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ABSTRACT

In this paper we consider the problem of finding upperbounds on the minimum

norm of representatives in residue classes in quotient O/I, where I is an integral ideal

in the maximal order O of a number field K. In particular, we answer affirmatively a

question of Konyagin and Shparlinski, stating that an upperbound o(N(I)) holds for

most ideals I, denoting N(I) the norm of I. More precise statements are obtained,

especially when I is prime. We use the method of exponential sums over multiplicative

groups, exploiting essentially the new bounds obtained by the methods in [BC1] and

[BC2].

Introduction.

Let I be an integral ideal in an algebraic number field K. For a residue class

α ∈ O/I, denote by NI(α) the minimal norm of all elements of α. Thus

NI(α) = min
x∈α

|N(x)|. (0.1)

Following [KS] (Chapter 9), we define further

L(K, I) = max
α∈(O/I)∗

NI(α). (0.2)
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The inequality

L(K, I) < N(I) = |O/I| (0.3)

for all integral ideals (even for principal ideal only) means that K is Euclidean with re-

spect to its norm. Only few examples of Euclidean number fields are known. However,

one may hope to establish estimates of the form

L(K, I) = o(N(I)), (0.4)

or even

L(K, I) ¿ N(I)1−ε, for some ε > 0, (0.5)

for ‘most’ integral ideals, which would mean that K is ‘roughly’ Euclidean.

The purpose of this paper is to pursue a line of research exposed in [KS]. (See [KS],

Chapter 9 for related references.) Let us be more precise. In [KS], inequalities of the

form (0.5) were obtained, assuming O has an infinite group of units, for a sequence of

prime ideals of asymptotic density 1. (See [KS], Theorem 9.10.). In this statement,

it suffices to consider only prime ideals of first degree. The key ingredients then in

[KS] to obtain estimates in this case are bounds on exponential sums over prime fields.

Our first set of results (see Sections 3 and 4) provide further refinements for the prime

case I = P . We are able to treat as well the situation where P is not of first degree

and moreover obtain a much smaller exceptional set of prime ideals. In Corollary 4.1

below, we show that for all δ > 0, there is ε > 0 such that (0.5) is valid for all but at

most T δ prime ideals P of norm N(P) ≤ T . The method exploited here is roughly the

same as in [KS] and the key issues are uniform distribution properties of the group U

of the units in the quotient O/I. These are expressed by exponential sum bounds. At

this point, we are able to rely on the recent theory developed in [BGK], [B], [BC2],

[BC1], which qualitatively does better than estimates so far available. First in [BGK],

non-trivial exponential sum bounds over multiplicative subgroups G of prime fields Fp

were obtained, under the very weak assumption |G| > pε, with ε > 0 arbitrary (earlier
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results based on variants of Stepanov’s method requiring ε > 1
4 ). Then, in [BC1],

similar results were shown for subgroups G of F∗pf , with f > 1 (where prior to this

little was known if |G| < p
f
2 ). Following the method in [KS], the relevant group G is

φ(U), with φ : O → O/P the quotient map. Therefore, we are concerned with φ(U)

being sufficiently large, say

|φ(U)| > N(P)ε, for some ε > 0

so that our exponential sum bounds become applicable. (See Theorem 3.1 below.)

This property obviously depends on the given prime ideal P. Let us next consider the

case of general integral ideals I. The quotient O/I is not necessarily a field and the

method of [KS] needs to be modified appropriately. The main analytical ingredient now

becomes an exponential sum estimate from [BC2] (Theorem 3.1). Roughly speaking

it is applied in the situation where O/I essentially factors as a product of a few prime

fields. This requires some restrictions on the ideals I under consideration, but the

excluded sets are still of zero density. The main result is formulated in Theorem 5.1

below and states that (0.4) holds (actually in the form (0.5)) for almost all integral

ideals I in O. This answers Question 9.14 from [KS] affirmatively.
(
In [KS] (see p.5),

the problem is attributed to Egami.
)

Paraphrasing [KS], the meaning of this result

for principal ideals is that the Euclidean algorithm may be applied and moreover runs

in a sub-logarithmic number of steps (which is of course not the case in Z) for the

majority of the inputs.

