A GAUSS SUM ESTIMATE IN ARBITRARY FINITE FIELDS

JEAN BOURGAIN MEI-CHU CHANG

Summary. We establish bounds on exponential sums $\sum_{x \in \mathbb{F}_q} \psi(x^n)$ where $q = p^m$, p prime, and ψ an additive character on \mathbb{F}_q . They extend the earlier work [BGK] to fields that are not of prime order $(m \geq 2)$. More precisely, a nontrivial estimate is obtained provided *n* satisfies gcd $(n, \frac{q-1}{n^{\nu}})$ $\frac{q-1}{p^{\nu}-1}$ $\lt p^{-\nu}q^{1-\varepsilon}$ for all $1 \leq \nu \lt m$, $\nu|m$, where $\varepsilon > 0$ is arbitrary.

UNE ESTIMEE DES SOMMES DE GAUSS ´ DANS DES CORPS FINIS ARBITRAIRES

Resumé. On etabli des bornes sur les sommes d'exponentielles $\sum_{x\in\mathbb{F}_q}\psi(x^n)$ où $q = p^m$, p est premier et ψ est un caractère additif de \mathbb{F}_q . Il s'agit d'une extension des résultats de [BGK] pour un corps qui n'est pas d'ordre premier, c.a.d. $m \geq 2$. On obtient une estimée non-triviale pour tout n satisfaisant la condition pgcd $(n, \frac{q-1}{n^{\nu-1}})$ $\frac{q-1}{p^{\nu}-1})$ < $p^{-\nu}q^{1-\varepsilon}$ pour tout $1 \leq \nu < m, \nu | m$ et où $\varepsilon > 0$ est arbitraire.

Version fransaise abrégée

Dans cette note nous démontrons une extension des résultats obtenus dans [BGK] bans cette note nous demontrons une extension des resultats obtenus dans [BGK]
pour des sommes de Gauss $\sum_{x \in \mathbb{F}_q} \psi(x^n)$ et plus generalement $\sum_{j=1}^{t_1} \psi(g^j)$, où ψ est un caractère additif de \mathbb{F}_q , $g \in \mathbb{F}_q^*$ d'ordre multiplicatif $t \geq t_1$. Les résultats de [BGK] traitent le cas où $q = p$ est premier alors qu'ici on considère le cas général $q = p^m$. En usant de la même approche basée sur des propriétés combinatoires des ensembles 'sommes' et 'produits', nous établissons des estimées non-triviales sous des hypothèses très faibles (et essentiellement optimales). Si n satisfait la condition

$$
pgcd\left(n, \frac{q-1}{p^{\nu}-1}\right) < p^{-\nu}q^{1-\varepsilon}
$$
 pour tout $1 \le \nu < m, \nu \mid m$

Typeset by AMS-TEX

où $\varepsilon > 0$ est fixé et arbitraire, on a l'estimée

$$
\Big|\sum_{x\in\mathbb{F}_q}\psi(x^n)\Big|
$$

pour tout caractère additif non-trivial ψ de \mathbb{F}_q et où $\delta = \delta(\varepsilon) > 0$.

1. Denote $q = p^m$ with p prime, $m \in \mathbb{Z}, m \ge 1$.

Non-trivial subfields of \mathbb{F}_q are of size p^{ν} where $1 \leq \nu < m, \nu | m$. Denote $Tr(x) = x + x^p + \ldots + x^{p^{m-1}}$ the trace of $x \in \mathbb{F}_q$. ;
≀— ≠≠ →∑

Let $\psi(x) = e_p\big(Tr(\xi x)\big), \xi \in \mathbb{F}_q^*$ be a nontrivial additive character of \mathbb{F}_q . Our aim is to extend certain estimates on exponential sums of the type

$$
\sum_{x \in \mathbb{F}_q} \psi(x^n) \tag{1.1}
$$

and

$$
\sum_{j \le t_1} \psi(g^j) \qquad t_1 \le t = \text{ord}(g) \tag{1.2}
$$

obtained in [BGK] for prime fields $(m = 1)$ to the general case $(m \geq 2)$ (in (1.2), we denoted ord (g) the multiplicative order of $g \in \mathbb{F}_q^*$.

More precisely, it was shown in [BGK] that if $q = p$ and $gcd(n, p-1) < p^{1-\varepsilon}$ ($\varepsilon > 0$ arbitrary) in (1.1) (resp. $t \ge t_1 > p^{\varepsilon}$ in (2.2)), then $|\sum_{x \in \mathbb{F}_q} \psi(x^n)| < p^{1-\delta}$ (resp. $\frac{1}{2}$ $\|x \in \mathbb{F}_q$ $\psi(x^n) \| < p^{1-\delta}$ (resp. $|\sum_{j\leq t_1}\psi(g^j)| < t_1p^{-\delta}$, where $\delta = \delta(\varepsilon) > 0$. $\overline{ }$

The method involved in [BGK] as well as here is the 'sum-product' approach, which permits us to establish non-trivial bounds in certain situations where 'classical' methods such as Stepanov's do not seem to apply (see [KS] for details).

