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Abstract The purpose of this paper is to investigate efficient representations of the
residue classes modulo q, by performing sum and product set operations starting
from a given subset A of Zq. We consider the case of very small sets A and composite
q for which not much seemed known (nontrivial results were recently obtained
when q is prime or when log |A| ∼ log q). Roughly speaking we show that all
residue classes are obtained from a k-fold sum of an r-fold product set of A, where
r ¿ log q and log k ¿ log q, provided the residue sets πq′(A) are large for all large
divisors q′ of q. Even in the special case of prime modulus q, some results are
new, when considering large but bounded sets A. It follows for instance from our
estimates that one can obtain r as small as r ∼ log q

log |A| with similar restriction on k,
something not covered by earlier work of Konyagin and Shparlinski(see KS). On the
technical side, essential use is made of Freiman’s structural theorem on sets with
small doubling constant. Taking for A = H a possibly very small multiplicative
subgroup, bounds on exponential sums and lower bounds on mina∈Z∗q maxx∈H ‖ax

q ‖
are obtained. This is an extension to the results obtained by Konyagin, Shparlinski
and Robinson on the distribution of solutions of xm = a (mod q) to composite
modulus q.

0. Introduction

In this paper, we consider the following problem. Consider a subset H ⊂ Z∗q
(q ∈ N arbitrary) such that |πp(H)| > 1 for all prime divisors p|q. Let kH be
the k-fold sum set, and Hr the r-fold product set of H. Then kH = Zq for some
k ∈ N. One may for instance take k = q3 (see proof of Theorem 2). Assume now
we allow both addition and multiplication and seek for a representation Zq = kHr,
how small may we take k and r? In this context, we show the following:

Theorem A. There is a function κ′ = κ′(κ,M) such that κ′ → 0 if κ → 0,M →∞
with the following property.

Let q ∈ N be odd and H ⊂ Z∗q such that

|πp(H)| > 1 for all prime divisors p of q (0.1)

|πq′(H)| > M for all divisors q′|q, q′ > qκ (0.2)

Then
Zq = kHr with k < qκ′ and r < κ′ log q. (0.3)

Typeset by AMS-TEX
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(This will be proved in §6).

The main motivation for this work comes from a recent line of reseach in combi-
natorial number theory and its applications to exponential sums in finite fields and
residue classes. (cf [BKT], [BGK], [BC],[B].)

If we consider in particular a subset A ⊂ Fp, p prime, such that |A| > pε for
some fixed (and arbitrary) ε > 0, then kAk = Fp provided k > k(ε) and also

max
(a,p)=1

∣∣ ∑

x1,... ,xk∈A

ep(ax1 . . . xk)
∣∣ < p−δ(ε) |A|k

for some δ(ε) > 0. This and related estimates had very significant application to
the theory of Gauss sums and various issues related to pseudo-randomness (see [B],
[BKSSW], [BIW] for instance). One of the main shortcomings of the results that are
presently available is the break-down of the method, starting from the sum-product
theorem in [BKT], if we let ε = ε(p) be small. The boundary of the assumption
here is ε & 1

log log p , which is likely much stronger than necessary for such results to
hold. More precisely, letting H < F∗p, one could expect an equidistribution result
of the form

max
(a,p)=1

∣∣ ∑

x∈H

ep(ax)
∣∣ < o(|H|) (*)

to hold whenever log |H| À log log p, which at this stage we can only establish if
log |H| > log p

(log log p)ε (see [BGK]).

It became apparently clear that the underlying ideas as developed in [BKT],
[BGK] are insufficient to reach this goal (in particular they seem unable to produce
a result such as the theorem stated above). Our purpose here is to explore the
use of Freiman’s Theorem in sum-product problems which was not used in [BKT]).
Freiman’s Theorem (see [N] for instance) is one of the deepest result in additive
number theory, providing a very specific description of subsets A of a torsion-free
Abelian group with small sumset, i.e. |2A| = |A+A| < K|A|, with K not too large.

The results of this paper are new and based on a new approach. They do
not provide the answers to the primary questions we are interested in, such as
understanding when (*) holds, but bring new techniques into play through related
and more modest aims.

Our bound in (0.3) is essentially optimal. Consider a composite q = p1p2, where
p1 and p2 are prime. Let p1 ≈ 1

2qκ. Define

H = {1, θ}+ p1{0, 1, . . . , p2 − 1}

where θ is of multiplicative order 2 (mod p1). Hence H ⊂ Z∗q . Obviously (0.1), (0.2)
hold. Since

kHr = kH ⊂ {x + yθ : x, y ∈ N, x + y = k}+ p1{0, 1, . . . , p2 − 1}

(0.3) requires k ≥ p1 ∼ 1
2qκ, hence κ′ ≥ κ.

The argument used to prove Theorem A has the following interesting consequence
for subsets A ⊂ Zp, p prime.
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Theorem B. Given K > 1, there is K ′ = K ′(K) →∞, as K →∞ such that the
following holds:

Let θ ∈ Zp be such that θ is not a root of any polynomial in Zp[x] of degree
at most K and coefficients bounded by K (as integers). Then, if A ⊂ Zp is an
arbitrary set and K < |A| < p

K , we have

|A + θA| > K ′|A|.

Remark. For a similar result over characteristic 0, by Konyagin and Laba, see
[KL].

Returning to exponential sums with prime modulus
(
see (6.20)

)
, we do obtain

the following extension for composite modulus

Theorem C. Let H < Z∗q (q arbitrary) and assume |H| ≥ M > 1. Then

max
(a,q)=1

∣∣∣∣
∑

x∈H

eq(ax)
∣∣∣∣ < |H| − cq−δ(M) (0.4)

where δ(M) → 0 for M →∞ (independently of q).

This theorem will be proved in §8.

In the proof, two cases are distinguished. If H contains an element θ of large
multiplicative order, it turns out that one may proceed by a slight modification of
the proof of (6.20). (Theorem 4.2 in [KS] for q prime.) If all elements of H are of
low order, we use the sum-product type results developed earlier in the paper.

In the case q is a prime, Theorem A and Theorem C may be gotten by combining
a theorem by Konyagin and a theorem in the book by Konyagin and Shparlinski
[KS], except that the bound on r is slightly weaker. (See Remark 6.2.) Konyagin’s
theorem uses deep results in algebraic number theory such as Lehmer’s Conjecture
on the heights of algebraic integers which are not roots of unity. There are several
motivations to consider this type of problems. Konyagin’s motivation was to prove
the Heilbronn Conjecture on the Warring problem and certain partial cases on
Stechkin Conjecture on Gauss sums for composite moduli (see [KS], §6). This is
also related to the work of Robinson on the distribution of the solution of xm ≡ a
in residue classes (see [R]).

The method we use here is totally different from Konyagin’s. The main ingre-
dients of the proof are Freiman’s theorem and certain geometric techniques from
Bilu’s proof of Freiman’s Theorem (see [Bi]).

§1.

Notation.

1. For q ∈ N, Zq = Z/qZ.

2. Let x = (x1, · · · , xd), y = (y1, · · · , yd) ∈ Rd. Then xyT =
∑

i xiyi, where yT is
the transpose of the matrix y. If x ∈ Zd and y ∈ Zd

q , then the matrix multiplication
is done over Zq.
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3. Let ξ = (ξ1, . . . , ξd) ∈ Zd
q , P =

∏d
i=1[Ai, Bi] ⊂ Rd, and P = P ∩ Zd. A

generalized arithmetic progression is P = {xξT : x ∈ P}. When a progression P is
give, P and P are used with the above meaning. Sometimes we refer to a progression
by (ξ, P ), or (ξ,P).

4. A progression P given by ξ, P =
∏d

i=1[1, Js] is proper if |P| = |P|. We say P
is proper with respect to L if

{xξT : x ∈
d∏

i=1

[1, LJs] ∩ Zd}

is proper.

