ON SUM-PRODUCT REPRESENTATIONS IN Z,

MEI-CHU CHANG

Abstract The purpose of this paper is to investigate efficient representations of the
residue classes modulo ¢, by performing sum and product set operations starting
from a given subset A of Z,. We consider the case of very small sets A and composite
g for which not much seemed known (nontrivial results were recently obtained
when ¢ is prime or when log|A| ~ logq). Roughly speaking we show that all
residue classes are obtained from a k-fold sum of an r-fold product set of A, where
r < log ¢ and log k < log ¢, provided the residue sets m, (A) are large for all large
divisors ¢’ of q. Even in the special case of prime modulus ¢, some results are
new, when considering large but bounded sets A. It follows for instance from our
estimates that one can obtain r as small as r ~ 1(1‘;% with similar restriction on &,
something not covered by earlier work of Konyagin and Shparlinski(see KS). On the
technical side, essential use is made of Freiman’s structural theorem on sets with
small doubling constant. Taking for A = H a possibly very small multiplicative
subgroup, bounds on exponential sums and lower bounds on min,ez;: maxyen I % I
are obtained. This is an extension to the results obtained by Konyagin, Shparlinski
and Robinson on the distribution of solutions of ™ = a (mod ¢) to composite
modulus gq.

0. Introduction

In this paper, we consider the following problem. Consider a subset H C Zj
(¢ € N arbitrary) such that |m,(H)| > 1 for all prime divisors p|g. Let kH be
the k-fold sum set, and H" the r-fold product set of H. Then kH = Z, for some
k € N. One may for instance take k = ¢ (see proof of Theorem 2). Assume now
we allow both addition and multiplication and seek for a representation Z, = kH",
how small may we take k and r? In this context, we show the following:

Theorem A. There is a function k' = k/'(k, M) such that K" — 0 if k — 0, M — o0
with the following property.

Let g € N be odd and H C Zy, such that

\mp(H)| > 1 for all prime divisors p of q (0.1)

|my (H)| > M for all divisors ¢'|q,q" > q" (0.2)
Then /

Zq = kH" with k < ¢" and r < £'logq. (0.3)
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(This will be proved in §6).

The main motivation for this work comes from a recent line of reseach in combi-

natorial number theory and its applications to exponential sums in finite fields and
residue classes. (cf [BKT], [BGK], [BC],[B].)

If we consider in particular a subset A C F,, p prime, such that |A| > p° for
some fixed (and arbitrary) e > 0, then kA* = F,, provided k > k() and also

(g;&)mil | Z eplazy .. :)sk)! < p~ 0 |4l

T1,...,xxEA

for some §(¢) > 0. This and related estimates had very significant application to
the theory of Gauss sums and various issues related to pseudo-randomness (see [B],
[BKSSW], [BIW] for instance). One of the main shortcomings of the results that are
presently available is the break-down of the method, starting from the sum-product
theorem in [BKT], if we let ¢ = €(p) be small. The boundary of the assumption
here is € 2 m, which is likely much stronger than necessary for such results to
hold. More precisely, letting H < Fj, one could expect an equidistribution result
of the form

max | Z ep(ax)‘ < o(|H|) (*)

(a,p):l

to hold whenever log |H| > loglogp, which at this stage we can only establish if
log |H| > (101& (see [BGK]).

g log p)¢

It became apparently clear that the underlying ideas as developed in [BKT],
[BGK] are insufficient to reach this goal (in particular they seem unable to produce
a result such as the theorem stated above). Our purpose here is to explore the
use of Freiman’s Theorem in sum-product problems which was not used in [BKT]).
Freiman’s Theorem (see [N] for instance) is one of the deepest result in additive
number theory, providing a very specific description of subsets A of a torsion-free
Abelian group with small sumset, i.e. |24| = |A+ A| < K|A|, with K not too large.

The results of this paper are new and based on a new approach. They do
not provide the answers to the primary questions we are interested in, such as
understanding when (*) holds, but bring new techniques into play through related
and more modest aims.

Our bound in (0.3) is essentially optimal. Consider a composite ¢ = p1pa, where
p1 and po are prime. Let p; =~ %q". Define

H:{1,9}+p1{0,1, ,pg—l}

where 6 is of multiplicative order 2 (mod p;). Hence H C Z;. Obviously (0.1), (0.2)
hold. Since

EH" =kH C{x+yb :z,ye Nyo+y =k} +p1{0,1,... ,po — 1}
(0.3) requires k > p; ~ %q“, hence k' > k.
The argument used to prove Theorem A has the following interesting consequence

for subsets A C Zj, p prime.
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Theorem B. Given K > 1, there is K' = K'(K) — o0, as K — oo such that the
following holds:

Let § € Z, be such that 6 is not a root of any polynomial in Z,[x] of degree
at most K and coefficients bounded by K (as integers). Then, if A C Z, is an

arbitrary set and K < |A| < £, we have

|A+0A| > K'|A|.
Remark. For a similar result over characteristic 0, by Konyagin and Laba, see

KL].

Returning to exponential sums with prime modulus (see (6.20)), we do obtain
the following extension for composite modulus

Theorem C. Let H <Z; (q arbitrary) and assume |[H| > M > 1. Then

Z eq(ax)

reH

max < |H| — cq— D) (0.4)

(a,q)=1

where §(M) — 0 for M — oo (independently of q).

This theorem will be proved in §8.

In the proof, two cases are distinguished. If H contains an element 6 of large
multiplicative order, it turns out that one may proceed by a slight modification of
the proof of (6.20). (Theorem 4.2 in [KS]| for ¢ prime.) If all elements of H are of
low order, we use the sum-product type results developed earlier in the paper.

In the case ¢ is a prime, Theorem A and Theorem C may be gotten by combining
a theorem by Konyagin and a theorem in the book by Konyagin and Shparlinski
[KS], except that the bound on r is slightly weaker. (See Remark 6.2.) Konyagin’s
theorem uses deep results in algebraic number theory such as Lehmer’s Conjecture
on the heights of algebraic integers which are not roots of unity. There are several
motivations to consider this type of problems. Konyagin’s motivation was to prove
the Heilbronn Conjecture on the Warring problem and certain partial cases on
Stechkin Conjecture on Gauss sums for composite moduli (see [KS], §6). This is
also related to the work of Robinson on the distribution of the solution of 2™ = a
in residue classes (see [R]).