We conclude with the following comment. It is possible to carry out an approach

in a similar spirit but relying on ergodic methods rather than exponential sums. But

for this, we need to make the stronger assumption that the group U contains at least

two independent units. In this situation, we may appeal to Furstenberg’s disjointness

theory (See [F]) and its higher dimensional version due to Berend (See [Be]), character-

izing invariant sets. The ergodic techniques perform very well qualitatively speaking
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but are essentially non-effective. (So far estimates derived from ‘effective’ versions are

extremely weak.) Along these lines, E. Lindenstrauss observed that (0.4) holds for

N(I) →∞ with no exceptional subset, provided there are two independent units that

do not belong to a proper subfield.

§1. Preliminaries.

Let K be a finite extension of Q, [K : Q] = n = r1 + 2r2 with r1 (respectively r2)

the number of real (resp. complex) embeddings fi of K in C.

Let O = O(K) be the ring of algebraic integers in K.

Denote U = U(K) the group of units of K. Thus U is the direct product of the

group E = E(K) of roots of unity and a free Abelian group with r1 +r2−1 generators.

Fix an integral basis z1, . . . , zn. If x ∈ O and x =
∑

xizi, xi ∈ Z, we have for the

norm

N(x) =
n∏

j=1

fj(x).

Hence

|N(x)| < max
i,j

fj(xi)
( ∑

|xi|
)n

= C
( ∑

|xi|
)n

(1.1)

where C = C(z1, . . . , zn) is a constant depending on K.

Let I be an ideal in O and x ∈ I\{0}. Then N(I) = |O/I| divides N(x) and by

(1.1)

max |xi| > cN(I)1/n for x ∈ I\{0}. (1.2)

Consider the lattice L associated to I

L = {(xi)1≤i≤n ∈ Zn :
∑

xizi ∈ I}

of determinant d(L) = N(I).
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Denoting λ1, . . . , λn the consecutive minima of L with respect to the unit box, it

follows from Minkowski’s theorem that

λ1 . . . λn ≤ 2nd(L) ∼ N(I). (1.3)

Since by (1.2)

cN(I)1/n < λ1 ≤ λ2 ≤ · · · ≤ λn

necessarily

λ1 ∼ · · · ∼ λn ∼ N(I)1/n. (1.4)

Therefore L has a set of generators v1, . . . , vn ∈ Zn satisfying the properties

C−1
1 N(I)1/n < |vi| < C1N(I)1/n (1.5)

and { ∑
xiei : |xi| < N(I)1/n

}
⊂

{ ∑
tivi : |ti| < C2

}
(1.6)

where C1, C2 depend only on K (not on the ideal I).

In other words, L = LI is a lattice of determinant d(L) = N(I) and does not

degenerate for N(I) →∞.

Denoting ϕ : O → O/I the quotient map, (1.2) implies that the restriction of ϕ to

the set {∑xizi : |xi| < c
2N(I)1/n} is one-to-one.

A useful notion is the height of an integral element. Let z1, · · · , zn be an integral

basis, and let x =
∑

xizi. Then the height of x is

h(x) = max
i
|xi|

The following properties are easy to check.

(1.7) h(xy) ≤ C(K) h(x)h(y).
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(1.8) h(x + y) ≤ h(x) + h(y); h(x− 1) ≤ h(x) + C(K).

(1.9) |N(x)| < C(K) h(x)n.

Here (and through out the paper) C(K) denotes various constant depending on K.

§2 Exponential sum bounds on finite fields.

We will use the exponential sum bound for subgroups G < F∗pf obtained in [BC1].

Theorem 2.1. [BC1].

Let G < F∗pf where f ∈ Z+ is arbitrary fixed and p large.