5. For A,B ⊂ Zq, and k ∈ N,

A + B ={a + b : a ∈ A, b ∈ B}, kA = (k − 1)A + A,

AB ={ab : a ∈ A, b ∈ B}, Ak = Ak−1A,

a ·B ={a}B (mod q), for a ∈ Z,

aB ={a}B, for a ∈ Zq.

6. For q ∈ N, eq(θ) = e2πiθ.

7. ‖x‖ = the distance from x to the nearest integer.

Lemma 1.0. Let y = (y1, · · · , yd) ∈ Zd with gcd(y1, · · · , yd) = 1. Then there
exists S ∈ SLd(Z) with y as an assigned row or column.

Proof. We do induction on d.

Let a = gcd(y2, · · · , yd). The assumption implies gcd(a, y1) = 1. Hence there
exist b, c ∈ Z, |b| ≤ |a|, |c| ≤ |y1| such that

y1b− ac = 1.

Let yi = ay′i for i = 2, · · · , d, and let S′ = (si,j) ∈ SLd−1(Z) be given by induction
with (y′2, · · · , y′d) as the first row. Then

S =




y1 y2 · · · yd

c y′2b · · · y′db
0 s2,1 · · · s2,d−1

0 · · ·
0 sd−1,1 · · · sd−1,d−1


 ∈ SLd(Z).

Remark 1.0.1. It is clear from our proof that S(i, j), the (i,j)-cofactor of S is
bounded by |y′1 · · · ŷ′j · · · y′d|.
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To prove the next lemma, we need the following from Bilu’s work on Freiman’s
Theorem. These are Lemma 6.6 and part of the proof of Theorem 1.2 in [Bi]. We
include them here for the reader’s convenience.

B1. For x ∈ Rm, B ⊂ Rm,

‖x‖B := inf{λ−1 : λx ∈ B}.

B2. Let e1, · · · , em be a basis of Rm, W = 〈e1, · · · , em−1〉, and π : Rm → W be
the projection. Let B be a symmetric, convex body. Then

volm−1(π(B)) ≤ m

2
‖em‖B volm(B),

where volm(B) is the volume of B ⊂ Rm.

B3. Let λ1, · · · , λm be consecutive minima related to ‖ · ‖B . Then there is a basis
f1, · · · , fm ∈ Z (called Mahler basis) such that

‖f1‖B ≤ λ1,

‖fi‖B ≤ i

2
λi, for i = 2, · · · , m.

B4. Let f1, · · · , fm ∈ Z be the Mahler basis as given in B3 and ρi = ‖fi‖B . Then
for x =

∑
i xifi,

‖x‖ρ := max
i

ρi |xi|.

B5. For x ∈ Rm, we have

m−1‖x‖B ≤ ‖x‖ρ ≤ m!2

2m−1
‖x‖B .

Lemma 1.1. Let a progression P be given by ξ ∈ Zd
q , and P =

∏d
i=1[−Ji, Ji].

Assume there exists L > 0 such that the progression (ξ,
∏d

i=1[1, LJi]) is not proper.

Then there exists v ∈ N, and a progression P ′ given by ξ′ ∈ Zd−1
q , P ′ =

∏d−1
i=1 [−J ′i , J

′
i ],

satisfying

(i). v < L mini Ji, and v|q
(ii).

∏d−1
i=1 J ′i < Cd

L
v

∏d
i=1 Ji, where Cd = d

[ (d−1)!2

2d−2 (d− 1)
]d−1

.

(iii). v · {xξT : x ∈ P} ⊂ {x′ξ′T : x′ ∈ P′}

Proof. Let v = gcd(y1, · · · , yd). We may clearly assume that v|q.
Let y′ = (y′1, . . . , y′d) = ( 1

v y1, . . . , 1
v yd). Hence gcd(y′1, . . . , y′d) = 1.

Let e1, · · · , ed be the standard basis of Rd, and let S ∈ SLd(Z) with edS = y′

be given by Lemma 1.0.
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For x ∈ P, let x̄ ∈ Zd−1 and ξ̄ ∈ Zd−1
q be defined by

xS−1 = (x̄, ∗), (1.1)

and
vSξT = (ξ̄, 0)T . (1.2)

Hence
vxξT = (xS−1)(vSξT ) = x̄ξ̄ T . (1.3)

Let
B = PS−1. (1.4)

Then

vol(B) = 2d
d∏

i=1

Ji. (1.5)

Denote π the orthonormal projection on [e1, . . . , ed−1]. Let f1, · · · , fd−1 be a
Mahler basis for π(B) ⊂ [e1, · · · , ed−1].

For x̄ =
∑d−1

i=1 x′ifi ∈ π(B), the second inequality in B5 implies

|x′i| ≤
(d− 1)!2

2d−2
‖x̄‖

π(B) ρ−1
i ≤ cdρ

−1
i , ∀i (1.6)

where cd = (d−1)!2

2d−2 .

Let
J ′i = cdρ

−1
i , (1.7)

and

P ′ =
d−1∏

i=1

[−J ′i , J
′
i ]. (1.8)

Denote
x′ = (x′1, · · · , x′d−1),

F =




f1

·
·
·

fd−1


 ∈ GLd−1(Z),

and
ξ′T = F ξ̄ T .

Then
x̄ξ̄T = (x′F )ξ̄T = x′ξ′T .

Hence (1.3) implies
vxξT = x′ξ′T . (1.9)

This is property (iii) in our conclusion.
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From the choice of S, we have

ed = y′S−1 =
y

v
S−1 ∈ L

v
PS−1 =

L

v
B. (1.10)

Hence (cf B1)

‖ed‖B
≤ L

v
. (1.11)

Combining (1.11), B2, and (1.5) we have

vol(π(B)) <
dL

2v
vol(B) = 2d dL

2v

d∏

i=1

Ji. (1.12)

On the other hand, the first inequality in B5 on π(B) gives

{x : |xi| ≤ ρ−1
i } ⊂ {x : ‖x‖π(B) ≤ d− 1}

Hence

2d−1
d−1∏

i=1

ρ−1
i ≤ (d− 1)d−1vol(π(B)). (1.13)

Putting (1.7), (1.13) and (1.12) together , we have

d−1∏

i=1

J ′i = cd−1
d

∏
ρ−1

i ≤ cd−1
d 2−(d−1)(d− 1)d−1vol(π(B))

≤ cd−1
d 2−(d−1)(d− 1)d−12d dL

2v

d∏

i=1

Ji. (1.14)

This is (ii) in the Lemma. ¤

Remark 1.1.1. In Lemma 1.1, we take P =
∏d

i=1[−Ji, Ji] for the convenient
notation, because we need a symmetric body to use Bilu’s result. Clearly, we can
apply the lemma to the progression P = (ξ, P ) with P =

∏d
i=1[1, Ji]. Then P ′ is

given by (ξ′,
∏d−1

i=1 [1, J ′i ])

§2

Lemma 2.1. Let P = (ξ, P ) be the progression with ξ = (ξ1, · · · , ξd) ∈ Zd
q , and

P =
∏d

s=1[1, Js] ⊂ Rd, where the integers

J1 ≥ · · · ≥ Jd > 0.

Assume there exists ε > 0 and a ∈ Z∗q satisfying

|P ∩ aP| > ε|P|. (2.1)

Then for any index i = 1, . . . , d, one of the following alternatives hold.
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(i). Ji < 2
ε

(ii). P is not proper with respect to 9
ε

(iii). there exists ki ∈ Z, and k′ = (k′1, · · · , k′d) ∈ Zd, such that

0 < ki <
1
ε
,

|k′s| <
8
ε2

for all i ≤ s ≤ d,

and
akiξi = k′ξT .