The method we use here is totally different from Konyagin’s. The main ingre-
dients of the proof are Freiman’s theorem and certain geometric techniques from
Bilu’s proof of Freiman’s Theorem (see [Bi]).

§1.

Notation.
1. Forqge N, Z, =7Z/qZ.

2. Let z = (z1, - ,2a),y = (Y1, ,vya) € RL Then zy” =", 2,9, where y7 is
the transpose of the matrix y. If z € Z? and y € Zg, then the matrix multiplication
is done over Z,.
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3. Let &€ = (&,....&) € 24, P = [[,[A;,B]) C RY, and P = PNZ% A
generalized arithmetic progression is P = {z€T : x € P}. When a progression P is
give, P and IP are used with the above meaning. Sometimes we refer to a progression

by (£, P), or (&, P).

4. A progression P given by £, P = Hle[l, Js| is proper if |P| = |P|. We say P
is proper with respect to L if

{z¢" :x e [, LI N2}

=1

is proper.

5. For A,B C Z;, and k € N,

A+B={a+b:acAbe B}, kA=(k—1)A+ A,
AB ={ab:a € Ajbc B}, AF=AF14

a-B ={a}B (mod ¢q), foracZ,

aB ={a}B, forac€Z,.

6. For g € N, ¢,(0) = >0,

7. ||z|]| = the distance from x to the nearest integer.

Lemma 1.0. Let y = (y1,---,yq) € Z% with gcd(y1,--- ,yq) = 1. Then there
exists S € SLq(Z) with y as an assigned row or column.

Proof. We do induction on d.

Let a = ged(ya, -+ ,yq). The assumption implies ged(a,y;) = 1. Hence there
exist b, c € Z,|b| < |al,|c| < |y1| such that

y1b—ac = 1.

Let y; = ay, for i =2,--- ,d, and let S’ = (s; ;) € SLq—1(Z) be given by induction
with (y4,- - ,y)) as the first row. Then

Y1 Y2 Yd
c ypb oo ypd
S = 0 521 s 82.d—1 € SLd(Z)
0
0 Sq—11 "+ Sd—1,d-1

Remark 1.0.1. It is clear from our proof that S(i,j), the (i,j)-cofactor of S is

bounded by |y - - y/\; -yl
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To prove the next lemma, we need the following from Bilu’s work on Freiman’s
Theorem. These are Lemma 6.6 and part of the proof of Theorem 1.2 in [Bi]. We
include them here for the reader’s convenience.

B1. For zx € R™, B C R™,

|z := inf{\"!: \z € B}.

B2. Let ey, -+, e, be a basis of R™, W = (e1, -+ ,e;m_1), and 7 : R™ — W be
the projection. Let B be a symmetric, convex body. Then

volm_1(m(B)) <

where vol,,,(B) is the volume of B C R™.
B3. Let A1, -, A, be consecutive minima related to || - [|5. Then there is a basis

fi,-++, fm € Z (called Mahler basis) such that

||f1||B S )‘17

7: .
I fillz < i fori =2, m.

B4. Let f1,---, f;n € Z be the Mahler basis as given in B3 and p; = || fi||g. Then
for x =3 x;fi,

lell, := max pi ]

B5. For z € R™, we have

'2

m”zls < llzl, < 5o ll2ls.

Lemma 1.1. Let a progression P be given by £ € Zf]l, and P = Hle[—Ji,Ji].
Assume there exists L > 0 such that the progression (&, ngl[l, LJ;]) is not proper.

Then there exists v € N, and a progression P’ given by &' € Zg_l, P = Hf;ll[—J{, J!],
satisfying

(i). v < Lmin,; J;, and v|q

(). TIZ) T < CaL T2, Ji, where Cg = d[ 9515 (a— 1))
(iii). v-{zcT:xzeP}c{/¢" 0’ e P'}
Proof. Let v = ged(y1, -+ ,yq4). We may clearly assume that v|q.

Let y' = (y1,...,y,) = (%yl,... ,%yd). Hence ged(y;, ... ,y,) = 1.

Let e1,--- ,eq be the standard basis of R%, and let S € SLy(Z) with egS = /'
be given by Lemma 1.0.
)



For z € P, let € Z*~! and ¢ € Z¢™! be defined by

zSTH = (%, %), (1.1)
and B
vSET = (£,0)7T. (1.2)
Hence B
vaet = (2871 (vSET) = zE T (1.3)
Let
B=PS (1.4)
Then
d
vol(B) = 2¢T] /. (1.5)
i=1
Denote 7 the orthonormal projection on [e1,... ,eq—1]. Let fi,---, fq—1 be a
Mabhler basis for 7(B) C [e1, - ,€d4-1]-

For z = Zztll z, f; € m(B), the second inequality in B5 implies

(d—1)1

@i < g @l o S capy Vi (1.6)
_ (d-1)"?
where ¢4 = 5d—7
Let
Jz/ - Cdpi_17 (17)
and
d—1
P =T[I-7. 7. (1.8)
i=1
Denote
x' = (x/h T 71.&71)7
f1
F = . c GLd_l(Z),
fa—1
and
ng — FéT
Then

7€ = (2 F)ET = 2'¢'7

Hence (1.3) implies

/T

vl = 2'¢ (1.9)

This is property (iii) in our conclusion.
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From the choice of S, we have

L L
ea=ySt=251ec=ps=28 (1.10)
v v v
Hence (cf B1)
L
leall, < - (1.11)

Combining (1.11), B2, and (1.5) we have

dL 4 dL
vol(m(B)) < 5 ~vol(B) =2 HJ. (1.12)

On the other hand, the first inequality in B5 on 7 (B) gives
sl <7} € o e <d—1)
Hence

d—1
2d-1 H p;t < (d— 1) vol(n(B)). (1.13)

Putting (1.7), (1.13) and (1.12) together , we have
H J =it sz < 47127 @D (g — 1) vol(n(B))
dL
< ¢4t — 1)d_12d%HJi. (1.14)

