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Abstract. In this paper we prove the following theorems in incidence geometry.

1. There is δ > 0 such that for any P1, · · · , P4, and Q1, · · · , Qn ∈ C2, if there
are ≤ n

1+δ
2 many distinct lines between Pi and Qj for all i, j, then P1, · · · , P4 are

collinear. If the number of the distinct lines is < cn
1
2 , then the cross ratio of the

four points is algebraic.

2. Given c > 0, there is δ > 0 such that for any P1, P2, P3 noncollinear, and
Q1, · · · , Qn ∈ C2, if there are ≤ cn1/2 many distinct lines between Pi and Qj for
all i, j, then for any P ∈ C2 r {P1, P2, P3}, we have δn distinct lines between P
and Qj.

3. Given c > 0, there is ε > 0 such that for any P1, P2, P3 collinear, and Q1, · · · , Qn ∈
C2 (respectively, R2), if there are ≤ cn1/2 many distinct lines between Pi and Qj

for all i, j, then for any P not lying on the line L(P1, P2), we have at least n1−ε

(resp. n/ log n) distinct lines between P and Qj.

The main ingredients used are the subspace theorem, Balog-Szemerédi-Gowers
Theorem, and Szemerédi-Trotter Theorem. We also generalize the theorems to high
dimensions, extend Theorem 1 to F2

p, and give the version of Theorem 2 over Q.

§0. Introduction.

Notation.

• For P 6= Q, L(P, Q) denotes the line through P, Q.

• Let A be a subset of a ring. Then 2A = {a+a′ : a, a′ ∈ A}, A2 = {aa′ : a, a′ ∈ A}.
We first prove the following two theorems.

Theorem 1. There is δ > 0 such that for any P1, · · · , P4, and Q1, · · · , Qn ∈ C2,
if

|{L(Pi, Qj) : 1 ≤ i ≤ 4, 1 ≤ j ≤ n}| ≤ n
1+δ
2 , (0.1)

then P1, · · · , P4 are collinear. If

|{L(Pi, Qj) : 1 ≤ i ≤ 4, 1 ≤ j ≤ n}| ≤ cn1/2, (0.2)

then the cross ratio of P1, · · · , P4 is algebraic.
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Theorem 2. Given c > 0, there is δ > 0 such that for any P1, P2, P3 noncollinear,
and Q1, · · · , Qn ∈ C2, if

|{L(Pi, Qj) : 1 ≤ i ≤ 3, 1 ≤ j ≤ n}| ≤ cn1/2, (0.3)

then for any P ∈ C2 r {P1, P2, P3}, we have

|{L(P,Qj) : 1 ≤ j ≤ n}| = δn. (0.4)

Theorem 3. Given c > 0, there is ε > 0 such that for any P1, P2, P3 collinear,
and Q1, · · · , Qn ∈ C2, if

|{L(Pi, Qj) : 1 ≤ i ≤ 3, 1 ≤ j ≤ n}| ≤ cn1/2, (0.5)

then for any P ∈ C2 r L(P1, P2), we have

|{L(P, Qj) : 1 ≤ j ≤ n}| > n1−ε. (0.6)

Remark 4. In Theorem 3, the bound n1−ε in (0.6) is replaced by n/ log n, if the
points are in R2 instead of C2.

Remark 5. In Remark 1.1, we see that assumption (0.3) does occur.

We will first interpret the geometric problems under consideration into sum-
product problems. Roughly speaking, for Theorem 2, we want to show that given
two sets C, D ⊂ C2 of about the same size, if {di

ci
: (ci, di) ∈ C ×D, 1 ≤ i ≤ n} is

small, then { di+b
ci+a : (ci, di) ∈ C × D, 1 ≤ i ≤ n} is large, where a, b are fixed. So

we want to have an upper bound on the number of solutions (ci, di, cj , dj) of the
equation di+b

ci+a = dj+b
cj+a .

This interpretation was made in Section 1. In Section 2, we use the Subspace
theorem to prove Theorem 2, for the case when the point P is not on any line
connecting the Pi’s. In Section 3, we use the Szemerédi-Trotter Theorem to prove
the corresponding case of Theorem 1. We also give a short proof using a theorem
by Elekes, Nathanson and Ruzsa [ENR] about convex functions. The argument
using Szemerédi-Trotter Theorem, besides applying over C (rather than R), has
the advantage that the setup (reducing the problem to bounding the number of
solutions of equations) was already done for the Subspace Theorem approach. Also,
it generalizes easily to the prime field Fp setting. In Section 4, we use the sum-
product theorem to take care of all the cases when more than two of the Pi’s are
at infinity. In Section 5, we generalize the theorems to high dimensions. In Section
6, we prove a stronger theorem over Q by using the lambda-q constant (see [BC]).

