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Abstract. In this note we consider some quantitative versions of conjectures made by
Arnold related to Galois dynamics in finite fields. We refine some results by Shparlinski
using exponential sum results.

The present note is a refinement of work of I. Shparlinski [S] on the ergodic prop-
erties of certain dynamical systems associated to multiplication in finite fields and
originating from some problems posed by I. V. Arnold (see [A]). As shown in [S] the
issue (explained below) turns out to be ultimately connected to questions on incom-
plete exponential sums of Gauss type. Using the ‘standard’ bounds on such sums,
(combined with discrepancy estimates) Arnold’s question was settled affirmatively in
[S]. In fact, the result obtained in [S] shows uniform distribution of even much shorter
orbits than considered in [A] and raises the natural question: what is the true condition
to establish this phenomenon? Our first and main aim here is to show how recently
obtained exponential sum bounds in fields Fn

p (see [BC]) and going well beyond Gauss’
estimates, permit to prove uniform distribution of orbits of length M ≥ pδ for any
fixed δ > 0, while in [S] the condition M À pn/2(log p)2 is required. Next, a self-
contained account is given of how to derive directly from the exponential sum bound
the discrepancy estimates for smooth domains (without first ‘passing through boxes’).
No effort has been made however to optimize the error term.

Next, we describe our problem in details.

Let p be a large prime, and let n ∈ Z+ be fixed. A finite field Fpn ∼= Fp[ξ] can be
viewed as a n-dimensional vector space over Fp via the correspondence

n−1∑

j=0

xjξ
j ←→ (x0, . . . , xn−1).

Let am = (am,0, . . . , am,n−1) be the vector corresponding to ξm =
∑n−1

j=0 am,j ξj . After
identifying Fp with {0, 1, . . . , p− 1}, we have

1
p

am ∈ [0, 1]n ⊂ Qn, where m = 1, . . . ,M.
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We are interested in the distribution of { 1
p am : m = 1, . . . ,M} in [0, 1]n. For

example, if M = pn − 1, we get regular lattice with only one point (0, . . . , 0) missing.
Arnold Conjectured [A] that there is uniform distribution even for small values of M .
More precisely, let Ω ⊂ [0, 1]n be a region with smooth boundary and denote

Nξ(M, Ω) =
∣∣{1 ≤ m ≤ M :

1
p

am ∈ Ω}
∣∣. (1)

Conjecture. (Arnold)

Nξ(M, Ω) = M vol Ω + o(M)

even for small values of M .

By ‘small’ Arnold refers to M = o(pn). Shparlinski proved that M À p
n
2 (log p)2.

In this note we will improve the lower bound on M obtained by Shparlinski.

Theorem 1. Let Nξ(M, Ω) be defined as in (1). Then

Nξ(M, Ω) = M vol Ω + o(M)

for M > pδn for any fixed δ > 0.

In [S], the author also considers the following general problem. Let f(x) ∈ Z[x] be
a fixed nonconstant polynomial and write

ξf(m) =
n−1∑

j=0

am,jξ
j , (2)

where ām = (am,0, · · · , am,n−1) ∈ {0, · · · , p− 1}n.

Similarly, one can then study the distribution of orbits { 1
p am : m = 1, . . . , M} in

[0, 1]n. In this context, two results are proven in [S]. The first (see [S], Theorem 5)
establishes for general f(x) as above a uniform distribution property

Nξ(M, Ω) = M vol Ω + o(M) (3)

for ‘most’ primitive roots ξ ∈ F∗pn and M > p
n
2 +ε, where Nξ(M, Ω) is defined as in (1).

In the second result, the special case of a monomial f(x) = xk, k ≥ 2 is considered,
for which it is shown that for any generator ξ, the full orbit satisfies

Nξ(pn, Ω) = pn vol Ω + O(pn−δ(k))
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for some δ(k) > 0. (See [S], Theorem 6.)