Proof. Denote
Ω = {x ∈ P : axξT ∈ P ∩ aP}. (2.2)

Assume (ii) fails. In particular, the arithmetic progression P in Zq is proper. It
follows from (2.1) that

|Ω| > ε|P| = εJ1 · · · Jd . (2.3)

Hence there exist x1, · · · , x̂i, · · · , xd ∈ Z such that

|{xi : x = (x1, · · · , xd) ∈ Ω}| > εJi .

Assume (i) fails as well. Then εJi ≥ 2 and there is ki ∈ Z,

0 < ki <
1
ε

(2.4)

with akiξi ∈ P − P. Hence

akiξi = k′ξT with k′ = (k′1, · · · , k′d) ∈
d∏

s=1

[− Js, Js

] ∩ Zd. (2.5)

To show assumption (iii) holds, we need to show |k′s| < 8
ε2 , for i ≤ s ≤ d. We

assume
|k′t| ≥

8
ε2

for some t ∈ {i, · · · , d}. (2.6)

Let

R =
[
4
ε

]
, (2.7)

` = 2 min
s

Js

|k′s|
, (2.8)

S = {xξT + r`kiξi : x ∈ Ω, r = 1, · · · , R}, (2.9)

and
S = {x + r`kiei : x ∈ Ω, r = 1, · · · , R}.
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For r ∈ N, 1 ≤ r ≤ R, by (2.7), (2.8), (2.4) and (2.6), we have

r`ki <
4
ε

2
Jt

|k′t|
1
ε
≤ Jt ≤ Ji . (2.10)

Hence
S ⊂ P+ [0, Ji]ei.

The above inclusion and the assumption that P is proper with respect to 9
ε imply

|aS| = |S| = |S| < 2J1 · · · Jd. (2.11)

On the other hand, for any x ∈ Ω, we have by (2.2)

axξT = x̄ξT ∈ P (2.12)

for some x̄ = x̄(x) ∈ P. Let Ω̄ ⊂ P be the set of all such x̄. Then there is a
one-to-one correspondence between Ω and Ω̄. Putting (2.5) and (2.12) together, we
have (as any element in a · S,)

(
cf (2.9)

)

axξT + ar`kiξi = (x̄ + r`k′)ξT . (2.13)

Since for s ∈ {1, · · · , d},

|r`k′s| <
4
ε

2
Js

|k′s|
|k′s| <

8
ε
Js, (2.14)

we have

x̄ + r`k′ ∈
d∏

s=1

[
−

(
1 +

8
ε

)
Js ,

(
1 +

8
ε

)
Js

]
. (2.15)

The failure of assumption (ii) and (2.15) imply that a · S is proper.

Let σ be such that Jσ

|k′σ| = mins
Js

|k′s| . Then `k′σ = 2Jσ and the sets P + `k′,P +
2`k′, · · · ,P+ R`k′ are disjoint. Hence the sets Ω + `k′, Ω + 2`k′, · · · , Ω + R`k′ are
all disjoint. Therefore,

|aS| =
∣∣

R⊔
r=1

(Ω̄ + r`k′)ξT
∣∣ = |Ω̄| R > εJ1 · · · Jd R > 3J1 · · · Jd,

which contradicts (2.11). ¤

Proof of Theorem B.

We will use the notion c(K ′) for various (maybe different) constants depending
on K ′.

Assume A ⊂ Zp such that K < |A| < p
K and |A + θA| < K ′|A|, where θ ∈ Z∗p

satisfies the assumption of Theorem B . By Ruzsa’s inequality

|A−A| ≤ |A + B|2
|B|
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for |A| = |B|, we have
|A−A| < (K ′)2|A|.

Identifying Zq ' {0, 1, . . . , q−1}, we apply Freiman’s theorem to A, first considered
as a subset of Z with doubling constant ≤ 2K ′2 and A = −A. it follows from
Freiman’s theorem that A ⊂ P, where P is a generalized d-dimensional progression
with d < c(K ′), |P||A| < c(K ′). Since |A + θA| < K ′|A|, there is c ∈ Fp such that

|(c−A) ∩ θA| ≥ |A|2
|A + θA| >

|A|
K ′ ,

and thus

|(A−A) ∩ θ(A−A)| > |A|
K ′ .

Let P̂ = P − P. Then |P̂| = c(K ′) |P|. We get

|P̂ ∩ θP̂| > c(K ′)|P̂| (2.16)

Our aim is to apply Lemma 2.1 with ε = c(K ′) and a = θ. Some simplifications
occur because q being prime. We want to rule out alternatives (i) and (ii). If (i)
holds for some i = 1, · · · , d, we may clearly replace P̂ by a progression P1 ⊂ P̂ of
dimension d− 1, c(K′)

2 |P̂| ≤ |P1| and still satisfying

|P1 ∩ θP1| > c1(K ′)|P| ≥ c1(K ′)|P1|. (2.17)

If (ii) holds, apply Lemma 1.1 to obtain a reduction of d to d − 1. Observe that
since the integer v in Lemma 1.1 satisfies v|p and

v < c(K ′)min Ji < c(K ′)|A| < c(K ′)
p

K
< p,

necessarily v = 1 (assuming K large enough). Thus by Lemma 1.1, P ⊂ P1, where
|P1| < c(K ′)|P| and P1 of dimension d − 1. In both cases (either (i) or (ii)), we
obtain P1 of dimension d− 1 such that

c(K ′)|P| < |P1| < c(K ′)|P|

and (2.17) holds.

Continuing the process, we get a progression P̄ satisfying (2.17) and alternative
(iii) of Lemma 2.1, for all i = 1, · · · , d1, where d1 is the dimension of P̄ and
ε = ε(K ′). Thus

P̄ =
{ d1∑

i=1

xiξi : 0 ≤ x ≤ Ji, xi ∈ Z
}

and for all i = 1, · · · , d1 there are ki ∈ Z, k′i,s ∈ Z(1 ≤ s ≤ d1) satisfying

θkiξi =
d1∑

s=1

k′i,sξs (2.18)
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and
0 < ki < c(K ′), (2.19)

|k′i,s| < c(K ′)
Js

Ji
, for all s = 1, · · · , d1. (2.20)

For (2.20), we use (2.10) which is valid for all s = 1, · · · , d1

(
rather than (2.6) which

is a consequence
)
.

Returning to (2.18), it follows that the polynomial

p(x) = det
[
(xki − k′i,i)ei,i −

∑

i6=j

k′i,jei,j

]
∈ Zp[x] (2.21)

has θ as a root, where ei,j is the matrix with (i, j)−entry 1 and 0 elsewhere. Clearly
p(x) is of degree d1 ≤ d ≤ c(K ′) with non-vanishing xd1-coefficient by (2.19). By
(2.19), (2.20) all coefficients of (2,21) are bounded by

∑

π∈Sym(d1)

d1∏

i=1

(|ki| δi,π(i) + |k′i,π(i)|) < c(K ′)d1
∑

π

d1∏

i=1

Jπ(i)

Ji
< c′(K ′).

This contradicts to the assumption on θ for K sufficiently large. ¤
Remark. Quantitatively speaking, the previous argument will require K ′ to be at
most sublogarithmic in p, since we do rely on Freiman’s theorem (cf [C]). Thus we
may ask the question how large the quantity

min
pε<|A|<p1−ε

|A + θA|
|A| (2.22)

can be made to some θ ∈ Fp. Considering sets A of the form

A =
{ d∑

i=1

xiθ
i : 0 ≤ xi ≤ M

}
,

it is easily seen that (2.22) is less than exp(
√

log p).

§3.

Lemma 3.1. Let P = (ξ, P ) be a progression with ξ = (ξ1, · · · , ξd) ∈ Zd
q , and

P =
∏d

s=1[1, Js] ⊂ Rd, where the integers

J1 ≥ · · · ≥ Jd > 0.

