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Abstract Let p, q ∈ R such that 1 < p < 2 and 2
p = 1 + 1

q . Define

‖f‖′p = max
x,G1

( ∑

y∈G1

|f(xy)|p
)1/p

(*)

where G1 is taken in some class of subgroups specified later. We prove the following
two theorems about convolutions.

Theorem 2. Let G = SL2(C) equipped with the discrete topology. Then there is a
constant τ = τp > 0 such that for f ∈ `p(G)

‖f ∗ f‖1/2
q ≤ C‖f‖1−τ

p (‖f‖′p)τ ,

where the maximum in (∗) is taken over all abelian subgroups G1 < G and x ∈ G.

Theorem 3. There is a constant C = Cp > 0 and 1 > τ = τp > 0 such that if
f ∈ `p

(
SL3(Z)

)
, then

‖f ∗ f‖1/2
q ≤ C‖f‖1−τ

p (‖f‖′p)τ

where the maximum in (∗) is taken over all nilpotent subgroups G1 of SL3(Z) and
x ∈ SL3(Z).

This paper is a continuation of our earlier work [C] on product theorems in the
groups SL2 and SL3.We show here how they may be applied to obtain nontrivial
convolution estimates of discrete measures on SL2(C) and SL3(Z) (see Theorem 2 in
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§1 and Theorem 3 in §2). Random walks and decay estimates for iterated convolutions
of a fixed symmetric measure ν on a group G is a well studied topic on which there is an
extensive literature(some further considerations on the relation to our results appear
in §3 of the paper). We are not aware however of prior work that has to do with single
convolutions of arbitrary measures (keeping in mind of course the ’Kunze-Stein’ type
phenomena but those have to do with convolution in Lebesgue spaces L(G)), except
for very recent developments such as [BG1] and [BG2] (that are part of the motivation
for this work). Roughly speaking, the general sense of our results on convolution, as
expressed in Theorem 2 and Theorem 3,is that a gain on the usual inequality appears
as soon as the measure does not put much weight on a coset of a nilpotent subgroup.
This principle, that likely has extensions beyond the particular cases studied here, is
formulated in a qualitative form, without specifying the exponents. (See §3 Remark
2.) That could be done however as all our arguments are effective, but the result
would not be very pleasing. The reason is that the nature of our present technique
does not allow to be very efficient in this respect. The simplest case to study further
from the point of view of obtaining precise inequalities (recall Kesten’s theorem [K]
for the random walk), would be convolution on the free group. The very recent work
of A.Razborov [R] provides indeed the optimal product theorem for general subsets of
the free group.

For a set A, denote An = A · · ·A = {a1 · · · an : ai ∈ A}, the n-fold product set of A.

The precise statements from [C] are the following.

Theorem A. Let A be a finite subset of SL2(C). Then one of the following alterna-
tives holds.

(i) A is contained in a virtually abelian subgroup

(ii) |A3| > c|A|1+δ for some absolute constant δ > 0.

Theorem B. For all ε > 0, there is δ > 0 such that if A ⊂ SL3(Z) is a finite set,
then one of the following alternatives holds.

(i) A intersects a coset of a nilpotent subgroup in a set of size at least |A|1−ε.

(ii) |A3| > |A|1+δ.

From the product theorems for sets obtained above, one may derive convolution in-
equalities. The passage from the “set-theoretical” to the “statistical” result is achieved
using the “Balog-Szemeredi-Gowers Theorem”. The version we need in our context is
that of discrete sets in non-abelian groups (see [T] for the precise statements).

Notations and Conventions.
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1. Let G be a discrete group. For any f ∈ `p(G) the `p norm is‖f‖p =
(∑

x∈G |f(x)|p
)1/p

.

2. f ∗ g(x) =
∑

y∈G f(y)g(xy−1).

3. For p ∈ R, p′ is defined as 1
p + 1

p′ = 1.

4. For a set A, XA is the indicator function of A.

5. We use An for both the n-fold product set and n-fold Cartesian product when there
is no ambiguity.

6. A[n] = ({1} ∪A ∪A−1)n, the set of ≤ n-fold products of elements in A ∪A−1.

7. Tr(g) is the trace of g.

8. Note that the properties under consideration (e.g. the size of a set of matrices or the
trace of a matrix) are invariant under base change (i.e. conjugation by an invertible
matrix).

9. We follow the trend that ε, (respectively, δ, or C) may represent various constants,
even in the same setting. Also, f(x) ∼ g(x) means f(x) = cg(x) for some constant c
which may depend on some other parameters.

Facts.

(1)
∑

x∈G f(x)θg(x)1−θ ≤ (
∑

f(x))θ(
∑

g(x))1−θ.

(2) ‖f ∗ g‖p ≤ ‖f‖1 ‖g‖p.

(3) ‖f ∗ g‖∞ ≤ ‖f‖p′ ‖g‖p.

(4) ‖f ∗ g‖q ≤ ‖f‖p1 ‖g‖p2 , where 1
p1

+ 1
p2

= 1 + 1
q .