This is (ii) in the Lemma. O

Remark 1.1.1. In Lemma 1.1, we take P = Hle[—Ji,Ji] for the convenient
notation, because we need a symmetric body to use Bilu’s result. Clearly, we can
apply the lemma to the progression P = (¢, P) with P = Hle[l, Ji]. Then P’ is

given by (¢/,TT{=[1, J1])

§2

Lemma 2.1. Let P = (£, P) be the progression with £ = (&1, ,&q) € Zg, and
P= Hle[l, Js] € RY, where the integers

Jp == Jg > 0.
Assume there exists € > 0 and a € Z; satisfying
|PNaP|>elP|. (2.1)

Then for any index i = 1,... ,d, one of the following alternatives hold.
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. 2
(1). J; < =
ii). P is not proper with respect to 2
g
(iii). there exists k; € Z, and k' = (k},--- ,k}) € Z%, such that

1
0<k; <—,
3

8
|l€;,|<—2 for all i < s <d,
€
and
ak;§; = k/§T~
Proof. Denote

Q={zcP:axt’ c PNnaP}. (2.2)

Assume (ii) fails. In particular, the arithmetic progression P in Z, is proper. It
follows from (2.1) that

Q| > e|P|=¢cJy--Jg. (2.3)
Hence there exist x1,--- ,Z;, -+ ,xq € Z such that
Hx; :x = (21, - ,xq) € QY > eJ;.

Assume (i) fails as well. Then €J; > 2 and there is k; € Z,

1
with ak;&; € P — P. Hence
d
aki&; = K'€T with k' = (K, - - H — J, Js) NZ% (2.5)
To show assumption (iii) holds, we need to show |k}| < 5, for i < s < d. We
assume <
k| > = for some t € {i,--- ,d}. (2.6)
Let A
R=|= 2.7
4 -
Js
E—Qmm‘k/‘ (2.8)
S = {xtT 4 rtki& cx € Qr=1,--- R}, (2.9)
and

S={z+rlkie; :x€Qr=1,--- R}
8



Forr e N, 1 <r <R, by (2.7), (2.8), (2.4) and (2.6), we have

4 1
rlhi < -2 |i’j| << i (2.10)

Hence
ScP+ [O, Jz]ez

The above inclusion and the assumption that P is proper with respect to g imply

aS| =S| = |S| < 21 -+ Ja. (2.11)

On the other hand, for any x € Q, we have by (2.2)
axtT =z e P (2.12)

for some = Z(x) € P. Let Q C P be the set of all such z. Then there is a
one-to-one correspondence between (2 and 2. Putting (2.5) and (2.12) together, we
have (as any element in a - S,) (cf (2.9))

axéT + arlk&; = (7 4 rek)ET. (2.13)
Since for s € {1,--- ,d},
4 8
174 -2 k! —Js, 2.14
ek < 22 k] < 2 (2.14)

we have
d 8 8
e T (14 2)0 (1+2)]. o
e € £
The failure of assumption (ii) and (2.15) imply that a - S is proper.
Let o be such that |k,| = min, -2 g Then (k! = 2J, and the sets P + (k'[P +

20K, .-+ P+ RCK' are disjoint. Hence the sets Q + (K", Q + 20K, --- . Q + RCK' are
all disjoint. Therefore,

R
\aS|:||_|Q+r£/<; —QR>eJy---Jg R>3J1 - Jy,

which contradicts (2.11). O

Proof of Theorem B.

We will use the notion ¢(K’) for various (maybe different) constants depending
on K'.

Assume A C Z, such that K < [A| < £ and [A + 0A| < K'|A|, where 0 € Z;
satisfies the assumption of Theorem B . By Ruzsa’s inequality

|A+ BJ?

A—-Al<
| B



for |A| = |B|, we have
[A— Al < (K")?|A].

Identifying Z, ~ {0,1,... ,g—1}, we apply Freiman’s theorem to A, first considered
as a subset of Z with doubling constant < 2K’ > and A = —A. it follows from
Freiman’s theorem that A C P, where P is a generalized d-dimensional progression
with d < ¢(K'), % < c¢(K'"). Since |A 4+ 0A| < K'|A|, there is ¢ € [, such that

e ynoay> > 1L
and thus
(A—A)NOA— A)| > %.
Let P =P —P. Then |P| = ¢(K’) |P]. We get
P NOP| > c¢(K')|P| (2.16)

Our aim is to apply Lemma 2.1 with € = ¢(K’) and a = 6. Some simplifications
occur because ¢ being prime. We want to rule out alternatives (i) and (ii). If (i)

holds for some 7 = 1,--- ,d, we may clearly replace P by a progression P; C P of

c(K")

dimension d — 1, “52|P| < |P;| and still satisfying

"Pl N 9P1| > Cl(K/)|P| > Cl(K,)"Pﬂ. (2.17)

If (ii) holds, apply Lemma 1.1 to obtain a reduction of d to d — 1. Observe that
since the integer v in Lemma 1.1 satisfies v|p and

v < ¢(K')min J; < ¢(K")|A| < c(K’)% <p,

necessarily v = 1 (assuming K large enough). Thus by Lemma 1.1, P C Py, where
|P1] < ¢(K")|P| and P; of dimension d — 1. In both cases (either (i) or (ii)), we
obtain P; of dimension d — 1 such that

c(K)[P| < [P1] < e(K)[P]

and (2.17) holds.

Continuing the process, we get a progression P satisfying (2.17) and alternative
(iii) of Lemma 2.1, for all i = 1,---,dy, where d; is the dimension of P and

e = ¢(K’). Thus
dy
732{ E x,@:OSSESJi,xiGZ}

i=1
and for all i = 1,--- ,d; there are k; € Z, k] ; € Z(1 < s < dy) satisfying
dy
Oki& =Y ki & (2.18)
s=1
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and
0< ki < (K", (2.19)

J,
E | <c(K' =2,
K < oK)
For (2.20), we use (2.10) which is valid for all s = 1,--- ,d; (rather than (2.6) which
is a consequence).

forall s=1,---,d;. (2.20)

Returning to (2.18), it follows that the polynomial
p(z) = det | (zk; — k;l)e“ — Z k;jei,j} € Zy|z] (2.21)
i#]

has 6 as a root, where e; ; is the matrix with (¢, j)—entry 1 and 0 elsewhere. Clearly
p(z) is of degree d; < d < ¢(K') with non-vanishing x%-coefficient by (2.19). By
(2.19), (2.20) all coefficients of (2,21) are bounded by

d1 dl
JTK‘ i
D TR bin + ) < ()™ ST =52 < ).

me€Sym(dy) =1 T oi=1

This contradicts to the assumption on 6 for K sufficiently large. O

Remark. Quantitatively speaking, the previous argument will require K’ to be at
most sublogarithmic in p, since we do rely on Freiman’s theorem (cf [C]). Thus we
may ask the question how large the quantity

_ |A+04
min

Lkl 92.29
pe<|Al<p—c || (222)

can be made to some ¢ € F,,. Considering sets A of the form
d
A= {Zl‘lgzOSxZSM},
i=1

it is easily seen that (2.22) is less than exp(y/log p).