This work is one more illustration of the relations between arithmetic combina-
torics and point-line incidence geometry. Let us recall that presently the strongest
results in the sum-product problem were obtained using the Szemerédi-Trotter The-
orem (due to Elekes and the second author). The results in this paper are another
demonstration of the interplay between these two fields.
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§1. The set-up.

Our strategy of proving Theorem 1 is to assume that P1, P2, P3 are not collinear
and get a large family of lines L(P4, Qj) violating assumption (0.1). Therefore, the
settings for Theorem 1 and Theorem 2 are the same. For simplicity, we describe
the situation for Theorem 2 here and indicate the (little) difference when we prove
Theorem 1.

We will work on the projective space CP2 ∼= (C3 \ {0})/ ∼, where (x, y, z) ∼
(λx, λy, λz) for any λ 6= 0. We identify C2 with the affine space in CP2 defined by
z 6= 0 via (x, y) → (x, y, 1).

Let L∞ be the line of infinity defined by z = 0. We may assume

(i) P1, P2, P3 are (1, 0, 0), (0, 1, 0), (0, 0, 1). (Clearly, P1 and P2 lie on L∞.)

(ii) No Qi lies on L∞.

In fact, let A be the 3×3 matrix with the vectors Pi as the ith columns. Since the
Pi’s are not collinear, the matrix A is invertible. Hence the linear transformation
T : C3 → C3 defined by P → A−1PT sends P1, P2, P3 to (1, 0, 0), (0, 1, 0), (0, 0, 1).
To see (ii), we notice that for any Q = (1, d, 0) ∈ L∞, the line L(Q,P3) is defined
by y = dx. Assumption (0.3) implies that |{Qi : Qi ∈ L∞}| ≤ cn1/2 ¿ n.

Let
Qi = (ci, di, 1),

C = {ci : 1 ≤ i ≤ n}, D = {di : 1 ≤ i ≤ n} (1.1)

and

G =
{

(ci, di) : 1 ≤ i ≤ n

}
, C−1 ×

G
D =

{
di

ci
: 1 ≤ i ≤ n

}
. (1.2)

Then
|G| = n (1.3)

and assumption (0.3) implies

|C−1 ×
G

D| ≤ cn1/2, and |C| = |D| = c′n1/2, (1.4)

since the lines L(P1, Qi), L(P2, Qi), L(P3, Qi) are defined by y = diz, x = ciz, y =
di

ci
x, and |C| |D| ≥ n.

Remark 1.1. Assumption (0.3) does occur. For example, if we let

Qi,j = (2i, 2j , 1), 1 ≤ i, j ≤ N,

then

|{L(P1, Qi,j)}i,j | = |{L(P2, Qi,j)}i,j | = N, and |{L(P3, Qi,j)}i,j | = 2N − 1.

To be able to apply the tools from sum-product theory, we need the Laczkovich-
Ruzsa version [LR] of Balog-Szemerédi-Gowers Theorem.
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Theorem BSG-LR. Let A, B be subsets of an abelian group with |A| = |B| = N ,
and let G ⊂ A×B with |G| > K−1N2. Denote

A
G
+ B = {a + b : (a, b) ∈ G}. (1.5)

If |A G
+ B| < KN, then there are subsets A′ ⊂ A and B′ ⊂ B such that

|A′ + B′| < KcN

and
|A′|, |B′| > K−cN. (1.6)

Remark 1.2. The absolute constant c in the above theorem is at most 8. (See
[SSV].)

§2. The proof of Theorem 2 for finite points.

Let N = n
1
2 .

Take a point P = (−a,−b, 1) ∈ C2. The line L(P, Qi) has slope di+b
ci+a . With the

help of Theorem BSG-LR, Theorem 2 is reduced to the following

Theorem 2.1. Let X = {xi ∈ C2 : 1 ≤ i ≤ N2}, and Y = {yi ∈ C2 : 1 ≤ i ≤ N2}
with | YX | ≤ cN and |X| = |Y | = c′N . Denote

Z =
{

yi + b

xi + a
: 1 ≤ i ≤ N2

}
.