Assume
δ0

∏
Ji < |P| < q1−3γ (3.1)

with γ > 0 a constant.
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Let ε > 0,M > 0 (ε small, M large) satisfy

δ−1
0

(
1
ε

)3d+10

< M < qγ/2. (3.2)

Assume
|πq′(P)| > M for all q′|q, q′ > qγ . (3.3)

Let B ⊂ Z∗q such that

|πq′(B)| > M for all q′|q, q′ > qγ/10d (3.4)

denoting
πq′ : Zq → Zq′

the quotient map mod q′.

Then there is a ∈ B such that

|aP ∩ P| < ε|P|. (3.5)

Lemma 3.1 will be proved by assuming |aP ∩ P| > ε|P| for all a ∈ B, applying
Lemma 2.1 (on a progression which may have fewer generators) and ruling out
alternatives (i)-(iii) to get a contradiction.

We will first make a possible reduction of the number d of generators of P to
ensure properness with respect to some constant, using Lemma 1.1.

The reduction.

We take
ε0 = ε. (3.6)

Assume
δ0|P| ≤ |P|, (3.7)

and
P is not proper with respect to

9
ε0

.

Lemma 1.1 allows then a reduction of the dimension of the progression P in the
following sense:

There is v0 ∈ N, and ξ(1) ∈ Zd−1
q ,P1 =

∏d−1
i=1 [1, J1,i] ∩ Zd−1 satisfying

v0 <
9
ε0

min Ji, v0|q,

|P1| < C

ε0v0
|P|, (3.8)

v0 · P ⊂ P1. (3.9)
12



By (3.9), (3.7) and (3.8),

|P1| ≥ |P1| ≥ |P|
v0

>
δ0

v0
|P| > δ1 |P1|, (3.10)

with
δ1 = cε0δ0. (3.11)

Take
ε1 = εδ1. (3.12)

and repeat the preceding.

If P1 is not proper with respect to 9
ε1

, apply one more time Lemma 1.1 to obtain

v1 ∈ N, and ξ(2) ∈ Zd−2
q ,P2 =

∏d−2
i=1 [1, J2,i] ∩ Zd−2 satisfying

v1 <
9
ε1

min J1,i, v1|q,

|P2| < C

ε1v1
|P1|, (3.13)

v1 · P1 ⊂ P2. (3.14)

By (3.14), (3.10) and (3.13),

|P2| ≥ |P2| ≥ |P1|
v1

>
δ1

v1
|P1| > δ2 |P2|, (3.15)

with
δ2 = cε1δ1. (3.16)

Notice that
P2 ⊃ v0v1P. (3.17)

Take
εr−1 = εδr−1. (3.18)

After applying Lemma 1.1 r times, we have vr−1 ∈ N, and ξ(r) ∈ Zd−r
q ,Pr =∏d−r

i=1 [1, Jr,i] ∩ Zd−r satisfying

vr−1 <
9

εr−1
min Jr−1,i, vr−1|q, (3.19)

|Pr| < C

εr−1vr−1
|Pr−1|, (3.20)

vr−1 · Pr−1 ⊂ Pr. (3.21)

Same reasoning as before,
|Pr| ≥ |Pr| > δr |Pr|, (3.22)

with
δr = cεr−1δr−1. (3.23)

13



Also,
v0v1 · · · vr−1P ⊂ Pr. (3.24)

We have the following

1. cε0ε1 · · · εr−1δ0 = δr

2. δr = cεδ2
r−1

3. εr−1 = c(εδ0)2
r−1

3’. Assume δ0 > ε. Then εr−1 > c ε2r

> (cε)2
d

3”. ε0ε1 · · · εr−1 > c εε22+23+···+2r

> c ε2r+1 ≥ c ε2d+1

4. |P | > c ε0ε1 · · · εr−1v0v1 . . . vr−1|Pr|
4’. C

ε0ε1···εr−1
|P| > v0v1 · · · vr−1

5.
(

C
ε

)2d+1

|P| > v0v1 . . . vr−1

To see the above (in)equalities hold, we note that our notations (3.11), (3.16),
... , (3.23) imply (1); (3.18) and (3.23) imply (2); (3.18) and (2) imply (3); (3.8),
(3.13), ... , (3.20) imply (4); (4’) and (3”) imply (5).

Assume a ∈ Zq and
|P ∩ aP| > ε|P|.

By (3.24), (3.7), (4), (1), and (3.18),

|Pr ∩ aPr| ≥ |(v0v1 . . . vr−1P) ∩ a(v0 . . . vr−1P)|
≥ (v0v1 . . . vr−1)−1|P ∩ aP|
> (v0 . . . vr−1)−1εδ0 |P|
> cεε0 . . . εr−1δ0 |Pr|
= cεδr| Pr|
= cεr|Pr|, (3.25)

where
εr = εδr. (3.26)

We need the following little fact from algebra to prove Lemma 3.2.

Fact A. Let A ⊂ Zq, k ∈ Z, and q′ = q
gcd(k,q) . Then |πq′(A)| = |k ·A|.

Proof of Lemma 3.1. We assume after r reductions Pr is proper with respect to
9
εr

. (If P is already proper with respect to 9
ε , then r = 0 and P0 = P.) We apply

Lemma 2.1 to P ′ = Pr, replacing ε by εr. By our construction, alternative (ii) in
Lemma 2.1 is ruled out.

Assume J ′i := Jr,i ordered decreasingly J ′1 ≥ J ′2 ≥ · · · ≥ J ′d′ .
14



Let ξ′i = ξ
(r)
i ∈ {1, 2, . . . , q − 1} ' Zq\{0} and define

q1 = gcd (ξ′1, q)

q2 = gcd (ξ′1, ξ′2, q)
...

qd′ = gcd (ξ′1, · · · , ξ′d′ , q).

Claim. qd′ ≤ q1−γ .

Proof of Claim. Assume
qd′ > q1−γ .

Let w = q
qd′

< qγ . Then (5), (3.1) and (3.2) imply

v0v1 · · · vr−1w ≤
(

C

ε

)2d+1

|P| qγ <

(
C

ε

)2d+1

1
δ0

q1−2γ < q1−γ . (3.27)

Also,
wξ′1 = · · · = wξ′d′ = 0 (mod q),

hence, from (3.24)
v0v1 · · · vr−1wP = 0 (mod q).

By Fact A,
πq′(P) = 0 (3.28)

with
(
by (3.27)

)

q′ =
q

gcd (q, v0 . . . vr−1w)
> qγ .

This contradicts (3.3). ¤
Therefore, there is i ∈ {1, . . . , d′} such that

qi−1

qi
> q

γ
d . (3.29)

q

q1
,
q1

q2
, . . . ,

qi−2

qi−1
≤ q

γ
d (3.30)

Apply Lemma 2.1 considering this particular index i. Alternative (ii) is ruled out
by construction.

Claim. Alternative (i) fails.

Proof. If (i) holds, we get

(
C

ε

)2d+1

>
2
εr

> J ′i ≥ J ′i+1 ≥ · · · ≥ J ′d′ . (3.31)

Let
v = v0 . . . vr−1

q

qi−1
.

15



By (3.30), (5), (3.1) and (3.2),

v ≤ v0 · · · vr−1q
γ <

(
C

ε

)2d+1

|P| qγ < cq1−3γ+ γ
2 qγ < q1−γ

Hence, from the definition of qi−1

vP = v0v1 · · · vr−1
q

qi−1
P ⊂ q

qi−1
Pr

=
q

qi−1

{ ∑

s≥i

xsξ
′
s : xs ≤ J ′s

}
. (3.32)

(3.31), (3.32) imply

|vP| ≤ J ′iJ
′
i+1 . . . J ′d′ <

(
C

ε

)d2d+1

< M.

