = |H| µ̂1(ξ). Hence we

denote

µ = µ1 =
1
|H|

∑

z∈H

δz

and assume on the contrary that there exists ξ ∈ Z∗q such that

|µ̂(ξ)| > q−δ (5.5)
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We repeat an argument from [B2].

Fix a positive integer r ∈ Z+ to be specified later.

Let

φ = (µ ∗ µ−)(r) (5.6)

Claim. φ(0) > q−
1
2−4r2δ.

Proof of Claim. Since µ(x−1z) = µ(z) for x ∈ H, we have µ̂(ξ) = µ̂(xξ). Hence, by

(5.5)
∑

x∈H

(̂φ ∗ φ)(xξ) =
∑

x∈H

|µ̂(xξ)|4r > |H| q−4rδ.

Fact 5.1.1 implies
∑

x1,x2∈H

φ̂ ∗ φ
(
(x1 − x2)ξ

)
> |H|2q−8rδ.

Repeating Fact 5.1.1 log r
log 2 times (assuming r a power of 2), we have

∑

x1,x2,... ,x2r∈H

φ̂ ∗ φ
(
(x1 − x2 + · · · − x2r)ξ

)
> |H|2rq−8r2δ.

By Fact 5.1.2, after being divided by |H|2r, this is

∑
y

φ̂ ∗ φ (yξ) (µ ∗ µ−)(r)(y) > q−8r2δ. (5.7)

Since φ(y) ≤ φ(0), the left size of (5.7) is clearly bounded above by

φ(0)
∑

ζ∈Zq

|φ̂(ζ)|2 = q φ(0)
∑

x∈Zq

φ(x)2 ≤ q φ(0)2
∑

x

φ(x) = q φ(0)2. ¤ (5.8)

From (5.6) and (3c), we have

φ(0) = |H|−2r|{x1, x2, . . . , x2r) ∈ H2r : x1 − x2 · · · − x2r = 0 (mod q)}|. (5.9)
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Let π1 : Zq → Zq1 be the quotient map to the residues mod q1 and H1 = π1(H) < Z∗q1
.

(5.9) gives

φ(0) ≤ |H1|−2r|{(x1, . . . , x2r) ∈ H2r
1 : x1 − x2 · · · − x2r = 0 ( mod q1)}|

=
|H1|−2r

q1

∑

η∈Zq1

∣∣∣∣
∑

x∈H1

eq1(ηx)
∣∣∣∣
2r

=
1
q1

+
1
q1

∑

η∈Zq1\{0}

∣∣∣∣
1
|H1|

∑

x∈H1

eq1(ηx)
∣∣∣∣
2r

. (5.10)

To estimate the second term in (5.10), we apply Corollary 4.2 to the subgroup H1/Z∗q1
.

The required assumptions hold by (5.1), (5.3). Hence, by (4.8),

max
(η,q1)=1

∣∣∣∣
∑

x∈H1

eq1(ηx)
∣∣∣∣ < |H1|.q−δ1

1 (5.11)

for some δ1 > 0.

Since obviously (5.1), (5.3) still hold for any divisor q′1 > 1 of q1, also

max
η∈Zq1\{0}

∣∣∣∣
∑

x∈H1

eq1(ηx)
∣∣∣∣ < |H1|q−δ1

1 . (5.12)

Substitution in (5.10) implies

q−
1
2−4r2δ <

1
q1

+
1
q1

(q1 − 1)q−rδ1 <
2
q1

< 2q−
1
2−ε0 (5.13)

by (6.9), (5.2) and choosing r = [ 2
δ1

].

Taking δ small enough in (5.4), a contradiction follows. This proves Theorem 5.1.¤

It is a well known elementary fact (see e.g. [H-Ro], Lemma 7, p264) that if we

denote

Zε = {q ∈ Z+ : q = q1.q2 with q1 > q3/4 and p > qε for any factor p of q1}, (5.14)

then density Zε
ε→0→ 1.

The precise statement of the result in [H-Ro] will be recalled at the end of this

section.

In particular, Theorem 5.1 applies to ‘most’ moduli q.
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Corollary 5.2. Fix θ ∈ Z, θ > 1. For q ∈ Z+, (θ, q) = 1, denote t = 0q(θ) the

multiplicative order of θ ∈ Z∗q . Then the estimate

max
a∈Z∗q

∣∣∣∣
t∑

s=1

eq(aθs)
∣∣∣∣ < t1−δ (5.15)

holds for ‘most’ moduli q, when δ → 0.

Proof. Condition (5.3) amounts to ordp(θ) > pτ > qετ for all p|q1 with q = q1q2 as

in (5.14). Here τ > 0 may be taken an arbitrary constant and in (5.3) we let then

ε1 = ετ . First, recall that θ is fixed. We have

|{p ≤ P: ordp(θ) ≤ pτ} ≤
∑

n≤Pτ

|{p : p|(θn−1) and p is prime }| < c(θ)
∑

n≤Pτ

n < c(θ)P2τ .

Fix τ < 1
2 and estimate

|{q: Q < q < 2Q, q has a prime divisor p > Qε such that ordp(θ) < pτ}|,

which is

≤
∑

Qε<2k<Q

∑

p∼2k,ordp(θ)<pτ

Q

p
< c

∑

Qε<2k<Q

Q

2k
4τk < Q1−(1−2τ)ε

implying in particular that the set of residues q with a prime divisor p > qε such that

ordp(θ) < pτ has density 0.

A similar statement may be formulated for incomplete sums in the spirit of Corollary

4.5.

For the convenience of the readers, let us formulate Lemma 7, p264 in [H-Ro].

