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Summary. We establish bounds on exponential sums Zwqu (x™) where ¢ = p™,
p prime, and ¢ an additive character on F,. They extend the earlier work [BGK] to
fields that are not of prime order (m > 2). More precisely, a nontrivial estimate is
obtained provided n satisfies ged (n, qu_ll) <pvql=¢ for all 1 < v < m, v|m, where
€ > 0 is arbitrary.

UNE ESTIMEE DES SOMMES DE GAUSS
DANS DES CORPS FINIS ARBITRAIRES

Resumé. On etabli des bornes sur les sommes d’exponentielles erm‘q P(z™) ou
q = p™, p est premier et 1) est un caractére additif de F,. Il s’agit d’'une extension
des résultats de [BGK] pour un corps qui n’est pas d’ordre premier, c.a.d. m > 2. On

obtient une estimée non-triviale pour tout n satisfaisant la condition pged (n, pqy__ll) <

p~Yq' ¢ pour tout 1 < v < m,v|m et ol € > 0 est arbitraire.

Version fransaise abrégée

Dans cette note nous démontrons une extension des résultats obtenus dans [BGK]
pour des sommes de Gauss ZwGFq P(xz™) et plus generalement 221:1 ¥(g7), oll 1 est
un caractere additif de Fy, g € F; d’ordre multiplicatif ¢ > ¢;. Les résultats de [BGK]
traitent le cas ol ¢ = p est premier alors qu’ici on considere le cas général ¢ = p™.
En usant de la méme approche basée sur des propriétés combinatoires des ensembles
‘sommes’ et ‘produits’, nous établissons des estimées non-triviales sous des hypotheses
tres faibles (et essentiellement optimales). Si n satisfait la condition

—1

pged (n, ;V ) < pYq"7F pour tout 1 <v < m,v|m
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ou € > 0 est fixé et arbitraire, on a I'estimée

DIRICH

z€lF,

< eq'?

pour tout caractere additif non-trivial ¢ de F, et ou § = d(g) > 0.

1. Denote ¢ = p™ with p prime, m € Z,m > 1.
Non-trivial subfields of F, are of size p* where 1 < v < m,v|m. Denote
Tr(z)=a+aP+...+2P"  the trace of = € F,.

Let ¢(x) = e, (Tr(é’a:)),f‘ € [} be a nontrivial additive character of F;. Our aim is
to extend certain estimates on exponential sums of the type

> v (1.1)

z€l,

and

D wlg?)  t<t=ord(g) (1.2)

J<t1

obtained in [BGK] for prime fields (m = 1) to the general case (m > 2) (in (1.2), we
denoted ord(g) the multiplicative order of g € Fy).

More precisely, it was shown in [BGK] that if ¢ = p and ged (n,p—1) < p'=¢ (¢ > 0
arbitrary) in (1.1) (resp. ¢ > t; > p° in (2.2)), then | > zer, ¥(@")| < p'~? (resp.
1> i<t Y(g?)| < tip~?), where § = §(¢) > 0.

The method involved in [BGK] as well as here is the ‘sum-product’ approach, which

permits us to establish non-trivial bounds in certain situations where ‘classical’ meth-
ods such as Stepanov’s do not seem to apply (see [KS]| for details).

Our main results are the following

Theorem 1. Assume in (1.1) that n|(p™ — 1) and satisfies the condition

m

ged (n, b
pl/

-1

> <p V¢ foralll <v <m,vm (1.3)
where € > 0 is arbitrary and fixed. Then

> dlaz™)

<cq'™? (1.4)

max
ack}

where § = d(e) > 0.

and



Theorem 2. Assume in (1.2) that g € F; and

t >t >q° and max ged(p” —1,t) < ¢t (1.5)
1<v<m
vim

for some € > 0. Then again

< cq 't (1.6)

> (ag?)

J<t1

max
aG]F(’;

where § = 6(e) > 0.