Hence Fact A implies
|πq′(P)| = |vP| < M

with q′ = q
gcd(q,v) > qγ again contradicting (3.3). ¤

So alternative (iii) holds and there are ki, (k′s)1≤s≤d′ ∈ Z such that

0 < ki <
1
εr

(3.33)

|k′s| <
8
ε2
r

for i ≤ s ≤ d′ (3.34)

akiξ
′
i =

d′∑
s=1

k′sξ
′
s (mod q). (3.35)

Since qi−1 = gcd(ξ′1, . . . , ξ′i−1, q), (3.35) implies

akiξ
′
i =

∑

s≥i

k′sξ
′
s (mod qi−1). (3.36)

By (3.33), (3.34), (3’) and (3.2), the coefficients (ki, k
′
i, . . . , k′d′) in (3.36) ranges in

a set of at most 1
εr

(
8
ε2

r

)d′
<

(
C
ε

)(2d+1)2d+1

< M1/2 elements.

Recalling (3.29) and (3.4) ∣∣π qi−1
qi

(B)
∣∣ > M (3.37)

and we may consider elements B̄ ⊂ B, |B̄| > M , such that π qi−1
qi

∣∣
B̄

is one-to-one.

Assuming |P ∩ aP| > ε|P| for all a ∈ B̄, we have for all a ∈ B̄, cf. (3.25)

|P ′ ∩ aP ′| > cεr|P ′| (3.38)

and the preceding applies, providing in particular a representation (3.36).
16



In view of the bound on the number of coefficients in (3.36), there is B′ ⊂ B̄,
|B′| > M1/2 such that for all a ∈ B′, (3.36) holds with the same coefficients
ki, k

′
s(s ≥ i). Taking any a1, a2 in B′

(a1 − a2)kiξ
′
i = 0 (mod qi−1)

(a1 − a2)ki = 0
(
mod

qi−1

qi

)
(3.39)

implying

1 =
∣∣π qi−1

qi

(kiB
′)

∣∣ ≥ 1
|ki|

∣∣π qi−1
qi

(B′)
∣∣ =

|B′|
|ki| > εrM

1/2

a contradiction.

This proves Lemma 3.1.

Following the same arguments as in Lemma 3.1, we also obtain:

Lemma 3.1′. Under the assumptions of Lemma 3.1, there exit elements a1, . . . , aR

in B, with R ∼ M
1
10 such that

|asP ∩ as′P| < ε|P| for s 6= s′. (3.40)

Proof. Let B̄ ⊂ B be the set constructed in the proof of Lemma 3.1.

Assume a1, . . . , ar ∈ B̄ obtained satisfying (3.40) and suppose

max
1≤s≤r

|asP ∩ aP| > ε|P| for all a ∈ B̄.

Hence, there is some s = 1, . . . , r and B1 ⊂ B̄ with

|B1| > 1
r
|B̄| > M

R
> M9/10

and such that
|P ∩ a

as
P| > ε|P| for all a ∈ B1. (3.41)

It follows that all elements a
as

, a ∈ B1, have a representation (3.36). Passing again
to a subset B′

1, |B′
1| > M9/10−1/2 = M2/5, we may ensure the same coefficients

ki, (k′s)s≥i and get a contradiction as before.

§4.

Let A ⊂ Zq such that
|A + A| < K|A| (4.1)

and
1 ¿ |A| < q1−4γ . (4.2)

Identifying Zq ' {0, 1, . . . , q−1}, we apply Freiman’s theorem to A, first considered
as a subset of Z (with doubling constant ≤ 2K).

17



From [C], we obtain
d ≤ 2K

and a progression P given by ξ = (ξ1, . . . , ξd) ∈ Zd;P =
∏d

i [0, Ji], with J1 ≥ J2 ≥
· · · ≥ Jd in N, such that

A ⊂ P =
{
xξT : x ∈ P} (4.3)

and
|P| < CK3 |A|. (4.4)

Applying πq : Z→ Zq, P becomes a progression in Zq containing A ⊂ Zq. Assuming

CK3
< qγ/2, (4.5)

by (4.5), (4.4), (4.2) and (4.4), we have

q1−3γ > CK3
q1−4γ > |P| ≥ |P| ≥ |A| > C−K3 |P|. (4.6)

Thus assumption 3.1 in Lemma 3.1 holds with δ0 = C−K3
.

Let ε,M satisfy (3.2), i.e.

CK3
(

1
ε

)10K+5

< M < qγ/2 (4.7)

and moreover
ε < C−K3

.

Assume B ⊂ Z∗q such that |πq′(B)| ≤ |πq′(A)|, (e.g. B ,contained in a translate of
A) for all q′|q and q′ > qγ . Furthermore, assume B satisfies

|πq′(B)| > M, if q′|q and q′ > q
γ

20K . (4.8)

Since by assumption also

|πq′(P)| ≥ |πq′(A)| ≥ |πq′(B)| > M, if q′|q and q′ > qγ ,

conditions (3.3), (3.4) of Lemma 3.1 are satisfied.

Apply Lemma 3.1’.

Let a1, . . . , aR ∈ B satisfy (3.5). (We take R < M
1
10 .) Write

∣∣∣∣
⋃

r≤R

arA

∣∣∣∣ ≥ R|A| −
∑

r 6=s

|arA ∩ asA|

≥ R|A| −
∑

r 6=s

|arP ∩ asP|

> R|A| −R2εCK3 |A|. (4.9)

Taking R = 1
2 ε C−K3

, (4.9) implies

|AB| ≥
∣∣∣∣

⋃

r≤R

arA

∣∣∣∣ >
R

2
|A| > 1

ε
C−K3 |A|. (4.10)

18



Assume
M > C50K+10

(4.11)
(
which implies the first inequality of (4.7), hence it also implies (4.5)

)
and take

1
ε

= M10−K−6
.

From (4.10) and (4.11)
|AB| > M10−K−7 |A|. (4.12)

Replacing 4γ by γ and summarizing, we proved the following:

Lemma 4.1. Let A ⊂ Zq satisfy

|A| < q1−γ (4.13)

|A + A| < K|A|. (4.14)

Let M satisfy
C50K+10

< M < qγ/8. (4.15)

Let B ⊂ Z∗q such that

|πq′(B)| ≤ |πq′(A)|, if q′|q and q′ > qγ ,

also
|πq′(B)| > M, if q′|q and q′ > qγ/80K . (4.16)

Then
|AB| > M10−K−7 |A|. (4.17)

§5.

Proposition 1.

Let κ > 0 be a small and M a large constant.

Let H ⊂ Z∗q (q large) satisfy

|πq′(H)| > M whenever q′|q, q′ > qκ. (5.1)

Then there is k, r ∈ N such that

k < qκ′ (5.2)

r < log2 qκ′ (5.3)

|kHr| > q1−κ′ (5.4)

where
κ′ = κ′(κ,M) → 0 for κ → 0, M →∞ (independent of q).
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Proof.

We describe the construction. Given any

κ1 > κ1/2 (5.5)

and denote

K = min
{

(log log M)1/2,
κ1

100κ

}
. (5.6)

Let A0 = H and Aα = kαHrα be the set obtained at stage α. Assume |Aα| < q1−κ1 .

We distinguish the following cases.

(i) |Aα + Aα| > K|Aα|
Take then kα+1 = 2kα and rα+1 = rα

(ii) |Aα + Aα| ≤ K|Aα|
Apply Lemma 4.1 with A = Aα, B = H, γ = κ1. In (5.1) we can assume

M < q
γ
10 . Conditions (4.15) and (4.16) clearly hold, because of (5.6). Hence

|AαH| > M10−K−7 |Aα| > K|Aα|.

The second inequality is again by (5.6). Hence

|kαHrα+1| > K|Aα|.

In this case we take kα+1 = kα and rα+1 = rα + 1.