For all ε > 0 there is δ = δ(f, ε) such that if

|G ∩ F | < p−ε|G| (2.2)

for all proper subfields F of Fpf , then

max
X 6=X0

∣∣∣
∑

x∈G

X (x)
∣∣∣ < p−δ|G| (2.3)

where X runs over all non-trivial additive characters of Fpf .

Remark Let G < F∗pf and

|G| > pεo . (2.4)

Then there is G′ < G,

|G′| > p
ε0
2 (2.5)

such that for any additive character X of Fpf , either

∑

x∈G′
X (x) = |G′|, (2.6)

or ∣∣∣
∑

x∈G′
X (x)

∣∣∣ < p−δ|G′|. (2.7)
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In fact, take ε = ε0
10f . If the assumption (2.2) is not satisfied, there is a proper subfield

F1 of Fpf , |F1| = pf1 , f1 < f , such that

|G1| > pε0−ε where G1 = G ∩ F ∗1 .

Either |G1∩F | < p−ε|G1| for any proper subfield F of F1 or we may reduce G1 further

to G2 = G1 ∩ F ∗2 where F2 is a proper subfield of F1, |F2| = pf2 , f2 < f1 and

|G2| > p−ε|G1| > pε0−2ε.

Continuing, we obtain a subfield F of Fpf such that G′ = G ∩ F ∗ satisfies

|G′ ∩ F0| < p−ε|G′| for any proper subfield F0 of F

and

|G′| > pε0−fε > p
ε0
2 .

At this point, we may apply Theorem 2.1 to the subgroup G′ of F ∗. It follows that if

X is an additive character of Fpf , then either

∑

x∈G′
X (x) = |G′|

or ∣∣∣
∑

x∈G′
X (x)

∣∣∣ < p−δ|G′|

depending on whether the restriction of X to the subfield F of Fpf is trivial or not.

§3. The estimates for a prime ideal.

Theorem 3.1. Let P be a prime ideal in O, N(P) = pf where f ≤ n is the degree of

P. Denote ϕ : O → O/P ≈ Fpf the quotient map and assume

|ϕ(U)| > pε0 (3.2)
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with ε0 > 0 arbitrary and fixed.

Then there is δ0 = δ(ε0, K) > 0 such that

L(K,P) := max
α∈(O/P)∗

min
x∈α

|N(x)| < N(P)1−δ0 (3.3)

(assuming p sufficiently large).

Proof.

It is a variant of the argument in [KS], Ch. 9.

Define

B =
{ ∑

xizi : xi ∈ Z, 0 ≤ xi ≤ h
}

where we take

h = p−δ0N(P)
1
n (3.4)

(δ0 to be specified in (3.11)).

Let α ∈ O/P and a ∈ α. Assume we showed that for some y ∈ U

ϕ(ay) ∈ ϕ(B − B). (3.5)

Hence there are xi ∈ Z, |xi| ≤ h such that x = y−1(
∑

xizi) ∈ α and

N(x) = N
( ∑

xizi

)
< Chn < Cp−nδ0N(P) < N(P)1−δ0 . (3.6)

It remains to establish (3.5) and we will proceed with the usual circle method. First, we

consider the multiplicative group G = ϕ(U) of (O/P)∗ ∼= F∗pf , and apply the reduction

process described in the Remark in §2. Therefore, we obtain G′ = G∩F ∗, |G′| > pε0/2,

where F is a subfield of O/P and either (2.6) or (2.7) hold, for any additive character

X of O/P.
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If we show that
∑

X

[ ∑

y∈G′
X (αy)

]∣∣∣
∑

z∈ϕ(B)

X (z)
∣∣∣
2

6= 0 (3.7)

where X is taken in the system of additive characters {X} of O/P, it will follow that

αG′ ∩ ϕ(B − B) 6= φ.

Thus (3.5) holds for some y ∈ U . Hence (3.6) is proved.