§3.

Lemma 3.1. Let P = (&, P) be a progression with & = (&1, ,&4) € Zg, and
P= H;l:l[l, Js] C RY, where the integers

Jp = 2>Jg > 0.

Assume
So [[7i <IPl<q' ™ (3.1)

with v > 0 a constant.
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Let e > 0,M >0 (e small, M large) satisfy

1 3d+10
5yt <g) <M < g2 (3.2)
Assume
|7 (P)| > M for all ¢|q,q' > ¢". (3.3)
Let B C Zy such that
g (B)| > M for all |q,q > q"/** (3.4)

denoting
g+ Lg — Ly

the quotient map mod ¢’ .

Then there is a € B such that

laP N P| < €| P). (3.5)

Lemma 3.1 will be proved by assuming |aP NP| > ¢|P| for all a € B, applying
Lemma 2.1 (on a progression which may have fewer generators) and ruling out
alternatives (i)-(iii) to get a contradiction.

We will first make a possible reduction of the number d of generators of P to
ensure properness with respect to some constant, using Lemma 1.1.

The reduction.

We take
gg = €. (3.6)
Assume
do|P| < [P, (3.7)
and

. . 9
P is not proper with respect to —.
€0

Lemma 1.1 allows then a reduction of the dimension of the progression P in the
following sense:

There is vo € N, and € € Z¢1 Py = []921[1, Ji ;] NZ9! satisfying

9 .
v < — minJ;, vglg,

€0
C
P — P 3.8
Pil< Pl (3.8)
vo - P C P1. (39)
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By (3.9), (3.7) and (3.8),

P
P > |P1| > u > — |]P’] > 01 [P, (3.10)
Vo
with
(51 = 680(50. (3.11)
Take
€1 = €d;. (3.12)

and repeat the preceding.

If P; is not proper with respect to %, apply one more time Lemma 1.1 to obtain
v €N, and €@ € 2472 Py = [T727[1, Jo] NZ4? satisfying

9 .
vy < —minJy;, vilg,

€1
C
Po| < —— [P, (3.13)
£10U1
vy - P1 C Ps. (3.14)
By (3.14), (3.10) and (3.13),
|P1|
Pa| > |Pa| > — > — |]P)1| > 0o [Py, (3.15)
V1
with
52 = 08151. (316)
Notice that
P2 D vou1P. (3.17)
Take
Er—1 = 857«_1. (318)

After applying Lemma 1.1 r times, we have v,_; € N, and ¢ ¢ Zg_T,IPr _
H?;{[L Jril N Z4-r satisfying

Uy < . min J,_14, vr_1lq, (3.19)
r—1
C
P < ——— |Pp_1], (3.20)
Er—1Ur—1

Up—1 - P'r—l C 'P,,,. (321)

Same reasoning as before,
B, > [P] > 5, [B,], (3.22)

with

57“ = Cérflérfl. (323)
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Also,
VU1 -+ Vp—1 P C P, (3.24)

We have the following
1. CEQEL - '67“,16() = 67“

3. gp_1 =c(edp)?

s d
3. Assume Jp > ¢. Then g, 1 > ce? > (ce)?

263, L or r41 d+1
37, epel - Epg > ceed AT S 02 > g2
4. |P| > 05081"'6T71?}01)1...UT,1|P,~|
) c
4’, Toti- i1 |]P)| > VoV1 - - Up_1

gd+1

9. (g) |]P)| > VU1 ... Up—1

To see the above (in)equalities hold, we note that our notations (3.11), (3.16),
., (3.23) imply (1); (3.18) and (3.23) imply (2); (3.18) and (2) imply (3); (3.8),
(3.13), ... , (3.20) imply (4); (4’) and (3”) imply (5).

Assume a € Z, and
[P NaP|>elP|.
By (3.24), (3.7), (4), (1), and (3.18),

[P NaP,| > |(vovy ... vr—1P)Na(vg...v-—1P)|
> (vou1 ... vr—1) P NaP]
> (vo...vr—1) Tedo |P|
> ceeq ... €r—100 |Pr|
= ced,| P,
= cer| Py, (3.25)

where
€r = €0p. (3.26)

We need the following little fact from algebra to prove Lemma 3.2.

Fact A. Let A C Zg, k € Z, and ¢' = 5= Then [/ (A)| = |k - A].
Proof of Lemma 3.1. We assume after r reductions P, is proper with respect to
%. (If P is already proper with respect to g, then r = 0 and Py = P.) We apply
Lemma 2.1 to P’ = P, replacing ¢ by &,. By our construction, alternative (ii) in
Lemma 2.1 is ruled out.

Assume J! := J,; ordered decreasingly J; > J) > .- > J/,.
14



Let sz = gfr) S {]—727 <o q = 1} ~ Zq\{O} and define

q1 = ged (&7, q)
q2 = ng (5{7 557 Q)

qdr = ng(sL 75&’7 Q)

Claim. qq < ¢* 7.

Proof of Claim. Assume
g >q' 7.

Let w = % < ¢". Then (5), (3.1) and (3.2) imply

<0)
VUL * Vpqw < | —
€

Also,
wéy =+ =wly =0 (mod g),

gd+1 gd+1

C 1
Plq" < (;) 5—0q1_27 <q'. (3.27)

hence, from (3.24)
vov1 - UpqwP =0 (mod gq).

By Fact A,

with (by (3.27))
r_ q
ged (q,v0 .. Vp_qw)

This contradicts (3.3). O

q > q7.