Therefore
|Aα+1| > K|Aα|, (5.7)

with

kα+1 ≤ 2kα (5.8)
rα+1 ≤ rα+1.

To reach size q1−κ1 , the number of steps is at most log q
log K , because after s steps, by

(5.7)
q ≥ |Aα+1| > Ks|H| ≥ Ks.

By (5.8), we have in (5.2)

k ≤ 2
log q
log K = qκ2 .

Hence
κ2 =

log 2
log K

∼ 1
min{log log log M, log 1

κ}
,

by (5.5) and (5.6).

We conclude the proof of Proposition 1 by taking κ = max{κ1, κ2}.
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§6.

We need the following to prove Theorem A.

Let ν, ν′ : Zq → R be functions. We recall

F1. ν̂(ξ) =
∑

x∈Zq
ν(x)eq(−xξ). If ν is a probability measure, i.e. 0 ≤ ν(x) ≤ 1,

then |ν̂(ξ)| ≤ 1.

F2. ν ∗ ν′(x) =
∑

y∈Zq
ν(x− y)ν′(y).

F3. supp (ν ∗ ν′) ⊂ Supp ν + Supp ν′.

F4. ν(x) = 1
q

∑
ξ∈Zq

ν̂(ξ)eq(xξ).

F5. ν̂ ∗ ν′(ξ) = ν̂(ξ)ν̂′(ξ).

Let 0 ≤ x ≤ 5π
6 . Then

T1. sin x > x
2π . Therefore, |eq(1)− 1| > 1

q .

T2. cos x < 1− x2

4π . Therefore, |eq(1) + 1| < 2− π
2

1
q2 .

T3. |eq(x)− eq(y)| = |2 sin 2π
2q (x− y)|.

Proof of Theorem A. Let κ > 0, M be constants as in Proposition 1. Let q ∈ N
be odd. Let H ⊂ Z∗q satisfy the following conditions:

|πp(H)| ≥ 2 for all primes p|q (6.1)

|πq′(H)| > M for all q′|q, q′ > qκ (6.2)

We want to show that
k1H

r = Zq

for some k1, r ∈ N satisfying

r < log qκ′ (6.3)

k1 < q5κ′ . (6.4)

By (6.2), Proposition 1 applies. Let k, r satisfy (5.2)-(5.4).

Denote
D =

{
q′ ∈ N : q′ 6= 1 and q′|q},

hence
|D| < q

1
log log q . (6.5)

For q′ ∈ D, we have

|πq′(kHr)| ≥ |kHr|
q/q′

>
q1−κ′

q/q′
= q′q−κ′ (6.6)

while by (6.1), also
|πq′(kHr)| ≥ |πq′(H)| ≥ 2. (6.7)
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Take a subset Ωq′ ⊂ kHr such that πq′ |Ωq′ is one-to-one and

|Ωq′ | ≥ max {2, q′q−κ′}. (6.8)

Define the probability measures

µq′ =
1

|Ωq′ |
∑

x∈Ωq′

δx, (6.9)

δx being the indicator function, and their convolution

µ(x) = *
q′∈D

µq′(x)

=
∑

y1,··· ,y|D|−1

µq|D|
(x− y1 − · · · − y|D|−1) · · ·µq2(y2)µq1(y1).

(6.10)

Then by F3,
supp µ ⊂

∑

q′∈D
supp µq′ ⊂

∑

q′∈D
Ωq′ ⊂ |D|kHr. (6.11)

We estimate the Fourier coefficients

µ̂

(
a

q

)
=

∑

x∈Zq

eq(−ax)µ(x)

for 0 < a < q.

Let a
q = a′

q′ where q′|q and (a′, q′) = 1. From (6.10) and F5

∣∣∣∣µ̂(
a

q
)
∣∣∣∣ ≤

∣∣∣∣µ̂q′

(
a′

q′

)∣∣∣∣ =
1

|Ωq′ |

∣∣∣∣
∑

x∈Ωq′

eq′(a′x)
∣∣∣∣. (6.12)

Claim 1.
∣∣µ̂(

a
q

)∣∣ < 1− 1
16q−2κ′ .

Proof of Claim 1.

Assume
∣∣µ̂(

a
q

)∣∣ > 1 − τ . We want to find a lower bound on τ . Squaring both
sides of (6.12), we obtain

∑

x,y∈Ωq′

cos
2πa′

q′
(x− y) > (1− τ)2|Ωq′ |2. (6.13)

Choose an element x0 ∈ Ωq′ such that

∑

y∈Ωq′

cos
2πa′

q′
(x0 − y) > (1− τ)2|Ωq′ |. (6.14)

By T3, we write

|eq′(a′x0)− eq′(a′y)|2 =
[
2 sin

2πa′

q′
(x0 − y)

2

]2

= 2− 2 cos
2πa′

q′
(x0 − y).
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Together with (6.14) give
∑

y∈Ωq′

|eq′(a′x0)− eq′(a′y)|2 ≤ 2|Ωq′ | − 2(1− τ)2|Ωq′ | < 2τ |Ωq′ |. (6.15)

From (6.15), ∣∣∣∣
{
y : |eq′(a′x0)− eq′(a′y)| > 2

√
τ
}∣∣∣∣ ≤

1
2
|Ωq′ |.

So there is a subset Ω′ ⊂ Ωq′ , |Ω′| > 1
2 |Ωq′ | such that for all y ∈ Ω′

|eq′(a′x0)− eq′(a′y)| < 2
√

τ ,

hence T1 implies ∥∥∥∥
a′x0

q
− a′y

q

∥∥∥∥ < 2
√

τ . (6.16)

Therefore
|πq′(Ω′)| = |πq′(a′Ω′)| ≤ 2

√
τq′ + 1.

Since πq′ |Ω′ is one-to-one, also

1
2
q′q−κ′ < |Ω′| ≤ 2

√
τq′ + 1 (6.17)

by (6.8). This gives a lower bound

τ >
1
16

q−2κ′ . ¤

Take
` = [q3κ′ ] (6.18)

Claim 2. Let µ(`) be the `-fold convolution of µ. Then suppµ(`) = Zq.

Proof of Claim 2. For x ∈ Zq, write

µ(`)(x) =
1
q

+
1
q

q∑
a=1

µ̂(`)

(
a

q

)
eq(ax). (6.19)

By Claim 2 and (6.18), the second term in (6.19) is at most

max
1≤a<q

∣∣∣∣µ̂(`)

(
a

q

)∣∣∣∣ = max
1≤a<q

∣∣∣∣µ̂
(

a

q

)∣∣∣∣
`

<

(
1− 1

16q2κ′

)q3κ′

< e−qκ′
<

1
q
.

Hence µ(`)(x) > 0. ¤
Hence, putting together Claim 2, (6.11), (6.18), (6.5) and (5.2), we have

Zq = ` supp µ = ` |D| kHr = k1H
r
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with k1 ≤ q3κ′q1/ log log qqκ′ < q5κ′ . ¤

Remark 6.1. It is much simpler to prove the following weaker bound
∣∣∣∣µ̂q′

(
a′

q′

)∣∣∣∣ < 1− π

2
1

(q′)3
.

Proof.

Since |Ωq′ | ≥ 2, there are elements x1, x2 ∈ Ωq′ with πq′(x1) 6= πq′(x2).

Since (a′, q′) = 1, also πq′(a′x1) 6= πq′(a′x2). Therefore, by T2,

|eq′(a′x1) + eq′(a′x2)| ≤ |eq′(1) + 1| < 2− π

2
1

(q′)2

Write
∣∣∣∣

∑

x∈Ωq′

eq′(a′x)
∣∣∣∣ ≤ (|Ωq′ | − 2) + |eq′(a′x1) + eq′(a′x2)|

< |Ωq′ | − π

2
1

(q′)2
.