Then
|Z| > δN2

for some δ > 0.

Proof of Theorem 2.1.

Let Iz = {i : yi+b
xi+a = z}. Then

∑

z∈Z

|Iz| = n = N2

and Cauchy-Schwarz gives
N4 ≤ |Z|

∑
|Iz|2.

∑
|Iz|2

=
∣∣∣∣
{

(i, j) :
yi + b

xi + a
=

yj + b

xj + a
, 1 ≤ i, j ≤ n

}∣∣∣∣

≤
∣∣∣∣
{

(x, x′, y, y′) ∈ X ×X × Y × Y :
y + b

x + a
=

y′ + b

x′ + a

}∣∣∣∣

=
∣∣∣∣
{

(x, x′, y, y′) ∈ X ×X × Y × Y : x′y + bx′ + ay = xy′ + bx + ay′
}∣∣∣∣

(2.1)
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To bound (2.1), we invoke the Subspace Theorem [ESS], which gives an upper
bound on the number of solutions of a linear equation in a multiplicative group.

A solution (x1, · · · , xm) of the equation

m∑

i=1

cixi = 1, ci ∈ C (2.2)

is called nondegenerate, if
∑k

j=1 cij
xij

6= 0, for all k. The bound given below is by
Evertse, Schlickewei and Schmidt [ESS].

Subspace Theorem. Let Γ < 〈C∗, ·〉 be a subgroup of the multiplicative group of
C, and let the rank of Γ be r. Then

|{nondegenerate solutions of
m∑

i=1

cixi = 1 in Γ}| < e(r+1)(6m)3m

.

The formulation of the Subspace Theorem we need is the following (see [C2])

Corollary 2.2. [C2] Let Γ < 〈C∗, ·〉 be a subgroup of rank r and A ⊂ Γ with
|A| = N . Then the numbers of solutions in A of

x1 + · · ·+ x2h = 0 (2.3)

is bounded by Nh−1erc + Nh, up to a constant depending on h. Here c = c(h).

In order to apply the Subspace Theorem, we need the following (See [Fr], [Rud],
[Bi].)

Freiman’s Lemma. Let 〈G, ·〉 be a torsion-free abelian group and A ⊂ G with
|A2| < K|A|. Then

A ⊂ {gj1
1 · · · gjd

d : ji = 1, · · · , `i, and gi ∈ G}, (2.4)

where d ≤ K, and
∏

`i < c(K)|A|.

We let Γ < 〈C∗, ·〉 be the subgroup generated by g1, · · · , gd. Then the rank of
Γ is bounded by d ≤ K and the number of nondegenerate solutions of (2.2) in Γ
is bounded by ecmK . We now obtain the subspace theorem under the product set
assumption.

Notation. d <h f means d ≤ c(h)f , where c(h) is a function of h.

Theorem 2.3. [C2] Let A ⊂ C with |A| = N , and

|A2| < K|A|. (2.5)

Then
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|{ solutions of x1 + · · ·+ x2h = 0 in A}| <h N
h−1

e
cK

+ N
h

.

Theorem 2.3 gives N3 as a bound on the number of solutions in A with |A| = N
to the equation

ξ1 + ξ2 + ξ3 = ξ4 + ξ5 + ξ6. (2.6)

On the other hand we expect (2.1) be bounded by N2. So we introduce a new
variable z to (2.1), and let

x′ =
u′

z
, x =

u

z
,

where u, u′ ∈ X2. Then the equation in (2.1) becomes

u′y + bu′ + ayz = uy′ + bu + ay′z. (2.7)

A solution (ξ1, · · · , ξ6) ∈ X2Y × bX2 × aXY × X2Y × bX2 × aXY of (2.6) is
one-to-one correspondent to a solution (u′, u, y′, y, z) ∈ X2 ×X2 × Y × Y ×X of
(2.7) by the following relations

ξ1 = u′y, ξ2 = bu′, ξ3 = ayz, ξ4 = uy′, ξ5 = bu, ξ6 = ay′z,

or

u′ =
ξ2

b
, u =

ξ5

b
, y′ =

bξ4

ξ5
, y =

bξ1

ξ2
, z =

ξ2ξ3

abξ1
.

In order to apply Theorem 2.3, we take

A = X2Y ∪ bX2 ∪ aXY.

Then we have |A2| < K|A| by the following Proposition 2.26 in [TV].