Assuming α 6= 0, rewrite (3.7) as

∑

X

[ ∑

y∈G′
X (y)

] ∣∣∣
∑

z∈ϕ(B)

X (α−1z)
∣∣∣
2

. (3.8)

We will use the circle method and write
∑
X in (3.8) as two summations. If X has

trivial restriction to F , in particular if X = X0, the trivial character of Fpf , then
∑

y∈G′ X (y) = |G′|.

Hence, since |ϕ(B)| = |B|
∑

X|F trivial

∣∣∣
∑

y∈G′
X (y)

∣∣∣
∣∣∣

∑

z∈ϕ(B)

X (α−1z)
∣∣∣
2

= |G′|
(
|B|2 +

∑

X 6=X0
X|F trivial

∣∣∣
∑

z∈ϕ(B)

X (α−1z)
∣∣∣
2)

≥ |G′| |B|2. (3.9)

If X|F is non-trivial, then (2.7) holds and by Parseval

∑

X|F nontrivial

∣∣∣
∑

y∈G′
X (y)

∣∣∣
∣∣∣

∑

z∈ϕ(B)

X (α−1z)
∣∣∣
2

< p−δ |G′|
∑

X

∣∣∣
∑

z∈ϕ(B)

X (α−1z)
∣∣∣
2

= p−δ |G′| pf |ϕ(B)|. (3.10)
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To insure (3.7), we let
∑
X|F trivial >

∑
X|F nontrivial by taking |B| = hn > pf−δ or

h > N(P)
1
n p−

δ
n and

δ0 <
δ

n
(3.11)

in (3.4). This completes the proof.

§4. The prime ideal case.

Corollary 4.1. Assume U(K) infinite, i.e. r1 + r2 − 1 > 0.

For all ε > 0, there is δ > 0, δ = δ(ε,K), such that for T →∞
∣∣{P : P is a prime ideal with N(P) ≤ T, L(K,P) > N(P)1−δ}

∣∣ < T ε (4.2)

Recall that if πK(T ) denotes the number of prime ideals of norm at most T , then

πK(T ) =
(
1 + o(1)

) T

log T
(4.3)

(see [N], p. 326, Cor. 1).

Proof of Corollary 4.1

Take ξ ∈ U(K)\E(K). In order to apply Theorem 3.1, we rule out those prime

ideals P of norm at most T for which

|ϕ(〈ξ〉)| ≤ |ϕ(U)| < T ε0 (4.4)

where ϕ : O → O/P is the quotient map and ε0 > 0 is arbitrary.

If (4.4) fails, then (3.3) holds with δ0 = δ0(ε0) > 0.

Assuming (4.4), there is a positive integer k < T ε0 such that ϕ(ξk) = 1, hence P
divides ξk − 1 ∈ O\{0}. Therefore N(P) = pf divides the integer

B =
∏

k<T ε0

N(ξk − 1) (4.5)
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which is clearly bounded by
∏

k<T ε0 C(K)k < C(K)T 2ε0 .

Therefore B has at most C T 2ε0

log T prime divisors p. Since there are at most n prime

ideals P above a given p, the number of exceptional prime ideals is at most T 3ε0 .

The others will satisfy

L(K,P) < N(P)1−δ0

for some δ0 = δ0(ε0, K).

Remark.

A result in the same spirit as Corollary 4.1 is obtained in Theorem 9.10 of [KS]. In

[KS], only an exceptional sequence of prime ideals of asymptotic density 0 is excluded.

Since the number π′K(T ) of prime ideals of first degree over Q with norm at most T

satisfies the same asymptotic (4.3), thus

π′K(T ) =
(
1 + o(1)

) T

log T
(4.6)

(cf. [N], Cor. 2, p. 326), the problem reduces then to first degree prime ideals and

exponential sum estimates in prime fields Fp.

§5. The case of general integral ideals.

Let us now consider the case of a general ideal I in OK . Our aim is to give a positive

answer to Question 9.14 in [KS] in the following form:

Theorem 5.1. Assume U(K) infinite (the number field K is fixed).