Our main results are the following

Theorem 1. Assume in (1.1) that $n|(p^m-1)$ and satisfies the condition

$$
\gcd\left(n, \frac{p^m - 1}{p^{\nu} - 1}\right) < p^{-\nu} q^{1 - \varepsilon} \text{ for all } 1 \le \nu < m, \nu | m \tag{1.3}
$$

where $\varepsilon > 0$ is arbitrary and fixed. Then

$$
\max_{a \in \mathbb{F}_q^*} \left| \sum_{x \in \mathbb{F}_q} \psi(ax^n) \right| < cq^{1-\delta} \tag{1.4}
$$

where $\delta = \delta(\varepsilon) > 0$.

and

$$
2 \\
$$

Theorem 2. Assume in (1.2) that $g \in \mathbb{F}_q^*$ and

$$
t \ge t_1 > q^{\varepsilon} \text{ and } \max_{\substack{1 \le \nu < m \\ \nu \mid m}} \gcd(p^{\nu} - 1, t) < q^{-\varepsilon}t \tag{1.5}
$$

for some $\varepsilon > 0$. Then again

$$
\max_{a \in \mathbb{F}_q^*} \left| \sum_{j \le t_1} \psi(ag^j) \right| < cq^{-\delta} t_1 \tag{1.6}
$$

where $\delta = \delta(\varepsilon) > 0$.

Remark. The classical bound

$$
\left| \sum_{x \in \mathbb{F}_q} \psi(x^n) \right| \le (n-1)q^{1/2} \tag{1.7}
$$

becomes trivial for $n > q^{1/2}$. The first nontrivial estimate when $n > q^{1/2}$ was obtained in [S], considering values of n up to $p^{\frac{1}{6}}q^{\frac{1}{2}}$. Condition (1.3) (and similarly (1.5)) has clearly to do with the presence of nontrivial subfields of \mathbb{F}_q , which we do not want to contain most of the multiplicative group $\{x^n | x \in \mathbb{F}_q^*\}$ (and $\{g^j | j \leq t\}$ resp.). A condition of this form is obviously needed.

2. As pointed out earlier, we rely on the same approach as in [BGK]. The proof of Theorem 2 (which implies Theorem 1) will be based on the following two results.

Proposition 3. Let $A \subset \mathbb{F}_q$ and $|A| > q^{\varepsilon}$. Let $\varepsilon > \kappa > 0$ and assume

$$
|A \cap (\eta + S)| < q^{-\kappa}|A| \tag{2.1}
$$

whenever $\eta \in \mathbb{F}_q$ and $S \subset \mathbb{F}_q$ satisfies the condition

$$
|S| < q^{1 - \frac{\varepsilon}{20}} \tag{2.2}
$$

and

$$
|S + S| + |S.S| < q^{\kappa}|S|.\tag{2.3}
$$

Then for some $k = k(\kappa) \in \mathbb{Z}_+$ and $\delta = \delta(\kappa) > 0$

$$
\max_{a \in \mathbb{F}_q^*} \left| \sum_{x_1, \dots, x_k \in A} \psi(ax_1 \dots x_k) \right| < q^{-\delta} |A|^k. \tag{2.4}
$$

In (2.3), we denoted $S + S = \{x + y : x, y \in S\}$ (resp. $S.S = \{x,y : x, y \in S\}$) the sum-set (resp. the product-set). For small $\kappa > 0$, condition (2.3) expresses the property that both $S + S$ and $S.S$ are not much larger than S. Hence it is important to understand the structure of such sets.

The next result provides the required information.

Proposition 4. Assume $S \subset \mathbb{F}_q$, $|S| > q^{\delta}$ and $|S + S| + |S.S| < K|S|$. Then there is a subfield G of \mathbb{F}_q and $\xi \in \mathbb{F}_q^*$ such that

$$
|G| < K^C|S| \tag{2.5}
$$

and

$$
|S\backslash \xi G| < K^C \tag{2.6}
$$

where $C = C(\delta)$.

Proposition 3 is essentially Theorem 3.1 in [BC]. The only difference is that in [BC] we consider subsets of a ring $R = \prod \mathbb{Z}_{g_j}$ instead of a field \mathbb{F}_q ; but the essentially general argument carries over verbatim to the present situation (in fact it simplifies since the set $R\backslash R^*$ of non-invertible elements is trivial here). The proof of Theorem 3.1 in [BC] uses only the additive Fourier transform.