Proposition. Let A,B be subsets of an abelian group with |A| = |B| = N . If
|A + B| < cN , then

|n1A− n2A + n3B − n4B| < c′N.

§3. The proof of Theorem 1 for finite points.

Replacing assumption (0.3) by assumption (0.1), instead of (1.4) and Theorem
2.1, we have (3.1) and Theorem 3.1 below.

n
1−δ
2 < |C| = |D| < n

1+δ
2 , |C−1 ×

G
D| < n

1+δ
2 , (3.1)
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Theorem 3.1. Let X = {xi ∈ C2 : 1 ≤ i ≤ N2}, and Y = {yi ∈ C2 : 1 ≤ i ≤ N2}
with

N1−δ < |X| = |Y | < N1+δ (3.2)

and ∣∣∣∣
Y

X

∣∣∣∣ < N1+δ. (3.3)

Denote

Z =
{

yi + b

xi + a
: 1 ≤ i ≤ N2

}
.

Then
|Z| > N1+η

for some η = η(δ) > δ .

Remark 3.2. Let δ′ be the δ in (3.1). Then the δ in Theorem 3.1 is (2c + 1)δ′

with an absolute constant c as in Theorem BSG-LR.

Similar to the argument from (2.1) to (2.7), we need to prove

E :=
∣∣{(u, u′, y, y′, z) ∈ X2 ×X2 × Y × Y ×X : u′y + bu′ + ayz = uy′ + bu + ay′z}

∣∣
< N4−η (3.4)

for some η > 0.

Rewriting the relation in (3.4) as

(y + b)u′ − (y′ + b)u + a(y − y′)z = 0, (3.5)

we see that (u′, u) lies on the line `y,y′,z defined by

S − y′ + b

y + b
T +

a(y − y′)z
y + b

= 0. (3.6)

Assume
E > N4−η. (3.7)

We denote

K =
{

(y, y′, z) ∈ Y × Y ×X :
∣∣`y,y′,z ∩ (X2 ×X2)

∣∣ > N1−2η

}
. (3.8)

Claim 1. If 3δ < η, then

|K| > E

|X2| . (3.9)

Proof. By (3.4)-(3.6) and (3.8),

E ≤
∑

y′,y,z

∣∣`y,y′,z ∩ (X2 ×X2)
∣∣

< |X2| |K|+ N1−2η|X||Y |2,

and by (3.2), N1−2η|X||Y |2 < N1−2η+3(1+δ) < N4−η. The claim follows from (3.7).
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Ruzsa’s Inequality [R3]. Let M and N be finite subsets of an abelian group such
that

|M + N | ≤ ρ|M |.
Let h ≥ 1 and ` ≥ 1. Then

|hN − `N | ≤ ρh+`|M |.

It follows from Ruzsa’s Inequality, (3.2) and (3.3) that

|X2| <
(

N1+δ

|X|
)3

|X| < N3+3δ

N1−2δ
= N1+5δ. (3.10)

By (3.9), (3.7) and (3.10), we have

|K| > N4−η

N1+5δ
= N3−η−5δ (3.11)

Let
L = {`y,y′,z : (y, y′, z) ∈ K}. (3.12)

Since for any (ξ, ς), there are at most |Y | < N1+δ triples (y, y′, z) such that

ξ =
y′ + b

y + b

ς =
a(y − y′)z

y + b
,

for each line in L there are at most N1+δ triples in K corresponding to it.

Therefore,
|L| > N2−η−6δ (3.13)

The following version of Szemerédi-Trotter Theorem over C is exactly what we
need.

Szemerédi-Trotter Theorem [S]. Let P = C ×D ⊂ C2 be a set of points and
L be a set of lines such that

|` ∩ P| ≥ k for any ` ∈ L.

Then
|P|2 > c k3|L|.

In the above theorem we take P = X2 × X2, L as in (3.12) and k = N1−2η.
Together with (3.10) and (3.13), we have

N4(1+5δ) > |X2|4 > c(N1−2η)3|L| > N5−7η−6δ.

This cannot happen, if

η <
1− 26δ

7
. (3.14)

Remark 3.3. The conditions that η > 3δ (cf. Claim 1) and (3.14) imply δ < 1
47 .