Therefore, there is ¢ € {1,...,d’'} such that

Bzl 43, (3.29)
q;
LR g (3.30)
q1 g2 qi—1

Apply Lemma 2.1 considering this particular index i. Alternative (ii) is ruled out
by construction.

Claim. Alternative (i) fails.
Proof. 1f (i) holds, we get

o\ 9
(;) LA S I (3.31)

Let




By (3.30), (5), (3.1) and (3.2),

gd+1

C
v<wy - vr_1q" < (;) Plq” < quf?’w%(ﬂ <q'

Hence, from the definition of ¢;_1

q

VP =vov1 -+ U 1 pc Py
gi—1 qi—1
{szg Ty < J’} (3.32)
Qz 1 521
(3.31), (3.32) imply
o\ 2
WP| < JiJ{ .. Ty < (?) < M.

Hence Fact A implies
7 (P)] = oP| < M

with ¢/ = zeday > 4" again contradicting (3.3). O

gcd(q v

So alternative (iii) holds and there are k;, (k.)1<s<a € Z such that

1
0<k<— (3.33)
i 8 : /
|kL| < = fori <s<d (3.34)
d
aki; = k& (mod q). (3.35)
s=1

Since g;—1 = ged (&), - .-, € _1,q), (3.35) implies

aki&) = k&, (mod gi_y). (3.36)
s>1
By (3.33), (3.34), (3’) and (3.2), the coefficients (k;, &}, ... ,k/,) in (3.36) ranges in
/ d+1
a set of at most é(s%)d < (g)@dH)Q < M2 elements.

Recalling (3.29) and (3.4)
|mai1 (B)| > M (3.37)

a4
and we may consider elements B C B,|B| > M, such that LT | 5 1s one-to-one.

Assuming [P N aP| > ¢|P| for all a € B, we have for all a € B, cf (3.25)
|P" NaP’'| > ce,|P'| (3.38)

and the preceding applies, providing in particular a representation (3.36).
16



In view of the bound on the number of coefficients in (3.36), there is B’ C B,
|B'| > M2 such that for all @ € B’, (3.36) holds with the same coefficients
ki, kL(s > i). Taking any ay,as in B’

(a1 — ag)klfé =0 (mod qi_l)

(a1 —az)k; =0 (mod L=1) (3.39)
4q;
implying
/ 1 / |B/| 1/2
1= {71'611'—1 (]CZB )’ > |]{3| ’71'%—1 (B )| = |k5| > €1~M

a contradiction.
This proves Lemma 3.1.

Following the same arguments as in Lemma 3.1, we also obtain:

Lemma 3.1'. Under the assumptions of Lemma 3.1, there exit elements ay, ... ,aR
m B, with R ~ M1 such that

lasP NagP| < e|P| for s #s'. (3.40)

Proof. Let B C B be the set constructed in the proof of Lemma 3.1.

Assume a1, ... ,a, € B obtained satisfying (3.40) and suppose

max |asP NaP| > e|P| for all a € B.
1<s<r

Hence, there is some s = 1,...,r and B; C B with
1 = M
|Bi| > =|B| > = > M%/10
r R

and such that a
|P N —P| > ¢|P]| for all a € By. (3.41)
as

It follows that all elements -, a € Bi, have a representation (3.36). Passing again

to a subset B, |B}| > M%/10=1/2 = M?/> we may ensure the same coefficients
ki, (k)s>; and get a contradiction as before.

84.
Let A C Z, such that
|A+ A| < K|A] (4.1)
and
1< JA] < ¢ ™. (4.2)

Identitying Z, ~ {0, 1,... ,g—1}, we apply Freiman’s theorem to A, first considered
as a subset of Z (with doubling constant < 2K).
17



From [C], we obtain
d <2K

and a progression P given by & = (£1,...,&y) € Z4 P = H?[O, Ji], with J; > Jo >
.-+ > Jg in N, such that
AcCP={xt":zcP} (4.3)

and

IP| < C5°|Al. (4.4)
Applying 7, : Z — Z4, P becomes a progression in Z, containing A C Z,. Assuming
CK’ < /2, (4.5)

by (4.5), (4.4), (4.2) and (4.4), we have
'3 > OF g S P > [P| > 4] > 0 K0Py, (4.6)

Thus assumption 3.1 in Lemma 3.1 holds with §p = C—¥ .

Let e, M satisty (3.2), i.e.

o (—> <M < q'? (4.7)

and moreover

Assume B C Z; such that |7y (B)| < [ry(A)|, (e.g. B ,contained in a translate of
A) for all ¢'|q and ¢’ > ¢". Furthermore, assume B satisfies

|7y (B)| > M, if ¢'|g and ¢’ > ¢=F. (4.8)
Since by assumption also
g (P)| = |7g (A)| = |mq (B)| > M, if ¢'|q and ¢' > ¢7,

conditions (3.3), (3.4) of Lemma 3.1 are satisfied.
Apply Lemma 3.1°.
Let ay,...,ap € B satisfy (3.5). (We take R < M19.) Write

U aTA’ > RIA| - |arANa,Al

r<R r#S
> R|A| — Z la, P NasP|
r#s
> R|A| — R?C¥’|4A|. (4.9)
Taking R = 5= C~%°, (4.9) implies
R 1 s
AB| > LAl ZIAl > —C7 B 4. 4.1
4812 | ord) > F141> 2071 (4.10

r<R
18



Assume ito
M > C*° (4.11)

(which implies the first inequality of (4.7), hence it also implies (4.5) ) and take

l _ M10—K—6
9
From (4.10) and (4.11)
IAB| > MY "4 (4.12)

Replacing 4y by v and summarizing, we proved the following:

Lemma 4.1. Let A C Z, satisfy

Al < ¢ (4.13)
|A+ Al < K|A]. (4.14)

Let M satisfy
CO T < M o< /8, (4.15)

Let B C Z;; such that

7 (B)| < |7 (A)|,  if¢|lg and ¢ > ¢,

also
7y (B)| > M, if ¢|q and ¢’ > ¢"/5°K. (4.16)
Then s
|AB| > M " A (4.17)
§5.

Proposition 1.
Let k > 0 be a small and M a large constant.