Then there is δ′ = δ′(δ), δ′ → 0 as δ → 0 such that

L(K, I) := max
α∈(O/I)∗

min
x∈α

N(x) < N(I)1−δ (5.2)

holds for all ideals I in O outside a sequence of asymptotic density at most δ′. Hence

L(K, I) = o(N(I)
)

(5.3)
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for almost all ideals I in O.

Following [N], denote M(T ) the number of ideals I in O of norm N(I) ≤ T . By the

‘ideal theorem’ (see [N], p. 327)

M(T ) =
(
h(K)κ + o(1)

)
T (5.4)

where h(K) is the class number of K and

κ = κ(K) = 2r1(2π)r2R(K) |d(K)|−1/2w(K)−1 (5.5)

with R(K) the regulator, d(K) the discriminant and w(K) = |E(K)| (see [N], p. 282).

We will first make several reductions (outside sequences of small density) of the

ideals under consideration. Let

I =
m∏

i=1

Pai
i =

∏

P
Pa(P)

be the factorization of I in prime ideals. Then

T ≥ N(I) =
∏

i

N(Pi)ai =
∏

i

pfiai

i (5.6)

where fi is the degree of Pi. Rewrite (5.6) as

N(I) =
∏

p prime

p

∑
p|N(P)

a(P)f(P)

. (5.7)

For any fixed prime number p, by (5.4) we get

∣∣∣
{

I : N(I) ≤ T and
∑

p|N(P)

a(P)f(P) ≥ 2
}∣∣∣

≤
∑

s≥2

sn
∣∣∣{I ′ : N(I ′) ≤ T

ps

}∣∣∣

< CKT
∑

s≥2

snp−s

< C ′Kp−2T. (5.8)
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Therefore, the number of ideals I with N(I) ≤ T , and in expression (5.7), for some

p > C1,
∑

p|N(P) a(P)f(P) ≥ 2 is bounded by

∑

p>C1

C ′Kp−2T <
C ′KT

C1
,

where C1 = C1(δ′). Taking again (5.4) into account, we may therefore restrict ourselves

to ideals

I =
∏

P a(P)

with
∑

p|N(P)

a(P)f(P) ≤ 1 if p > C1 = C1(δ′). (5.9)

In particular, if N(P) is large enough and a(P) > 0, then a(P) = 1 and P is of first

degree.

It follows that the ring

O/I '
∏

O/P a(P)

has the form

O/I = O/I0 ×
∏
Fp (5.10)

where

I0 =
∏

p≤C1

P a(P)

and the second product in (5.10) extends over primes p > C1 to which
∑

p|N(P) a(P) = 1.

Let ξ ∈ U(K)\E(K).

Denoting ϕP : O → O/P the quotient map, we already showed in the proof of

Corollary 4.1 that for γ < 1
2

∣∣∣
{
P : P is a prime ideal, N(P) ≤ T and |ϕP(〈ξ〉)| < T γ

}∣∣∣ < T 3γ . (5.11)
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Let I be the collection of ideals I with the following properties

(a). I satisfies (5.9).

(b). N(I) ≤ T.

(c). There is a prime ideal P|I with N(P) > T ε1 and |ϕP(U)| < N(P)1/4.

Hence by (5.4) and (5.11) (with T = 2k+1 and γ = 1
4 ), we have

|I| <
∑

N(P)=p>T ε1

|ϕP(U)|<p1/4

T

p

<
∑

k∈Z+

2k>T ε1

∑

2k+1>p>2k

N(P)=p>T ε1

|ϕP(U)|<p1/4

T

2k

<
∑

k∈Z+

2k>T ε1

T

2k
|{P : P is prime, N(P) < 2k+1 and |ϕP(U)| < 2

k+1
4 }|

<
∑

k∈Z+

2k>T ε1

T

2k
2

3(k+1)
4

< T 1− ε1
5 . (5.12)

We may therefore further assume that I satisfies

|ϕP(U)| > N(P)1/4 (5.13)

for any prime ideal P dividing I with N(P) > N(I)ε1 (ε1 > 0 an arbitrary small fixed

constant).