Remark 3.4. The case for Pi, Qj ∈ Fp × Fp can be taken care of by the following
theorem. (See [B] Theorem 2.2.)
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Szemerédi-Trotter Theorem for Fp . Let P ⊂ Fp be a set of points, and L be
a set of lines such that

|P|, |L| ≤ M < pα for some 0 < α < 2. (3.15)

Let I be the incidence relation

I = {(p, `) ∈ P × L : p ∈ `}.

Then
|I| < cM

3
2−γ , (3.16)

for some γ = γ(α) > 0.

In (3.15), take P = X2 × X2, L as in (3.12), and M = N2+10δ (cf. (3.10)).
By (3.13)(which follows from the assumption that E > N4−η), we may assume
|L| = N2−η−6δ. Since each line in L contains at least N1−2η points, we have

|I| ≥ |L| N1−2η. (3.17)

Hence
cN (2+10δ)( 3

2−γ) > N2−η−6δN1−2η.

This is a contradiction, if δ and η are small. Therefore (3.4) holds, and Theorem
3.1 is true over Fp.

Remark 3.5. The finite points case of Theorem 1 over R also follows from the
following theorem by Elekes, Nathanson and Ruzsa [ENR].

Theorem ENR. Let S ⊂ R be finite and let f be a piecewise convex function (i.e.
f ′ > 0). Then

|2S|+ |2f(S)| >= c|S|5/4.

Proof of Remark 3.5. Similar to the way we derive the assumption of Theorem
3.1, we will start with (3.1) and use Theorem BSG-LR (twice, this time). Let

G = {(ci, di) ∈ C ×D : 1 ≤ i ≤ N2}. (3.18)

Assume
N1−δ < |C| = |D| < N1+δ, |G| ∼ N2, (3.19)

∣∣∣∣
{

di

ci
: (ci, di) ∈ G

}∣∣∣∣ < N1+δ, (3.20)

∣∣∣∣
{

di + b

ci + a
: (ci, di) ∈ G

}∣∣∣∣ < N1+η. (3.21)

First, from (3.20), we obtain C ′ ⊂ C and D′ ⊂ D such that

|C ′| ∼ |C|, |D′| ∼ |D|,
9



∣∣G ∩ (C ′ ×D′)
∣∣ ∼ N2

and ∣∣∣∣
D′

C ′

∣∣∣∣ . N1+δ. (3.22)

Let
G′ = G ∩ (C ′ ×D′).

Apply Theorem BSG-LR again, we obtain X ⊂ C ′ ⊂ C and Y ⊂ D′ ⊂ D such
that

|X| ∼ |C ′| ∼ |C|, |Y | ∼ |D′| ∼ |D|,

|G′ ∩ (X × Y )| ∼ N2

∣∣∣∣
Y

X

∣∣∣∣ ≤
∣∣∣∣
D′

C ′

∣∣∣∣ . N1+δ, (3.23)

and ∣∣∣∣
Y + b

X + a

∣∣∣∣ . N1+η. (3.24)

The bound (3.23) implies that

∣∣ log Y − log X
∣∣ . N1+δ. (3.25)

Ruzsa’s inequality and (3.25) give

∣∣2 log X
∣∣ . N1+5δ. (3.26)

Assume
δ <

1
20

.

In Theorem ENR, we take S = log X, and let f be the convex function

f(s) = log(es + a).

Then ∣∣2 log(X + a)
∣∣ > N

5
4 . (3.27)

On the other hand, (3.24) implies

∣∣ log(Y + b)− log(X + a)
∣∣ . N1+η. (3.28)

Again, applying Ruzsa’s inequality on (3.28) gives
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∣∣2 log(X + a)
∣∣ . N1+5η,

which contradicts to (3.27), if η < 1
20 .

§4. The cases of points at infinity.

In this section we finish all the cases when more than two of the Pi’s are at
infinity.

Let P = (1,− 1
d , 0) ∈ L∞. Then the lines L(P,Qi) are defined by

x + dy − (ci + ddi)z = 0.

To prove Theorem 1 and Theorem 2, we need to prove the following two theorems.

Theorem 4.1. Let X = {xi ∈ C2 : 1 ≤ i ≤ N2}, and Y = {yi ∈ C2 : 1 ≤ i ≤ N2}
with

N1−δ < |X| = |Y | < N1+δ (4.1)

and ∣∣∣∣
Y

X

∣∣∣∣ < N1+δ. (4.2)

Denote
Z =

{
xi + dyi : 1 ≤ i ≤ N2

}
. (4.3)

Then
|Z| > N1+η (4.4)

for some η = η(δ) > δ

Theorem 4.2. Let X = {xi ∈ C2 : 1 ≤ i ≤ N2}, and Y = {yi ∈ C2 : 1 ≤ i ≤ N2}
with

|X| = |Y | = c′N

and ∣∣∣∣
Y

X

∣∣∣∣ < cN

Denote
Z =

{
xi + dyi : 1 ≤ i ≤ N2

}
.