In this view we will establish here a result under an additional assumption on p and
n. More precisely, assume the following

(∗) pn − 1 has a square factor q2, such that q > pε and (pν − 1, q) = 1 for all
1 ≤ ν < n, ν|n.

(Here ε > 0 is arbitrary and fixed.)

Let us first point out that this condition may be fulfilled for infinitely many primes
p. For example, for the case n = 2, the condition (*) amounts to p + 1 having a large
square divisor q2, q > pε. Fix q large. According to Linnik’s theorem, there is a prime
p such that

p ≡ q2 − 1 (mod q2)

and
p . q2L,

where L is an absolute constant. (One may take L = 5.5 according to a result of
Heath-Brown.) See [IK] for details. It follows that p2 − 1 satisfies (*) with q > cp

1
11 .

Theorem 2. Assume that (*) holds. Given a nonconstant f(x) ∈ Z[x] and with
notation as in (2) and (1), we have

Nξ(M, Ω) = M vol Ω + o(M)

holds, provided M > pn−ε/2.

(The generator ξ is arbitrary.)

The remainder of the paper is organized as follows. We first prove Theorem 1,
relying essentially on [BC], and making our treatment self-contained by providing a
full argument for the discrepancy bound. At the end we state and prove the exponential
sum bound that replaces the estimate in [BC] in order to derive Theorem 2.

We will follow the new convention to use d . f meaning d ≤ cf , where c is a
function of some parameters independent of d and f .

Let τ > 0 be fixed. We construct two smooth functions F+, F− : [0, 1]n → [0, 1]
with the following properties:

(i) supp F− ⊂ Ω

(ii)
∣∣Ω\{F− = 1}

∣∣ < τ |∂Ω|
(iii)

∣∣∂(α)
x F−

∣∣, ∣∣∂(α)
x F+

∣∣ < Cτ−|α| for any multi-index α = (α0, . . . , αn)
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(i’) F+ = 1 on Ω

(ii’)
∣∣( supp F+)\Ω∣∣ < τ |∂Ω|

Here ∂Ω is the boundary of |Ω|, and ∂
(α)
x = ∂

(α0)
x0 · · · ∂(∂n−1)

xn−1 is the differential. Also,
|Γ| denote the measure of a region Γ.

Let XΩ = be the indicator function of Ω. Then (i), (ii), (i’) and (ii’) imply

F− ≤ XΩ ≤ F+.

Hence

M∑
m=1

F−
(1

p
ām

) ≤ Nξ(M, Ω) ≤
M∑

m=1

F+

(1
p
ām

)
. (4)

Claim. For F = F+ or F−, we have

∣∣
M∑

m=1

F
(1

p
ām

)
− |Ω| ·M

∣∣∣ < cM(τ |∂Ω|+ τ−n−1p−ε).

Proof. For k ∈ Zn, recall that the Fourier transform of F at k is

F̂ (k) =
∫ 1

0

· · ·
∫ 1

0

F (x)e−2πik·xdx.

Hence we have
F (x) = F̂ (0) +

∑

k 6=0

F̂ (k)e2πik·x.

Then
M∑

m=1

F
(1

p
ām

)
= M · F̂ (0) +

∑

k 6=0

F̂ (k)
[ M∑

m=1

ep(k · ām)
]
, (5)

where ep(θ) = e
2πi

p θ.

Let Tr(x) = x+xp + . . .+xpn−1
be the trace of x ∈ Fpn and let ω0, . . . , ωn−1 ∈ Fpn

be the dual basis to 1, ξ, . . . , ξn−1. Hence

Tr(ωiξ
j) = δi,j , for 0 ≤ i, j < n
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and
am =

(
Tr(ω0ξ

m), . . . , T r(ωn−1 ξm)
)
.

Therefore

M∑
m=1

ep(k · ām) =
M∑

m=1

ep

(
Tr

(
(k0ω0 + · · ·+ kn−1ωn−1)ξm

))

=
M∑

m=1

ep

(
Tr

(
(k · ω) ξm

))
, (6)

where ω = (ω0, · · · , ωn−1).