Let H C Z}, (q large) satisfy
|7y (H)| > M whenever ¢'|q,q" > q". (5.1)

Then there is k,r € N such that

k< q“/ (5.2)
r<log, ¢ (5.3)
kH"| > ¢~ (5.4)

where
k' =K' (k, M) — 0 for Kk — 0, M — oo (independent of q).
19



Proof.

We describe the construction. Given any
k1 > K2 (5.5)

and denote

K = min {(log log M)Y/2, %} (5.6)
K

Let Ag = H and A, = ko H" be the set obtained at stage a. Assume |4, | < ¢'="1.
We distinguish the following cases.
(i) |Aaq + An| > K|A,|
Take then ko1 = 2k, and 7441 = 7o
(ii) |Aa + Ao| < K|A4|
Apply Lemma 4.1 with A = A,,B = H,y = k1. In (5.1) we can assume
M < ¢. Conditions (4.15) and (4.16) clearly hold, because of (5.6). Hence
A H| > MY A, > K|A,|.
The second inequality is again by (5.6). Hence

ko H™ | > K|A,|.

In this case we take ko1 = ko and ro41 =74 + 1.

Therefore
Aas] > K|Aal, (5.7)

with

ka—i—l S 2ka (58)

'ra—i—l S roz—l—l .

To reach size ¢' ~*', the number of steps is at most llg’gg[q{, because after s steps, by
(5.7)
q = [Aata| > K°|H| = K°.

By (5.8), we have in (5.2)
k< 211;% = q"2.

Hence
log 2 1

T logK min{log loglog M, log 1}’

K2

by (5.5) and (5.6).

We conclude the proof of Proposition 1 by taking k = max{k1, k2 }.
20



6.
We need the following to prove Theorem A.

Let v,V : Zy — R be functions. We recall

F1. 0(§) = 3., ez, v(@)eq(—ag). If v is a probability measure, i.e. 0 < v(z) <1,
then |#(€)] < 1.

F2. v« (x) = Zyezq v(z —y)v (y).
F3. supp (v xv') C Supp v+ Supp V.
Fa. 1(z) = L Tees, D(€)eq(s6)
F5. v+ /() = (€)1 (€).

Let 0 <z < 3%, Then
T1. sinxz > 5-. Therefore, [e,(1) — 1| > %.

3?2 ™

T2. cosz < 1 — {-. Therefore, |e,(1) + 1| <2 — 3 qi?.

T3. leg(a) — eg(y)| = [25in 22 (x — y)].

Proof of Theorem A. Let x > 0, M be constants as in Proposition 1. Let ¢ € N
be odd. Let H C Z; satisfy the following conditions:

|mp(H)| > 2 for all primes plq
|7y (H)| > M for all ¢|q,q" > ¢

We want to show that

kiH" =7,
for some kq,r € N satisfying
r < log ¢~ (6.3)
ky < ¢ (6.4)

By (6.2), Proposition 1 applies. Let k,r satisfy (5.2)-(5.4).

Denote
D={¢d eN:¢ #1andd|q},
hence )

D| < grestoes. (6.5)

For ¢’ € D, we have
g (RH")| > LLHEN ¢ dq " (6.6)

! ~oq/d T a/d

while by (6.1), also

g (W) = [y () = 2 (6.7)
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Take a subset 0y C kH" such that 7, |Qy is one-to-one and
Q| > max {2,¢'q""'}. (6.8)

Define the probability measures

1
,uq’ - |qu| Z 5.107 (69)

0, being the indicator function, and their convolution

px) = * g ()

_116D
= D> ey @y = Y ) B (Y2) g (1)
Y1, ay‘D|71 (6.10)
Then by F3,
supp p C Z supp ftg C Z Qp C |DIEH". (6.11)
q'€D q' €D

We estimate the Fourier coefficients
fa
i(2) = 3 ey(—anulo)
q T€ELg

for 0 < a <gq.
Let ¢ = Z_: where ¢'|q and (a’,¢') = 1. From (6.10) and F5

[y (a_’)‘ _ b Z eq(a'x)
:uq q/ ‘Qq’| q

(L‘EQq/
’

Claim 1. ’,&(%H <1- 1—16q_2” .
Proof of Claim 1.

a

p . (6.12)

fi(

)‘g

Assume }[L(%)‘ > 1— 7. We want to find a lower bound on 7. Squaring both
sides of (6.12), we obtain

2ma’
Z cos —(z —y) > (1—1)%Qy % (6.13)
m,yeﬂq/ q

Choose an element zy € 24 such that

2ma
Z cos —— (20 —y) > (1 —7)%1Qq|. (6.14)
yGqu q

By T3, we write
2rd (zo —y)]° 2ma’
7 2 |~ 2 —2cos ” (o — ).
22
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Together with (6.14) give

Z leq/(a'x0) — eq/(a'y)|2 < 2[Qg ] —2(1 - T)QIQq’| < 27|Qg .

yGQq/

From (6.15),
1
< §|Qq’ -

'{y : |eq/(a/$0) - eq/(a/y)| > 2\/7_-}

So there is a subset ' C Qg/, || > £|Qy/| such that for all y €

leq'(a'wo) — eq (a'y)] < 2V,

hence T1 implies
adxyg a

/
LT

q q

Therefore
g ()] = |7y (0’ Q)| < 2¢/7¢" + 1.

Since m,|Q is one-to-one, also
1 /
Fda " < <2Vrd +1

by (6.8). This gives a lower bound

1 —2k’
> -
T

Take

/7

(=g

Claim 2. Let u® be the ¢-fold convolution of g. Then supp pl9) = Lyq.

Proof of Claim 2. For x € Z,, write

1 1G&—/(a
W) = 14 2304 eyfas).
¢ 9= \4

By Claim 2 and (6.18), the second term in (6.19) is at most
Of=1 =
)= s

max
1<a<q

Hence 9 (x) > 0. O

Hence, putting together Claim 2, (6.11), (6.18), (6.5) and (5.2), we have

Zg="{supppu =1L |D|kH" = k1H"
23
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with kl < q3m'ql/loglogqqm' < q5l~i§/. 0

Remark 6.1. It is much simpler to prove the following weaker bound
__[(d <1 T 1
g’ q 2 (¢')?