Then
|Z| > δN2

for some δ > 0.

To prove Theorem 4.1, we assume the contrary that

|Z| < N1+η (4.5)

for some η = η(δ) > δ.
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Let
A = X, B = dY,

where X,Y satisfy the assumptions of Theorem 4.1. Applying Theorem BSG-LR
to A and B , we have

N1−η < |A| = |B| < N1+η, (4.6)
∣∣∣∣
B

A

∣∣∣∣ < N1+η, (4.7)

|A + B| < N1+η. (4.8)

The same argument as that to obtain (3.10), (4.6)-(4.8) imply

|2A|, |A2| < N1+5η.

On the other hand, (4.6) and the following sum-product theorem imply

|2A|+ |A2| > N
14
11 (1−η).

This is a contradiction, if η < 1
23 .

Theorem (Solymosi). [S]

|2A|+ |A2| > |A| 1411−ε.

Remark 4.3. Let η′ be the η in (4.5). Then the η in (4.6)-(4.8) is bounded by
cη′, where c ≤ 8 is an absolute constant. (See Remark 1.2.) If η = δ, we can take
η ≤ (2c + 1)δ.

The proof of Theorem 4.2 by using the Subspace Theorem is rather straightfor-
ward, since as in the proof of Theorem 2.1, it suffices to show that

∣∣∣∣
{

(x, x′, y, y′) ∈ X ×X × Y × Y : x + dy = x′ + dy′
}∣∣∣∣ <

1
δ
N2.

Proof of Theorem 3.

Since P1, P2, P3 are collinear, we may assume that P1 = (1, 0, 0), P2 = (0, 1, 0),
and P3 = (1,−1, 0) ∈ L∞. Assumption (0.5) means that |C|, |D|, |C + D| . N .
For a point P = (−a,−b, 1) 6∈ L∞, the family of lines {L(P, Qj)}j corresponds to
{ di+b

ci+a : (ci, di) ∈ C × D, 1 ≤ i ≤ N2}. Applying the theorems below to the sets
C + a,D + b, we have |(C + a)(D + b)| ∼ N2−ε (respectively, N2/ log N). This
together with Balog-Szemerédi-Gowers Theorem imply that |{L(P, Qj)}j | & N2−ε

(respectively, N2/ log N).

Theorem. [C1] Let A ⊂ C be a finite set with |2A| ∼ |A|. Then

|A2| > |A|2−ε for some ε > 0.
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Theorem (Elekes-Ruzsa). [ER] Let A ⊂ R be a finite set. Then

|A + A|4.|A.A|. log |A| > |A|6

The special case of Theorem 1. Assume (0.2) holds, then P1, · · · , P4 are
collinear. After a Möbius transformation, we may assume that the four points
are P1 = (1, 0, 0), P2 = (1,−1, 0), P3 = (0, 1, 0), P4 = (1,− 1

d , 0) ∈ L∞. The lines
{L(Pi, Qj)}j correspond to C,C+D, D and {ci+ddi : (ci, di) ∈ C×D, 1 ≤ i ≤ N2}
respectively. Since |C| ∼ |D| ∼ |C + D| ∼ N , we have C ′ ⊂ C with |C ′| ∼ N and
C ′ ⊂ (a+D) for some a. Hence C ′+dD ⊂ a+(D+dD) and our conclusion follows
from the following theorem.

Theorem (Konyagin-Laba). [KL] Let t ∈ C be transcendental. Then

|A + tA| > |A| log |A|
log log |A| .

§5. Higher dimensional cases.

The case for Ck with k > 2 follows easily from the case for k = 2.

Theorem 5.1. There is δ > 0 such that for any P1, · · · , Pk+2, Q1, · · · , Qn ∈ Ck,
if

|{L(Pi, Qj) : 1 ≤ i ≤ k + 2, 1 ≤ j ≤ n}| ≤ n
k−1+δ

k , (5.1)

then P1, · · · , Pk+2 lie on a hyperplane.