Lemma 5.3. Fix τ > 0 a small number and decompose every integer 0 < n ≤ T as

product n = n(1).n(2) where n(1) (respectively, n(2)) is composed only of prime factors

p ≤ T τ2
(resp. p > T τ2

). Then

k = |{0 < n ≤ T : n(1) > T τ}| < CτT. (5.15)
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It is easily derived that the set Zε defined in (5.14) has asymptotic density at most
√

2.
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Appendix: On the Balog-Szemerédi-Gowers Theorem

In this appendix we will prove Theorem BSG’ as stated after the proof of Claim 4

in Section 2.

(1). Let us first recall the usual Balog-Szemerédi-Gowers theorem

There is a constant C1 such that for any finite set A, if |A| ≤ N , and G ⊂ A×A with

|G| > 1
K

N2 (1.1)

|A +
G

A| < KN. (1.2)

Then there is A′ ⊂ A with

|A′| > K−C1N (1.3)

|A′ + A′| < KC1N. (1.4)

(2). Proof of Theorem BSG’.

Assume |A|, |B| ≤ N , G ⊂ A×B with

|G| > 4
K

N2 (2.1)

|A +
G

B|<2KN. (2.2)

Apply (1) considering G ⊂ (A ∪ B) × (A ∪ B). We obtain either a subset A′0 ⊂
A satisfying (1.3), (1.4) or a subset B′

0 ⊂ B satisfying (1.3), (1.4). Assume first

alternative.
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Write

G =
(G ∩ (A′0 ×B)

) ∪ (G ∩ (
(A\A′0)×B

))
= G′ ∪ G1.

Either |G′| > δ|G| or |G1| > (1− δ)|G| (δ to be specified).

Assume |G1| > (1− δ)|G|. Apply again (1) with G1 ⊂
(
(A\A′)∪B

)× (
(A\A′)∪B

)
.

Denote A1 = A\A′0, B1 = B. We obtain either A′1 ⊂ A1 or B′
1 ⊂ B1 satisfying

(1.3), (1.4) with K replaced by K
1−δ and a decomposition of G1 = G′1 ∪ G2. As-

suming again |G2| > (1 − δ)|G1|, repeat with G2, etc. Observe that |A1| |B1| <

(1−K−C1)N2, |A2| |B2| < (1− ( K
1−δ )−C1)|A1| |B1| and after s steps

|As| |Bs| <
(
1−

( (1− δ)s

K

)C1
)
· · ·

(
1−

(1− δ

K

)C1
)(

1− 1
KC1

)
N2

<
[
1−

( (1− δ)s

K

)C1
]s

N2.

Also, |Gs| > (1− δ)|Gs−1| > (1− δ)s|G| > (1− δ)s 1
K N2 and since Gs ⊂ As ×Bs

(1− δ)s 1
K

<
[
1−

( (1− δ)s

K

)C1
]s

. (2.3)

Take

δ = K−2C1 (2.4)

so that for s < K2C1 , (2.3) gives that

1
10K

<
(
1− 1

(10K)C1

)s

or

− log K − log 10 < s log
(
1− 1

(10K)C1

)
< −s

1
(10K)C1

and in fact s is restricted to

s < (log K)(10K)C1 < (10K)C1+1 (2.5)
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We have therefore shown that there is s < (10K)C1+1 such that |G′s| > δ|Gs|, hence

either A′ = As ⊂ A satisfying

|A′ + A′| < 2KC1N (2.6)

and

|G ∩ (A′ ×B)| > δ(1− δ)s|G| (2.4),(2.5)
> 2K−2C1−1N2 (2.7)

or B′ ⊂ B such that

|B′ + B′| < 2KC1N (2.8)

and

|G ∩ (A×B′)| > 2K−2C1N2. (2.9)

Assume (2.6), (2.7). From (2.7), notice that obviously

|A′| > 2K−2C1−1N. (2.10)

Next, for z ∈ A +
G

B, denote

Oz = {(x, y) ∈ G ∩ (A′ ×B)|x + y = z}

so that

|G ∩ (A×B′)| ≤
∑

z∈A′+
G

B

|Oz|

≤ |A′ +
G

B|1/2
( ∑

z∈A′+
G

B

|Oz|2
)1/2

and by (2.7), (1.2)

∑

z∈A′+
G

B

|Oz|2 > 4K−4C1−2N4K−1N−1 > K−5C1N3. (2.11)
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Recalling the definition of Oz, (2.11) means that

|{(x1, y1, x2, y2) ∈ A′×B×A′×B|(x1, y1) ∈ G, (x2, y2) ∈ G and x1+y1 = x2+y2}| > K−5C1N3.

(2.11)

By Fubini, we may therefore find some y2 = b ∈ B such that

|{(x1, y1) ∈ (A′ ×B) ∩ G|x1 + y1 ∈ A′ + b}| > K−5C1N2. (2.12)

Denote B′ ⊂ B the projection of this set to the y1-coordinate. Then

|(A′ ×B′) ∩ G| > K−5C1N2 (2.13)

and also

B ⊂ A′ −A′ + b. (2.14)

From (2.6) and Ruzsa’s inequality

|A′ + B′| ≤ |A′ + A′ −A′| < K3C1N. (2.15)
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of P. Erdős, II. (R.L. Grham, J. Nesetril, eds.), Springer, Algorithms Combin. 14
(1997), 294-302.

[N]. M.B. Nathanson, Additive Number Theory: Inverse Problems and the Geometry
of Sumsets, Springer (1996)..

[O]. R. Odoni, Trigonometric sums of Heilbronn’s type, Math. Proc. Comb. Phil. Soc.
(1985), 98, 389–396.

[S]. J. Solymosi, On the number of sums and products,, (preprint) (2003).

[T-V]. T. Tao, V. Vu, Additive Combinatorics (preprint).

56