Therefore ∣∣∣∣µ̂q′

(
a′

q′

)∣∣∣∣ < 1− π

2
1

(q′)3
. ¤

Remark 6.2. For q prime, Theorem A has a simpler proof, which gives a slightly
weaker bound on r. In this case, Z∗q is a cyclic group. The condition on H ⊂ Z∗q
is simply |H| > M with M large. It follows that H contains an element θ ∈ H of
multiplicative order t >

√
M . Assuming (as we may) that 1 ∈ H, it follows that

{1, θ, · · · , θr} ⊂ Hr.

We distinguish 2 cases.

Case 1. t ≥ log q
(log log q)1/2 .

Take r0 & log q(log log q)4.

Using the inequality

max
(a,q)=1

∣∣∣∣
r0∑

x=1

eq(aθx)
∣∣∣∣ < r0

(
1− c

(log q)2

)

due to Konyagin (see [KS], p. 26), simple application of the circle method implies

kHr0 = Zq with k < C(log q)3.

Case 2. t < log q
(log log q)1/2 .
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Denote ϕ(t) = |Z∗t |. Use then Theorem 4.2 from [KS]

max
(a,q)=1

∣∣∣∣
t∑

x−1

eq(aθx)
∣∣∣∣ < t− c(ρ)q−2/ρ for 2 ≤ ρ ≤ ϕ(t). (6.20)

Hence
kHt = Zq with k <

1
c(ρ)

(log q)2q2/ρ.

Since ϕ(t) → ∞ for M → ∞, we may achieve k < c(κ′)qκ′ with κ′(M) → 0 as
M →∞.

§7.

Corollary 3.

1. Let H ⊂ Z∗q satisfy the assumption (5.1) of Proposition 1 and κ′ be as in
Proposition 1. Let q′|q, q′ > qκ′ and (a, q′) = 1.

Let r ∈ N, r > κ′ log q.

Then

max
x,y∈Hr

∥∥∥∥
a

q′
(x− y)

∥∥∥∥ > q−2κ′ . (7.1)

2. Let H < Z∗q be a multiplicative subgroup satisfying assumption (5.1) of Proposi-
tion 1.

Let q′|q, q′ > qκ′ and (a, q′) = 1.

Then

max
x,y∈H

∥∥∥∥
a

q′
(x− y)

∥∥∥∥ > q−2κ′ . (7.2)

Proof.

By (5.4)

|πq′(kaHr)| = |πq′(kHr)| > q1−κ′

q/q′
= q′q−κ′ > 1. (7.3)

Hence there are elements z, w ∈ kHr s.t.

∥∥∥∥
a

q′
(z − w)

∥∥∥∥ ≥ q−κ′ . (7.4)

Writing z = x1 + · · ·+ xk, w = y1 + · · ·+ yk with xi, yi ∈ Hr, it follows that

max
x,y∈Hr

∥∥∥∥
a

q′
(x− y)

∥∥∥∥ ≥
1
k

q−κ′ > q−2κ′ .

by (5.2).
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Corollary 4.

1. Let H ⊂ Z∗q satisfy conditions (6.1), (6.2) and κ′ be as in Theorem A.

Let 1 ≤ a < q. Then for r > κ′ log q

max
x,y∈Hr

∥∥∥∥
a

q
(x− y)

∥∥∥∥ & q−5κ′ . (7.5)

2. If moreover H < Z∗q is a group, we get

max
x,y∈H

∥∥∥∥
a

q
(x− y)

∥∥∥∥ & q−5κ′ (7.6)

Proof.

Write a
q = a′

q′ , (a
′, q′) = 1. Since πq′(k1H

r) = Zq′ ,

max
z,w∈k1Hr

∥∥∥∥
a′

q′
(z − w)

∥∥∥∥ ≥
1
2

(7.7)

hence

max
x,y∈Hr

∥∥∥∥
a′

q′
(x− y)

∥∥∥∥ & 1
k1

> q−5κ′ . (7.8)

§8. The case of subgroups

The main result of this section is the following (for q prime this issue was con-
sidered in [P])

Theorem 5. Let H < Z∗q , |H| > M > 1. Then

min
a∈Z∗q

max
x,y∈H

∥∥∥∥
a

q
(x− y)

∥∥∥∥ > q−δ (8.1)

where δ = δ(M) → 0 for M →∞ (independently of q).

We first treat the case when H contains an element of large multiplicative order.
The next result has a simple proof obtained by a straightforward modification of
an argument in [KS] (see §4) for prime modulus.

Lemma 8.1.

Let θ ∈ Z∗q be of order t (large). Then

min
(a,q)=1

max
j,k

∥∥∥∥
a

q
(θj − θk)

∥∥∥∥ > c(r)q−
1

r−1 (8.2)

for 1 < r < ϕ(t).
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Proof. For j = 1, . . . , t, let bj ∈ Z such that

bj = aθj (mod q) (8.3)

and extend periodically with period t for j ∈ Z.

Claim. Let c ∈ Z and 2 ≤ r < ϕ(t). Then maxj |bj − c| > c(r)q
r−2
r−1 .

proof of Claim. Let
B = max

1≤j≤t
|bj − c|. (8.4)

Denote b = (b1, · · · , br), and 1 = (1, · · · , 1). We consider the lattice

L =
{
` = (`1, . . . , `r) ∈ Zr : b `T = 0, 1 `T = 0

}

=
{
` = (`1, . . . , `r) ∈ Zr : (b− c1) `T = 0, 1 `T = 0

}
(8.5)

We considering all expressions
∑

(bi − c)`i, with
∑

`i = 0 and |bi − c| ≤ B. From
the pigeonhole principle and (8.4), there is (`1, . . . , `r) ∈ L\{0} such that

max
1≤j≤r

|`j | < c(r)B
1

r−2 . (8.6)

For this vector ` = (`1, . . . , `r),

b1`1 + · · ·+ br`r = 0.

Hence, multiplying with θj ,

bj+1`1 + · · ·+ bj+r`r = 0 (mod q)

for all j. Since also `1 + · · ·+ `r = 0

(bj+1 − c)`1 + · · ·+ (bj+r − c)`r = 0 (mod q). (8.7)

The left side is bounded by

rBc(r)B
1

r−2 < c(r)B
r−1
r−2

by (8.4), (8.6).

Assume c(r)B
r−1
r−2 < q, hence

B < c(r)q
r−2
r−1 . (8.8)

It follows then from (8.7) that

(bj+1 − c)`1 + · · ·+ (bj+r − c)`r = 0

bj+1`1 + · · ·+ bj+r`r = 0 (8.9)

for all j.
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Hence (bj) is a periodic linearly recurrent sequence of order at most r and smallest
period t.

Let ψ(x) be the minimal polynomial of (bj). (See [KS].) Then form (8.9)

ψ(x)|(`1 + `2x + · · ·+ `rx
r−1)

implying deg ψ ≤ r − 1.

Obviously ψ(x)|(xt − 1). Assume

ψ(x)
∣∣ ∏

1≤r<t

(1− xτ ).

Since ψ(θ) = 0 (mod q), it would follow that θτ ≡ 1 ( mod q) for some τ < t,
contradicting ordq(θ) = t.

Therefore one of the roots of ψ is a primitive tth-root and ψ is divisible by the
t-cyclotomic polynomial.

Hence
φ(t) ≤ deg ψ < r

a contradiction.

Hence (8.8) fails. ¤
Suppose (8.2) fails. Letting c = aθk ∈ Zq = {0, 1, . . . , q − 1},

max
j

∥∥∥∥
aθj − c

q

∥∥∥∥ < c(r)q−
1

r−1 .

Hence
max

j
dist(aθj − c, qZ) < c(r)q

r−2
r−1 . (8.10)

From (8.10), we may for each j = 1, . . . , t take bj ∈ Z such that

bj = aθj ( mod q), and |bj − c| < c(r)q
r−2
r−1 .