Since |Qy/| > 2, there are elements z1, x € Qy with 7wy (z1) # g (22).

Proof.

Since (da’,q') =1, also 7wy (a’z1) # 7wy (a’z2). Therefore, by T2,

T 1
legr(a'w1) 4 egr(a'x2)| < e (1) +1] <2 = 57—
2(¢)
Write
D eglan)| < (19 = 2) + leg (a'z1) + eq (a'22))|
:I:EQq/
T 1
< Q|- = )
| q | 2 (q/)Q
Therefore

__[(ad T 1
e\ = || <1— = . U
! (CJ'>‘ 2 (¢')?

Remark 6.2. For ¢ prime, Theorem A has a simpler proof, which gives a slightly
weaker bound on r. In this case, Z; is a cyclic group. The condition on H C Z
is simply |H| > M with M large. It follows that H contains an element 6§ € H of
multiplicative order ¢ > +/M. Assuming (as we may) that 1 € H, it follows that

{1,0,--- 6"} C H".

We distinguish 2 cases.

log q
Case 1. t > (oglos g) 1%

Take ¢ = log q(loglog q)*.
Using the inequality

max
(a,q)=1

rzoeq(aﬁx)‘ < r0<1 - (L)

— log ¢)?

due to Konyagin (see [KS]|, p. 26), simple application of the circle method implies
kH™ = 7, with k < C(log q)*.

log q
Case 2. t < Toglog 172"
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Denote ¢(t) = |Z;|. Use then Theorem 4.2 from [KS]

Z eq(ab”)

r—1

max

e <t—c(p)g 2P for 2 < p < p(t). (6.20)
a,q)=1

Hence

1
kH' = Z, with k < — (log q)?¢*/".
q () 5

Since p(t) — oo for M — oo, we may achieve k < ¢(k')g" with &'(M) — 0 as
M — oo.

§7.

Corollary 3.
1. Let H C Zj satisfy the assumption (5.1) of Proposition 1 and k' be as in
Proposition 1. Let ¢'|q, ¢ > ¢" and (a,q') = 1.

Letr € N,r > k' logq.

Then
a — 2!
el BT i

max
z,yeH"

2. Let H < Zy be a multiplicative subgroup satisfying assumption (5.1) of Proposi-
tion 1.

Let ¢'|¢,q' > ¢* and (a,q') = 1.

Then
max ﬁ(:17 — )| > ¢, (7.2)
r,yeH q/
Proof.
By (5.4)
1—x’
r r q -
g (kaH")| = [y ()] > & = g > 1. (7.3)
a/q
Hence there are elements z,w € kH" s.t.
a k!
?(z —w)|| >q ". (7.4)

Writing z =21 4+ -+ + 2, w = y1 + - - - + yg with x;,y; € H", it follows that

—2K’

1
_(x_y)HZEq > q

by (5.2).
25



Corollary 4.
1. Let H C Z; satisfy conditions (6.1), (6.2) and £’ be as in Theorem A.
Let 1 <a<q. Then forr > k'logq

a ,
max ||—(x — > g, 7.5
Jmax q( y)H 2 4q (7.5)
2. If moreover H < Z3 is a group, we get
max ||—(z — > g5 7.6
nax q( y)HNq (7.6)

Proof.
Write ¢ = Z—:, (a',q") = 1. Since my (k1H") = Zg,

Vo —w)| 2 X (7.7)
max —I\Z — W — .
z,wEk1H™ q/ -2
hence
e (7.8)
max — I\ — -—
z,yeH"” q/ Y ~ ]{71 q

§8. The case of subgroups

The main result of this section is the following (for ¢ prime this issue was con-
sidered in [P])

Theorem 5. Let H < Z;,|H| > M > 1. Then

min max
an; r,yeH

g(:If—y)H >q° (8.1)

where 6 = 6(M) — 0 for M — oo (independently of q).

We first treat the case when H contains an element of large multiplicative order.
The next result has a simple proof obtained by a straightforward modification of
an argument in [KS] (see §4) for prime modulus.

Lemma 8.1.

Let 0 € Z}; be of order t (large). Then

g(gj —05)|| > c(r)g 7 (8.2)

min max
(a,q)=1 .k

for 1 <r < o(t).
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Proof. For j =1,... ,t, let b; € Z such that
bj =al’ (mod q) (8.3)

and extend periodically with period ¢ for j € Z.
Claim. Let ¢ € Z and 2 < r < ¢(t). Then max; |b; — c| > c(r)q:%?.

proof of Claim. Let
B = max |b; — c|. (8.4)
1<5<t
Denote b = (by,--- ,b.), and 1 = (1,--- ,1). We consider the lattice

L={{=(l,....4)€Z" :b" =0, 1{" =0}
={l=(l1,....0.)€Z : (b—cl)t" =0, 14" =0} (8.5)

We considering all expressions Y (b; — ¢)¢;, with > ¢; = 0 and |b; — ¢| < B. From
the pigeonhole principle and (8.4), there is (¢1,...,¢,) € L\{0} such that

_1
joax 10| < c(r)B7—=2. (8.6)

For this vector £ = ({1,...,¢,),
bily + -+ bl = 0.
Hence, multiplying with 67,
bjr1li+ - +bjiplr =0 (mod q)
for all j. Since also #1 +---+ /£, =0
(bj+1 — )i+ -+ (bjyr —)lr =0 (mod g). (8.7)
The left side is bounded by
ch(r)Bﬁ < c(r)B%
by (8.4), (8.6).
Assume c(r)B:;—é < ¢, hence
B < c(r)g 1. (8.8)
It follows then from (8.7) that

(bj+1 =)y + -+ (bjr — )y =0
bj—l—lgl + st + bj+7~£7n = 0 (89)

for all j.
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Hence (b;) is a periodic linearly recurrent sequence of order at most r and smallest
period t.

Let v¢(z) be the minimal polynomial of (b;). (See [KS].) Then form (8.9)
V@)|(6+ bz + -+ L")
implying degy <r — 1.
Obviously 9 (x)|(z* — 1). Assume

Ya)| T @-a7).

1<r<t

Since ¥(#) = 0 (mod q), it would follow that 7 = 1 ( mod ¢) for some 7 < t,
contradicting ord,(#) = t.