We will use the following estimates on incomplete Gauss sums in Fpn .

Theorem BC. [BC] Let g ∈ Fpn be a unit with ord(g) = t, and let t ≥ t1 > pε.
Suppose

max
1≤ν<n

ν|n

gcd(pν − 1, t) < p−εt

for some ε > 0. Then

max
a∈F∗

pn

∣∣∣
∑

j≤t1

e
(
Tr(agj)

)∣∣∣ < cp−δt1

where δ = δ(ε) > 0.

Remark BC. The assumption t ≥ t1 is vacuous. One only needs to assume that
t, t1 > pε. In fact, we can write t1 = tq + r, with q ∈ N and 0 ≤ r < t. If r < pε/2,
then r < p−ε/2t1 and Theorem BC gives

∣∣∣
∑

j≤t1

e
(
Tr(agj)

)∣∣∣ ≤
q∑

i=0

∣∣∣
t(i+1)∑

j=ti+1

e(Tr(agj)
∣∣∣ + r

< cqp−δt + p−ε/2t1

. t1p
−ε/2t1.

If r ≥ pε/2, we apply Theorem BC to t ≥ r ≥ pε/2.

For those k satisfying
0 < |k| = max |ki| < p, (7)

5



we use Theorem BC to bound (6). Since (7) implies k · ω 6= 0, we have

∣∣∣∣
M∑

m=1

ep(k · ām)
∣∣∣∣ < p−εM, if 0 < |k| = max |ki| < p.

Therefore, the second term in the right-hand-side of (5) is bounded by

∣∣∣∣
∑

k 6=0

F̂ (k)
[ M∑

m=1

ep(k · ām)
]∣∣∣∣ < p−εM

∑

0<|k|<p

|F̂ (k)|+ M
∑

|k|≥p

|F̂ (k)|.

Property (iii) implies

|F̂ (k)| < c(τ |k|)−n−1 , k ∈ Rn\{0}.

Therefore,

∣∣∣∣
∑

k 6=0

F̂ (k)
[ M∑

m=1

ep(k · ām)
]∣∣∣∣ . p−εMτ−n−1

∑

0<|k|<p

|k|−n−1 + Mτ−n−1
∑

|k|≥p

|k|−n−1

. Mτ−n−1(p−ε + p−1)

≤ cMτ−n−1p−ε. (8)

Also, properties (i), (ii), (i’) and (ii’) imply

F̂ (0) =
∫

F (x)dx = |Ω|+ O(τ |∂Ω|). (9)

Now the claim follows from (5), (8) and (9). ¤

Claim and (1) imply
∣∣Nξ(M, Ω)−M · |Ω|

∣∣ < cM(τ |∂Ω|+ τ−n−1p−ε). (10)

Taking

τ =
( p−ε

|∂Ω|
) 1

n+2
(11)

gives ∣∣Nξ(M, Ω)−M · |Ω|∣∣ < cMp −
ε

n+2 |∂Ω| n+1
n+2 . (12)
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Recall that Ω has a smooth boundary. (In particular |∂Ω| < ∞). Therefore in-
equality (12) gives that

Nξ(M, Ω) = M |Ω|+ o(Mp−
ε

n+2 ) = M |Ω|+ o(M), (13)

and Theorem 1 is proved.

Next, we will prove Theorem 2. Following the same argument, it is clear that the
only additional input needed are nontrivial bounds on sums of the form

M∑
m=1

e
(
Tr(aξf(m))

)
. (14)

Assuming pn − 1 satisfies (*). Then Theorem 2 follows from the following

Proposition 3. Assume (*) holds. Then

max
a∈F∗

pn

∣∣∣∣
M∑

m=1

e
(
Tr(aξf(m))

)∣∣∣∣ < cM1−δ, (15)

provided M > pn− ε
2 . Here δ = δ(ε, f) > 0.