We may again identify the set of additive characters of \mathbb{F}_q with \mathbb{F}_q , letting

$$
\psi(x) = e_p\big(Tr(\xi x)\big); \quad e_p(y) = e^{\frac{2\pi i y}{p}}
$$

where ξ ranges in \mathbb{F}_q .

Proposition 4 appears in [BKT], as a byproduct of the proof of the sum-product theorem in prime fields.

3. With Proposition 3 and 4 at hand, the proof of Theorem 2 is rather straightforward. For simplicity, take $t_1 = t$ (considering the complete sum), in which case $A =$ ${g^j : 0 \leq j < t}$ is a multiplicative subgroup of \mathbb{F}_q^* . Assuming A satisfies conditions $(2.1)-(2.3)$ from Proposition 3, the conclusion (2.4) is then simply

$$
\max_{a \in \mathbb{F}_q^*} \left| \sum_{x \in A} \psi(ax) \right| < q^{-\delta} |A| \tag{3.1}
$$

which is (1.6) .

(To treat incomplete sums, i.e. $t_1 < t$, some minor additional technicalities are involved).

Assume that for some η one has

$$
|A \cap (\eta + S)| \ge q^{-\kappa} |A| \tag{3.2}
$$

with S satisfying (2.2), (2.3). Thus $|S| > tq^{-\kappa} > q^{\varepsilon-\kappa} > q^{\frac{\varepsilon}{2}}$ if $\kappa < \frac{\varepsilon}{2}$.

Apply Proposition 4 to the set S with $\delta = \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2}, K = q^{\kappa}.$

The subfield G satisfies by (2.5) and (2.2)

$$
|G| < q^{\kappa C} |S| < q^{1 - \frac{\varepsilon}{20} + \kappa C(\varepsilon)} < q
$$

taking κ small enough. Hence G is nontrivial and

$$
|G| = p^{\nu} \text{ for some } \nu < m, \nu | m. \tag{3.3}
$$

From (2.6) and (3.2)

$$
|A \cap (\eta + \xi G)| > q^{-\kappa} |A| - q^{\kappa C(\varepsilon)} > \frac{1}{2} q^{-\kappa} |A|
$$
\n(3.4)

implying that

$$
|\{(s,s'): 0 \le s, s' \le t-1, g^s - g^{s'} \in \xi G\}| > \frac{1}{4}q^{-2\kappa}t^2.
$$
 (3.5)

Equivalently, we may write

$$
|\{(s,s'): 0 \le s, s' \le t-1, g^s - g^{s'+s} \in \xi G\}| > \frac{1}{4}q^{-2\kappa}t^2.
$$

In particular there exist some $s' \neq 0$ such that denoting $\xi_1 = \xi(1 - g^{s'})^{-1}$

$$
|\{s: 0 \le s \le t - 1, g^s \in \xi_1 G\}| \gtrsim q^{-2\kappa} t. \tag{3.6}
$$

Let $g = g_0^{\frac{q-1}{t}}$, where g_0 is a generator of \mathbb{F}_q^* . Since by (3.3) $x^{p^{\nu}-1} = 1$ for all $x \in G^*$, it follows from (3.6) that

$$
|\{s: 0 \le s \le t-1, g_0^{\frac{q-1}{t}(p^{\nu}-1)s} = \xi_1^{p^{\nu}-1}\}| \gtrsim q^{-2\kappa}t.
$$

Therefore there is some $0 < s \leq q^{2\kappa}$ such that $g_0^{\frac{q-1}{t}(p^{\nu}-1)s} = 1$, or equivalently $t|s(p^{\nu}-1)$. But then $gcd(t, p^{\nu}-1) > q^{-2\kappa}t$, violating assumption (1.5).

REFERENCES

- [BGK]. J. Bourgain, A. Glibichuk, S. Konyagin, Estimates for the number of sums and products and for exponential sums in fields of prime order, to appear in J. London Math. Soc.
- [BKT]. J. Bourgain, N. Katz, T. Tao, A sum-product estimate in finite fields and their applications, GAFA 14 (2004), no. 1, 27–57.

- [BC]. J. Bourgain, M.-C. Chang, Exponential sum estimates over subgroups and almost subgroups of \mathbb{Z}_q^* , where q is composite with few factors, to appear in GAFA.
- [KS]. S. Konyagin, I. Shparlinski, Character sums with exponential functions and their applications, Cambridge UP, Cambridge, 1999.
- [S]. I. Shparlinski, Bounds on Gauss sums in finite fields, Proc. AMS, Vol. 132, no 10, 2817– 2824.

Institute for Advanced Study, Olden Lane, Princeton, N.J. 08540, U.S.A.

E-mail address: bourgain@math.ias.edu

Mathematics Department, University of California, Riverside, CA 92521 E-mail address: mcc@math.ucr.edu