Remark. The classical bound

> v < (-1 (L.7)

zelf,

becomes trivial for n > ¢'/2. The first nontrivial estimate when n > ¢*/? was obtained

in [S], considering values of n up to psqz. Condition (1.3) (and similarly (1.5)) has
clearly to do with the presence of nontrivial subfields of F,, which we do not want
to contain most of the multiplicative group {z"|z € F;} (‘and {g’[j < t} resp.). A
condition of this form is obviously needed.

2. As pointed out earlier, we rely on the same approach as in [BGK]. The proof of
Theorem 2 (which implies Theorem 1) will be based on the following two results.

Proposition 3. Let A CF, and |A| > ¢°. Let ¢ > k > 0 and assume

AN (n+5)| <q "4 (2.1)
whenever n € F, and S C F, satisfies the condition
S| < ¢ (2.2)
and
|S 4+ S| +15.5] < ¢"|S]. (2.3)
Then for some k = k(k) € Zy and 6 = §(k) > 0
(rlré%}g xl’m;keAz/J(axl Lxg)| < ¢ 0 AlR (2.4)

In (2.3), we denoted S+ S = {x+y : z,y € S} (resp. S.5 = {zy:z,y € S})
the sum-set (resp. the product-set). For small x > 0, condition (2.3) expresses the
property that both S + S and S.S are not much larger than S. Hence it is important
to understand the structure of such sets.

The next result provides the required information.
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Proposition 4. Assume S C F,,|S| > ¢° and |S + S|+ |9.S| < K|S|. Then there is
a subfield G of Fy and & € F}, such that

|G| < K€19| (2.5)

and
|S\EG| < K¢ (2.6)

where C' = C(6).

Proposition 3 is essentially Theorem 3.1 in [BC]. The only difference is that in [BC|
we consider subsets of a ring R = [[Z,, instead of a field Fy; but the essentially
general argument carries over verbatim to the present situation (in fact it simplifies
since the set R\R" of non-invertible elements is trivial here). The proof of Theorem
3.1 in [BC] uses only the additive Fourier transform.

We may again identify the set of additive characters of F, with Iy, letting

27y

U(@) = ep(Tr(€)); ep(y) =e v

where § ranges in [Fy.

Proposition 4 appears in [BKT], as a byproduct of the proof of the sum-product
theorem in prime fields.

3. With Proposition 3 and 4 at hand, the proof of Theorem 2 is rather straightforward.
For simplicity, take t; = ¢ (considering the complete sum), in which case A =

{g? : 0 < j < t} is a multiplicative subgroup of [F7. Assuming A satisfies conditions
(2.1)-(2.3) from Proposition 3, the conclusion (2.4) is then simply

max
ae]Fj;

> blax)| < a4 (3.1)
€A

which is (1.6).

(To treat incomplete sums, i.e. t; < ¢, some minor additional technicalities are
involved).

Assume that for some 7 one has
AN (n+5)| = q "4 (3.2)

with S satisfying (2.2), (2.3). Thus |S| > tqg™" > ¢" " > ¢2 if k < £.
4



Apply Proposition 4 to the set S with 6 = 5, K = ¢".
The subfield G satisfies by (2.5) and (2.2)

G| < ¢"CIS| < ¢! < g
taking « small enough. Hence G is nontrivial and

|G| = p” for some v < m,v|m.
From (2.6) and (3.2)

A0 (n+EQ) > 44| - g > Zq|A
implying that
{(s,5):0<s,s' <t—1,0°—g° € &G} > iq_%t?
Equivalently, we may write
{(s,8):0< s,8' <t—1,9°— gt € £G}| > iq_z””tz.

In particular there exist some s’ # 0 such that denoting & = £(1 — gsl)_1

{s:0<s<t—1,9" € &G} 2 g >t

q—1

(3.3)

(3.4)

(3.5)

(3.6)

Let g =gy ' , where go is a generator of IF;. Since by (3.3) 2P’ =1 for all z € G¥,

it follows from (3.6) that

—1 v_ v
{s:0<s<t—1g, "7 =g M} 2 g

=L (p¥—1)s

Therefore there is some 0 < s < ¢?® such that 90 = 1, or equivalently

t|s(p” — 1). But then ged (¢,p” — 1) > ¢~ 2, violating assumption (1.5).
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