Therefore one of the roots of v is a primitive t**-root and 1) is divisible by the
t-cyclotomic polynomial.

Hence
6(1) < degp < r

a contradiction.
Hence (8.8) fails. d
Suppose (8.2) fails. Letting ¢ = af* € Z, = {0,1,... ,q — 1},

abdl — ¢

q

1

<c(r)yg T T.

max
J

Hence

max dist(al’ — ¢, qZ) < c(r)q%%. (8.10)
j

From (8.10), we may for each j =1,... ,t take b; € Z such that
bj =a®’ (mod q), and |b; —c| < C(T)q%.

This contradicts the Claim and proves the lemma.
Proof of Theorem 5

Let H <Z;,|H| > M.

Fix £ > 0 (small) and 1 < M; < M 3.

By Lemma 8.2, we may assume

ordy(x) < M; forall x € H. (8.11)

If |7y, (H)| > M for all ¢1|q, with g1 > ¢, then (8.1) holds for § = 6(k, M;) — 0
for kK — 0, M; — oo (by Corollary 3(2)).
28



Assume thus there exists ¢1|¢, with ¢1 > ¢" and |7y, (H)| < M;. Hence

satisfies

Consider the set

H1:{IGZ%:1+(]1$EH1}:

Hy=Hnr,'(1)<Z

‘H1| >

M

My

Hy—1
q1 '

Assume there is qg‘qil, with g2 > ¢" and |7y, (H1)| < M;. Hence |7, 4,(H1)| < M;

and defining H, = H; N7}

Considering the set

q192

|H2‘ >

_— > 5.

(1), we have

|Hy
My

| M

M3

Hy -1
HQZ{IEGZq :1+Q1QQCII€H2}: 2
0 7102
we repeat the process.
At some stage s < %, the process has to stop.
Thus
Hy=Hnnr.' , (1),
H,—1
He={r€Z_ o :1+q- - -qxecH}=—""
q1°"9s qqu
|H| = |Hq| > T > M2,
M,
and
\my (Hs)| > My for all ¢'| , with ¢’ > ¢".
qi---4gs
Define

Case 1. Qs < qV".

q
Qi=q...qs and Q2 = —.

Q1

Since |Hg| > 2, there are elements x # y in Hs C Zg,. Hence

and

az #ay  (mod Q)
az—y)ll 1 _ &
Qs H "o
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Let z =14 Qiz,y =1+ Q1y € H, < H. Writing
a@—y) Q- Qiy) _a@—p)

Q2 q q

we obtain

a(Z — §) H > g VE

and hence (8.1) holds.

Case 2. Qs > qV".
First, note that if there is no ambiguity, we use the
notation (A, B) = ged(A, B).
Claim 1. (Q1,Q2) < ¢".
Proof of Claim 1. Observe that (1 +Q1z)(14+ Q1y) =1+ Q1(z+y) (mod Q3).

Hence

(1+@Qiz)(1+Quy) =14+ Qi(z+y) (mod Q1(Q1,Q2)).

Consider 7q, (@,,@.) (Hs) < Z§,(0,.q,)- 1t follows from the preceding that

71-Ql(Ql,Qz)([{S) =1+@1S

where S is an additive subgroup of Zg, q,). Hence

S <A{Z(qQ,,Q.): 1) and 7@, (Q,.Q.) (Hs) <Z, (1,00

are cyclic. By assumption (8.11), all elements of Hy < H are of order < My,
implying
701 (@1,@2) (Hs)| < M.

Therefore
|7T(Q1,Q2)(Hs)| < M;. (8.16)

By construction of Hs, (8.16) implies
(Q1,Q2) <¢". O (8.17)

Let Q] = &W’Qé = (Q?,zb)' Hence (Q},Q5) = 1 and Q) > ¢V* " by case

assumption and (8.17).

We want to apply Corollary 3(2) to mg, (Hs) < Ly, with 4/k and M.

Let ¢'|Q} with ¢ > (Q4)*V* > ¢?*, and let ¢” Thus by (8.17),

= —q/
(q/7Q17Q2) )

1

q >q".

Claim 2. |rny (Hs)| > M.

Proof of Claim 2. It follows from (8.15) that |my (Hs)| > M.
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Let x1,...,2, € Hg,n > M; such that
z; —x; #0 (mod ¢").
Since (¢”, Q%) = (¢, Q%) =1 and

1" (QlaQZ) )_
(q’(qul,@g =1

we also have

Q1

mm — ;) #0 (mod ¢").

Hence
Q1(x; —xj) #0 (mod ¢').
Since 1 + Qqx; € Hy, it follows that

|7Tq/<HS)| > M. L]

Apply Corollary 3 (2) to the group 7, (Hs) < Ziy, - Claim 2 implies that
7o (s ()| = I ()| > My

for all ¢'|Q} with ¢/ > (Q4)*V*. Hence for any d/, (a/, Q%) = 1, there are thus
Z,y € Hg such that

a/

Q4
where k' = k' (4v/k, M1) — 0 for kK — 0, M; — oo.
Write z =1+ Q12,5 = 1 + Qy with z,y € H,. From (8.18)
a'Q1
Q3

@) > @) > (3.15)

/7

(z — y)H >q " (8.19)

Recalling that (Qf, Q%) = 1, we may choose a’ satisfying
dQ]=a (mod Q).

Therefore (8.19) gives

G(Q1,Q2)2 _ H —x
0, (z—y)||>a".
Hence, by Claim 1,
i o q_ﬁl —k'—2kK
‘Qz(”’” N> @nar "
and
20| =] d@ie - @[>
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Therefore

a ’
2w g
q

where x,x’ may be made arbitrary small by taking M large enough. This proves

Theorem 5.

max
z,y€H

Theorem C is an extension of Theorem 4.2 in [KS] for composite modules and is
an immediate consequence of Theorem 5.

Proof of Theorem C. For a € Z;, let {x1,--- , 25} = aH, and let ¥y = ax,z2 =
ay be given in Theorem 5 such that

il R
where k = k(M).
Let
|H|
S = Zeq(a:i) .
i=1
Then

S? =|H|+2 cos (M)

oy q

<|H]| +2K|J;I|) - 1] +2cos (M)

2
§|H]2—2+2<1—7r S )
q
<|H|? - 2mq™".
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