Theorem 5.2. Given c > 0, there is δ > 0 such that for any P1, · · · , Pk+1 ∈ Ck

not contained in any hyperplane, and any Q1, · · · , Qn ∈ Ck, if

|{L(Pi, Qj) : 1 ≤ i ≤ k + 1, 1 ≤ j ≤ n}| ≤ cn
k−1

k , (5.2)

then for any P ∈ Ck r {P1, · · · , Pk+1}, we have

|{L(P,Qj) : 1 ≤ j ≤ n}| = δn. (5.3)

The set up is similar to that of the C2 case. We work on CPk instead of Ck. As-
suming P1, · · · , Pk+1 are not contained in any hyperplane, then after a linear trans-
formation, we may assume that P1 = (1, 0, · · · , 0), P2 = (0, 1, 0, · · · , , 0), · · · , Pk+1 =
(0, · · · , 0, 1). The same reasoning as before, we may assume that the Qj ’s all lie in
the affine space. Hence we may denote

Qj = (c1, · · · , ck)(j) := (c(j)
1 , · · · , c

(j)
k ) ∈ Rk ⊂ Ck,

where j = 1, · · · , n.

Let N = n
1
k

13



Assumption (5.2) implies

∣∣∣∣
{

(c2, · · · , ck)(j)
}Nk

j=1

∣∣∣∣,
∣∣∣∣
{

(c1, c3, · · · , ck)(j)
}Nk

j=1

∣∣∣∣, · · · ,

∣∣∣∣
{

(c1, · · · , ck−1)(j)
}Nk

j=1

∣∣∣∣ < Nk−1

(5.4)
and ∣∣∣∣

{(
c2

c1
, · · · ,

ck

c1

)(j)}Nk

j=1

∣∣∣∣ < Nk−1. (5.5)

For a finite point P = (−a1, · · · ,−ak, 1), the family of lines {L(P, Qj) : 1 ≤ j ≤
Nk} is one-to-one correspondent to

Z =
{(

c2 + a2

c1 + a1
, · · · ,

ck + ak

c1 + a1

)(j)

: 1 ≤ j ≤ Nk

}
.

Hence (5.3) is equivalent to
|Z| = δNk (5.6)

for some δ > 0. Let
Ci = {c(j)

i : j = 1, · · · , Nk}.

We will show that
|Ci| = cN, for i = 1, · · · , k. (5.7)

For simpler notations, we give an argument for the case k = 4. Let

A = {Q1, · · · , QN4},

and let pj1···jm(x1, · · · , x4) = (xj1 , · · · , xjm) be the projection to the j1-th, · · · ,
jm-th coordinates.

First, we may assume

|p−1
123(c1, c2, c3) ∩A| & N, for all (c1, c2, c3) ∈ p123(A). (5.8)

In fact, let Ac = {(c1, · · · , c4) ∈ A : |p−1
123(c1, c2, c3) ∩A| = o(N)}. Then

|Ac| ≤ o(N)N3 = o(N4), (5.9)

and Ac can be ignored.

Next, we see that for the set A considered in (5.8), the bound |p124(A)| . N3

implies

|p12(A)| . N2. (5.10)

Indeed,

N3 & |p124(A)| > |p12(A)| · min
(c1,c2)∈p12(A)

∣∣p124

(
p−1
12 (c1, c2) ∩A

)∣∣ & |p12(A)| N.

(5.11)
14



The last inequality is because of (5.8).

Similarly, we have |p13(A)|, |p23(A)| . N2.

Using (5.10) instead of (5.4), for the same reasoning as that for (5.8), by shrinking
the set A in (5.8) a bit, we may assume

|p−1
12 (c1, c2) ∩A| & N2, for all (c1, c2) ∈ p12(A). (5.12)

Therefore, (5.4) and (5.12) imply

N3 & |p134(A)| & |p1(A)| · min
c1∈p1(A)

∣∣p134

(
p−1
1 (c1) ∩A

)∣∣ > |p1(A)| N2, (5.13)

which implies
|C1| = |p1(A)| . N. (5.14)

Similarly, we have |C2|, |C3| . N for |A| ∼ N4.

Repeat this process on the set A obtained in (5.12) with different projections, we
have |C4| = |p4(A)| . N . Now (5.7) follows from N4 ≤ |C1| |C2| |C3| |C4| . N4.