This contradicts the Claim and proves the lemma.

Proof of Theorem 5

Let H < Z∗q , |H| > M .

Fix κ > 0 (small) and 1 ¿ M1 < M
κ
2 .

By Lemma 8.2, we may assume

ordq(x) < M1 for all x ∈ H. (8.11)

If |πq1(H)| > M1 for all q1|q, with q1 > qκ, then (8.1) holds for δ = δ(κ, M1) → 0
for κ → 0,M1 →∞ (

by Corollary 3(2)
)
.
28



Assume thus there exists q1|q, with q1 > qκ and |πq1(H)| ≤ M1. Hence

H1 = H ∩ π−1
q1

(1) < Z∗q

satisfies
|H1| > M

M1
.

Consider the set

H1 = {x ∈ Z q
q1

: 1 + q1x ∈ H1} =
H1 − 1

q1
.

Assume there is q2

∣∣ q
q1

, with q2 > qκ and |πq2(H1)| < M1. Hence |πq1q2(H1)| < M1

and defining H2 = H1 ∩ π−1
q1q2

(1), we have

|H2| > |H1|
M1

>
M

M2
1

.

Considering the set

H2 =
{
x ∈ Z q

q1q2
: 1 + q1q2x ∈ H2

}
=

H2 − 1
q1q2

,

we repeat the process.

At some stage s ≤ 1
κ , the process has to stop.

Thus
Hs = H ∩ π−1

q1···qs
(1), (8.12)

Hs = {x ∈ Z q
q1···qs

: 1 + q1 · · · qsx ∈ Hs} =
Hs − 1
q1 · · · qs

, (8.13)

|Hs| = |Hs| > M

M
1/κ
1

> M1/2, (8.14)

and
|πq′(Hs)| > M1 for all q′| q

q1 · · · qs
, with q′ > qκ. (8.15)

Define
Q1 = q1 . . . qs and Q2 =

q

Q1
.

Case 1. Q2 < q
√

κ.

Since |Hs| ≥ 2, there are elements x 6= y in Hs ⊂ ZQ2 . Hence

ax 6= ay (mod Q2)

and ∥∥∥∥
a(x− y)

Q2

∥∥∥∥ >
1

Q2
> q−

√
κ.
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Let x̄ = 1 + Q1x, ȳ = 1 + Q1y ∈ Hs < H. Writing

a(x− y)
Q2

=
a(Q1x−Q1y)

q
=

a(x̄− ȳ)
q

,

we obtain ∥∥∥∥
a(x̄− ȳ)

q

∥∥∥∥ > q−
√

κ

and hence (8.1) holds.

Case 2. Q2 ≥ q
√

κ.

First, note that if there is no ambiguity, we use the

notation (A,B) = gcd(A,B).

Claim 1. (Q1, Q2) ≤ qκ.

Proof of Claim 1. Observe that (1 + Q1x)(1 + Q1y) = 1 + Q1(x + y) (mod Q2
1).

Hence
(1 + Q1x)(1 + Q1y) = 1 + Q1(x + y)

(
mod Q1(Q1, Q2)

)
.

Consider πQ1(Q1,Q2)(Hs) < Z∗Q1(Q1,Q2)
. It follows from the preceding that

πQ1(Q1,Q2)(Hs) = 1 + Q1S

where S is an additive subgroup of Z(Q1,Q2). Hence

S < 〈Z(Q1,Q2),+〉 and πQ1(Q1,Q2)(Hs) < Z∗Q1.(Q1,Q2)

are cyclic. By assumption (8.11), all elements of Hs < H are of order ≤ M1,
implying

|πQ1(Q1,Q2)(Hs)| ≤ M1.

Therefore
|π(Q1,Q2)(Hs)| ≤ M1. (8.16)

By construction of Hs, (8.16) implies

(Q1, Q2) ≤ qκ. ¤ (8.17)

Let Q′1 = Q1
(Q1,Q2)

, Q′
2 = Q2

(Q1,Q2)
. Hence (Q′

1, Q
′
2) = 1 and Q′2 > q

√
κ−κ by case

assumption and (8.17).

We want to apply Corollary 3(2) to πQ′2(Hs) < Z∗Q′2 with 4
√

κ and M1.

Let q′|Q′
2 with q′ > (Q′2)

4
√

κ > q2κ, and let q′′ = q′

(q′,Q1,Q2)
. Thus by (8.17),

q′′ > qκ.

Claim 2. |πq′(Hs)| > M1.

Proof of Claim 2. It follows from (8.15) that |πq′′(Hs)| > M1.
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Let x1, . . . , xn ∈ Hs, n > M1 such that

xi − xj 6= 0 (mod q′′).

Since (q′′, Q′1) = (q′, Q′
1) = 1 and

(
q′′,

(Q1, Q2)
(q′, Q1, Q2)

)
= 1,

we also have
Q1

(q′, Q1, Q2)
(xi − xj) 6= 0 (mod q′′).

Hence
Q1(xi − xj) 6= 0 (mod q′).

Since 1 + Q1xi ∈ Hs, it follows that

|πq′(Hs)| > M1. ¤

Apply Corollary 3 (2) to the group πQ′2(Hs) < Z∗Q′2 . Claim 2 implies that

∣∣πq′
(
πQ′2(Hs)

)∣∣ = |πq′(Hs)| > M1

for all q′|Q′
2 with q′ > (Q′2)

4
√

κ. Hence for any a′, (a′, Q′
2) = 1, there are thus

x̄, ȳ ∈ Hs such that ∥∥∥∥
a′

Q′
2

(x̄− ȳ)
∥∥∥∥ > (Q′2)

−κ′ > q−κ′ (8.18)

where κ′ = κ′(4
√

κ,M1) → 0 for κ → 0,M1 →∞.

Write x̄ = 1 + Q1x, ȳ = 1 + Q1y with x, y ∈ Hs. From (8.18)
∥∥∥∥

a′Q1

Q′2
(x− y)

∥∥∥∥ > q−κ′ . (8.19)

Recalling that (Q′1, Q
′
2) = 1, we may choose a′ satisfying

a′Q′
1 ≡ a (mod Q′2).

Therefore (8.19) gives ∥∥∥∥
a(Q1, Q2)2

Q2
(x− y)

∥∥∥∥ > q−κ′ .

Hence, by Claim 1,

∥∥∥∥
a

Q2
(x− y)

∥∥∥∥ >
q−κ′

(Q1, Q2)2
> q−κ′−2κ,

and ∥∥∥∥
a

q
(x̄− ȳ)

∥∥∥∥ =
∥∥∥∥

a

q
(Q1x−Q1y)

∥∥∥∥ > q−κ′−2κ.
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Therefore

max
x,y∈H

∥∥∥∥
a

q
(x− y)

∥∥∥∥ > q−κ′−2κ,

where κ, κ′ may be made arbitrary small by taking M large enough. This proves
Theorem 5.

Theorem C is an extension of Theorem 4.2 in [KS] for composite modules and is
an immediate consequence of Theorem 5.

Proof of Theorem C. For a ∈ Z∗q , let {x1, · · · , x|H|} = aH, and let x1 = ax, x2 =
ay be given in Theorem 5 such that

∥∥∥∥
x1 − x2

q

∥∥∥∥ > q−κ

where κ = κ(M).

Let

S =
∣∣∣∣
|H|∑

i=1

eq(xi)
∣∣∣∣.

Then

S2 =|H|+ 2
∑

i 6=j

cos
(

2π(xi − xj)
q

)

≤|H|+ 2
[(|H|

2

)
− 1

]
+ 2 cos

(
2π(x1 − x2)

q

)

≤|H|2 − 2 + 2
(

1− π

∥∥∥∥
x1 − x2

q

∥∥∥∥
2)

<|H|2 − 2πq−2κ.
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