Finally we will restrict I as to ensure that, roughly speaking, N(I) is a product of

a few large prime factors and an integer of size at most N(I)ε. This may be ensured

again by excluding a sequence of small density.

One can use the following property (see Lemma 7, p. 264 in [HR]).
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Lemma 5.14. [HR].

Fix ε > 0 a small number and decompose every integer 0 < m ≤ T as product

m = n(1).n(2) where n(1) (respectively, n(2)) is composed only of prime factors p ≤ T ε2

(resp. p > T ε2
). Then

k = |{0 < m ≤ T : n(1) > T ε}| < CεT. (5.15)

We recall the elegant proof from [HR].

Proof of Lemma 5.14.

The exponent of the prime p in T ! is at most T
p + T

p2 + T
p3 + · · · < 2T

p . Estimate

k log T ε ≤
∑

m<T

log n(1)

< 2
∑

p<T ε2

T

p
log p

<
∑

2k+1<T ε2

∑

2k≤p<2k+1

2
T

2k
log p

.
∑

2k+1<T ε2

2T

2k
log 2k+1 2k+1

log 2k+1
= 4T log T ε2 ∼ εT log T ε

and (5.15) follows.

Take

ε2 =
ε1

20
¿ δ′. (5.16)

Returning to (5.10), we can restrict ourselves to ideals I, N(I) ∼ T for which O/I has

the form

O/I ' O/I0 ×
∏

p|n(1)

Fp ×
∏

p|n(2)

Fp (5.17)
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where n(1), n(2) are integers depending on I such that n(1) < T ε2 and n(2) has only

prime factors p > T ε2
2 (hence at most ε−2

2 of them). Moreover we assume that N(I),

hence n(2) has a prime divisor p > T ε1 .

Denote G = ϕI(U) which is a multiplicative subgroup of (5.17).

Taking p|n(2) a prime of size at least T ε1 and P the corresponding prime ideal

dividing I of norm N(P) = p, we have from the preceding

|G| ≥ |ϕP(U)| > N(P)
1
4 > T

ε1
4 . (5.18)

We now make the following construction.

Define

G0 = {x ∈ G : π0(x) = 1 and πp(x) = 1 for all p
∣∣n(1)} (5.19)

(we define here π0, πp the obvious projections in (5.17)).

If for all p|n(2) we have

|πp(G0)| > T ε3
2 , (5.20)

then we let G′ = G0.

If not, let p1|n(2) such that |πp1(G0)| ≤ T ε3
2 and reduce G0 to

G1 = {x ∈ G0 : πp1(x) = 1}. (5.21)

If G1 satisfies (5.20) for all p|n(2)

p1
, let G′ = G1. Otherwise repeat the construction.

In this way, a sequence of prime divisors p1, . . . , ps (s < ε−2
2 ) of n(2) is obtained such

that if

G′ = Gs = {x ∈ G0 : πp1(x) = · · · = πps(x) = 1} (5.22)

then

|πp(G′)| > T ε3
2 for all p|m =

n(2)

p1 · · · ps
. (5.23)
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Observe that

|G| ≤ |O/I0| n(1) |G0| < CT ε2 |G0|

and from the construction

|G0| < T ε3
2 |G1|

...

|Gs−1| < T ε3
2 |G′|.

Therefore by (5.16) and (5.18),

|G′| & |G| T−ε2T−sε3
2 > T−3ε2 |G| > T ε1/10. (5.24)

Denote

I = I1.I
′

where

I1 = I0.
∏

P
P|I, N(P)|n(1)p1...ps

and I ′ =
∏

N(P)|m
P. (5.25)

Thus G′ = {1} × ϕI′(G′) in O/I1 ×O/I ′.