Proof. Let

f(x) =
d∑

s=0

csx
s,

where cs ∈ Z and cd 6= 0.

By assumption
pn − 1 = q2A with A ∈ Z+. (16)

For m ∈ {1, · · · ,M} we write m in the form

m = qAj + r with r ∈ {0, 1, · · · , qA− 1} and j ≤ M

qA
. (17)

Recall that qA < pn−ε by the assumption on q. Hence M
qA > pε/2. Next, by (17) and

(16),

f(m) =
d∑

s=0

cs(qAj + r)s

∈
d∑

s=0

csr
s + qAj

( d∑
s=1

scsr
s−1

)
+ (pn − 1)Z.
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Therefore,
∣∣∣∣

M∑
m=1

e
(
Tr(aξf(m))

)∣∣∣∣ ≤
qA−1∑
r=0

∣∣∣∣
[ M

qA ]∑

j=0

e
(
Tr(arξ

j
r)

)∣∣∣∣ + qA, (18)

where
ar = aξ

∑d
s=0 csrs 6= 0

and
ξr = ξqA(

∑d
s=1 scsrs−1).

Fixing r, we apply Remark BC to the inner sum in (18). Thus
[

M

qA

]
∼ M

qA
> p

ε
2 ,

and by (16), ξr satisfies

tr = ord(ξr) =
pn − 1

gcd(pn − 1, qA
∑d

s=1 scsrs−1)
=

q

gcd(q,
∑d

s=1 scsrs−1)
. (19)

Also, by assumption (*) that (q, pν − 1) = 1 for any 1 ≤ ν < n, ν|n, hence we have

(tr, pν − 1) = 1, if 1 ≤ ν < n, ν|n.

For Remark BC to be applicable, it therefore suffices to assume that tr > p
ε
2 . Since

q > pε, we require that

gcd (q,
d∑

s=1

scsr
s−1) < p

ε
2 , (20)

by excluding a set of exceptional values of r. We will analyze condition (20). Denoting

D = {k ∈ Z : k divides q and k ≥ p
ε
2 }.

For k ∈ D, denote

Rk =
{
0 ≤ r < qA :

d∑
s=1

scsr
s−1 ≡ 0 (mod k)

}
.

Note that r fails to satisfy (20) if and only if r is in the set

⋃

k∈D
Rk =

⋃

k∈D

{
0 ≤ r < qA :

d∑
s=1

scsr
s−1 ≡ 0 (mod k)

}
. (21)
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Hence we want to bound the cardinality of the set (21).

To bound |Rk|, we divide the interval [0, qA] into subintervals of length k1/d2
each.

Observe that each subinterval cannot contain d distinct values of r. In fact, assume
by contradiction that r1 < r2 < · · · < rd are in the same subinterval of Rk such that∑d

s=1 scsr
s−1
i ≡ 0 (mod k). By dividing gcd(k, dcd) if necessary, we may assume dcd

is invertible in Zk. Hence the Van der Monde determinate

det
1≤i≤d
0≤s<d

(rs
i ) ≡ 0 (mod k).

This is clearly impossible since |ri− rj | < k1/d2
and |det(rs

i )| < k. From this observa-
tion, we conclude that the cardinality of (21) is bounded by

∑

k∈D
d

qA

k1/d2 . qA p−ε/2d2 |D|

. qA p−ε/2d2
exp

(
n log p

log log p

)

< qA p−ε/4d2
. (22)

(since p is large.)

Returning to (18), it follows from the proceeding and Remark BC that
∣∣∣∣

M∑
m=1

e
(
Tr(aξf(m))

)∣∣∣∣ ≤
∑

0≤r<qA
r 6∈set(21)

∣∣∣∣e
(
Tr(aξf(m))

)∣∣∣∣ + qA p−ε/4d2 M

qA
+ qA

<qAp−δ M

qA
+ p−ε/4d2

M + p−ε/2M

<M1−δ′ . ¤
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