Getting back to the case for any k > 2, we let B = {Q1, · · · , QNk}. We will
show that ∣∣∣∣

{(
ci

c1

)(j)

: 1 ≤ j ≤ Nk

}∣∣∣∣ ∼ N, for all i. (5.15)

Let
C1i = {(c1, ci) ∈ C1 × Ci : |p−1

1i (c1, ci) ∩B| & Nk−2}. (5.16)

Since |B| ∼ Nk, same reasoning as for (5.8), we have

|C1i| ∼ N2. (5.17)

Let πi be the projection

{(
c2

c1
, · · · ,

ck

c1

)(j)

: (c1, ci)(j) ∈ C1i

}
−→

{(
ci

c1

)(j)

: (c1, ci)(j) ∈ C1i

}
.

The fiber of πi at (c1, c2) is one-to-one correspondent to p−1
1i (c1, ci)∩B. Hence the

image of πi has size . N by (5.5). We replace B by p−1
1i (C1i)∩B (Note that (5.16)

and (5.17) imply |p−1
1i (C1i) ∩ B| ∼ Nk.). We do this for each i (and shrink B a

littlem if necessary.). Then (5.15) is proved.

To prove (5.6), we want to show that under condition (5.15),
∣∣∣∣
{

(c1, · · · , ck, c′1, · · · , c′k) ∈ C1×· · ·×Ck×C1×· · ·×Ck :
ci + ai

c1 + a1
=

c′i + ai

c′1 + a1
, ∀i

}∣∣∣∣ . Nk.

(5.18)

It follows from the case for C2 that

c2 + a2

c1 + a1
=

c′2 + a2

c′1 + a1
(5.19)
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has . N2 solutions in c1, c2, c
′
1, c

′
2. Fixing c1, c

′
1, the equation

c3 + a3

c1 + a1
=

c′3 + a3

c′1 + a1
(5.20)

has at most N choices of c3 (then c′3 is determined.) Hence (5.19) and (5.20)
together have . N3 solutions in c1, c2, c3, c

′
1, c

′
2, c

′
3. Therefore, (5.18) follows by

induction and the finite point case of Theorem 5.2 is proved.

Only set theory is used in the argument above, hence Theorem 5.1, the other
case of Theorem 5.2 , and the case for Fp are proved exactly the same way.

Remark 5.3. Theorem 5.1 and Theorem 5.2 are true if we replace Ck by Fk
p.

§6. Theorem 2 over Q.

We have a stronger result by using the lambda-q constant, when the points are
in Q2.

Theorem 6.1. Given ε > 0, there is δ > 0 such that for any P1, P2, P3 non-
collinear, and Q1, · · · , Qn ∈ Q2, if

|{L(Pi, Qj) : 1 ≤ i ≤ 3, 1 ≤ j ≤ n}| ≤ n1/2+ε, (6.1)

then for any P ∈ Q2 r {P1, P2, P3}, we have

|{L(P,Qj) : 1 ≤ j ≤ n}| > n1−δ. (6.2)

We use the same setup as that for the C case. Given a set A ⊂ Q, with
N1−ε < |A| < N1+ε and |A2| < N1+5ε, we want to bound the number of solu-
tions ξ1, · · · , ξ6 ∈ A in the following equation by N3+δ for some δ(ε) > 0.

ξ1 + ξ2 + ξ3 = ξ4 + ξ5 + ξ6. (6.3)

We use the lambda-q constant of A for this. We recall

Definition. Let A ⊂ Z be finite. The Λq constant of A is

λq,A =
‖∑

a∈A e(ax)‖q√
|A| ,

where e(θ) = e2πiθ.

Proposition. [BC] Given ε > 0 and q > 2, ∃ δ = δ(q, ε) such that if A ⊂ Z,
|A2| < |A|1+ε, then

λq(A) < |A|δ,
where δ → 0, if ε → 0. Therefore, ‖∑

a∈A
e(ax)‖q < |A| 12+δ6 .

Denote r(η) = |{(ξ1, ξ2, ξ3) ∈ A×A×A : η = ξ1 + ξ2 + ξ3}|.
16



In the proposition above, we take q = 6. Then

‖
∑

a∈A

e(ax)‖66 =‖(
∑

a∈A

e(ax))3‖22

=
∑

r(η)2

=|{(ξ1, · · · , ξ6) : ξ1 + ξ2 + ξ3 = ξ4 + ξ5 + ξ6}|
<(N (1+ε)( 1

2+δ6))6

=N3+δ.
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