Consider the multiplicative group ϕI′(G′) of the ring O/I ′ ' ∏
p|m Fp satisfying

(5.23) for all p|m. The exponential sum estimate from [BC2] applies and we obtain

Proposition 5.26. If X is a nontrivial additive character of O/I ′, then

∣∣∣
∑

x∈ϕI′ (G′)

X (x)
∣∣∣ < T−γ |G′| (5.27)

where γ = γ(ε2).

This is indeed a particular case of Theorem 3.1 in [BC2].
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We now return to Theorem 5.1 and the norm estimate, using a similar approach as

in the prime case.

Let

U ′ = {u ∈ U : ϕI1(u) = 1}

hence

ϕI(U ′) = G′.

Fix α ∈ (O/I)∗ and an element a ∈ α.

Take ξ0, ξ1 ∈ O satisfying

ξ0 ∈ I1 (5.28)

ξ1 − a ∈ I1 (5.29)

and with representations in the integral basis z1, . . . , zn

ξ0 =
∑

ξ0,izi ξ1 =
∑

ξ1,izi

such that

|ξ0,i|, |ξ1,i| < CN(I1)1/n (1 ≤ i ≤ n). (5.30)

Let

B =
{ ∑

xizi : 0 ≤ xi < H
}

where

H = p−κN(I ′)1/n (5.31)

and κ appropriately chosen
(
see (5.42)

)
.

Assume we established that for some u ∈ U ′

ϕI′(au) ∈ ϕI′
(
ξ1 + ξ0(B − B)

)
(5.32)

18



hence for some z ∈ B − B
au− (ξ1 + ξ0z) ∈ I ′. (5.33)

From (5.28), (5.29) and definition of U ′, also we have au− ξ1 ∈ I1 and

au− (ξ1 + ξ0z) ∈ I1. (5.34)

Since I1 and I ′ are relative prime ideals, it follows from (5.33), (5.34)

ϕI(au) = ϕI(ξ1 + ξ0z)

ϕI(a) = ϕI

(
u−1(ξ1 + ξ0z)

)
. (5.35)

We have by (5.30), (5.31), and (1.7)-(1.9),

N
(
u−1(ξ1 + ξ0z)

)
= N(ξ1 + ξ0z) .

(
h(ξ1) + h(ξ0z)

)n

. N(I1) + CN(I1)Hn

. p−nκN(I1)N(I ′) = p−nκN(I)
(5.36)

as desired.

It remains to establish (5.32). Proceeding again by the circle method, we need to

show that

0 6=
∑

X

[ ∑

x∈ϕI′ (G′)

X (
ϕI′(a)x

)] X (
ϕI′(ξ1)

) ∣∣∣∣
∑

y∈ϕI′ (B)

X (
ϕI′(ξ0)y

)∣∣∣∣
2

, (5.37)

where in (5.37) X runs over the additive characters of O/I ′.

Since a ∈ α and α ∈ (O/I)∗, ϕI′(a) is invertible in O/I ′.

Also ϕI′(ξ0) is invertible in O/I ′. Otherwise, there would be a prime ideal P
dividing I ′ with ξ0 ∈ P. Hence, recalling (5.28), also ξ0 ∈ P ∩ I1 = P.I1 and by (5.30)

CN(I1) > N(ξ0) ≥ N(I1)N(P)
19



and

N(P) < C. (5.38)

Recalling also that N(P) = p|n(2), necessarily p > T ε2
2 , contradicting (5.38).

Returning to (5.37), the trivial character X0 of O/I ′ contributes for

|G′| |ϕI′(B)|2 = |G′| |B|2. (5.39)

By (5.27) and Parseval, the contribution of the remaining characters is bounded by

T−γ |G′|
∑

X

∣∣∣∣
∑

y∈ϕI′ (B)

X (y)
∣∣∣∣
2

< T−γ |G′| N(I ′) |B|. (5.40)

We need to ensure that

Hn = |B| > T−γN(I ′) (5.41)

and this will be satisfied if we take

κ < γ/n (5.42)

in (5.31). This completes the proof of Theorem 5.1.
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