§1 The SL2(C) case.

Proposition 1.

(i) Let G = SL2(C) and let A ⊂ G be a finite set such that

‖XA ∗ XA‖2 >
1
K
|A|3/2, with K > 1. (1.1)

Then there is a coset S of an abelian subgroup of G such that

|A ∩ S| > K−C |A|, (1.2)

where C is an absolute constant.
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(ii) Let G = SL3(Z) and let A ⊂ G be a finite set such that

‖XA ∗ XA‖2 > |A| 32−ε, for some ε > 0. (1.3)

Then there is a coset S of a nilpotent subgroup of G such that

|A ∩ S| > |A|1−δ, (1.4)

where δ = δ(ε) → 0 as ε → 0.

Proof. Statement (i) is obtained combining the Balog-Szemeredi-Gowers Theorem
with Theorem A and statement (ii) similarly using Theorem B instead. We will only
prove statement (i).

The assumption (1.1) is equivalent to the following statement on E(A,A), the “mul-
tiplicative energy” in the sense of [TV]

E(A,A) = |{(x1, x2, x3, x4) ∈ A× · · · ×A : x1x2 = x3x4}| > 1
K2

|A|3.

According to the Balog-Szemeredi-Gowers theorem in the version from [T], there exist
an absolute constant C1 and a “KC1-approximative group” (characterized by prop-
erties (a) and (b) below) H of G with the following properties (See Theorem 2.48 in
[TV].)

(a) H = H−1, and 1 ∈ H.

(b) There is a subset X ⊂ G, with |X| < KC1 such that

H2 ⊂ HX ∩XH.

(c) |A| ≤ |H| < KC1 |A|.
(d) There is an element x ∈ G such that

|A ∩ xH| > 1
KC1

|A|.

Iterating (b) gives

|H3| < |H2X| ≤ |HX2| < K2C1 |H|. (1.8)

The inequality (1.2) in the proposition only requires justification if K ≤ |A|1/C . We
choose C large enough such that 2C1/C < δ. Property (c), inequality (1.8), and
Theorem A imply that

|H3| < |H|1+δ
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and H is contained in a virtually abelian subgroup G′ of G. In fact G′ has an abelian
subgroup G1 of index ≤ 2. Hence for some ξ ∈ G, we have |H ∩ ξG1| ≥ 1

2 |H|. In
particular,

|H ∩ ξG1| ≥ 1
KC

|H|. (1.6)

In (d), let A1 = A ∩ xH. We have

|A1| > K−C |A|, (1.7)

and
|HA−1

1 | < |H2| < |X| |H| < KC |H|. (1.8)

Clearly, for any sets H and A1, we have

XH ≤ 1
|A1|

∑

x1∈HA−1
1

Xx1A1 . (1.9)

Applying (1.9) on the set H ∩ ξG1, together with (1.6), we obtain

K−C |H| ≤ 1
|A1|

∑

x1∈HA−1
1

|x1A1 ∩ ξG1|

≤ 1
|A1| |HA−1

1 | max
x1∈HA−1

1

|x1A1 ∩ ξG1|.

Therefore, there exists x1 ∈ HA−1
1 such that

|A1 ∩ x−1
1 ξG1| ≥ K−C |H| |A1|

|HA−1
1 | > K−3C |A|

by (1.7) and (1.8). Hence (1.2) follows. ¤

We may also establish a more functional analytic statement that is reminiscent of
the Kuntz-Stein theorem on convolution of L2

(
SL2(R)

)
-functions.

Theorem 2. Let G = SL2(C) equipped with the discrete topology, and let p, q ∈ R
such that 1 < p < 2 and

2
p

= 1 +
1
q
. (1.10)

Then there is a constant τ = τp > 0 such that for f ∈ `p(G)

‖f ∗ f‖1/2
q ≤ C‖f‖1−τ

p (‖f‖′p)τ , (1.11)
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where we define

‖f‖′p = max
x,G1

( ∑

y∈G1

|f(xy)|p
)1/p

and the maximum is taken over all abelian subgroups G1 < G and x ∈ G.

Remark. Inequality (1.11) holds in particular for `p-functions on a free group. Cer-
tainly in this case, it would be interesting to find out what is the precise constant
τ .

Proof of Theorem 2.

We may assume f ≥ 0 and ‖f‖p = 1.

Breaking up G into level sets of f , we let

Aj = {x ∈ G : 2−j−1 < f(x) ≤ 2−j}.

It is easy to see that
f ≤

∑

j∈Z+

2−jXAj < 2f, (1.12)

where the Aj are disjoint and
∑

2−pj |Aj | ∼ 1. (1.13)

In particular,
|Aj | . 2pj . (1.14)

Denote
Xj = XAj .

Let
‖f ∗ f‖q = α, for some 0 < α ≤ 1. (See Fact 4.)

We will show that
‖f‖′p > αC (1.15)

for some constant C = Cp.

The claim (1.11) then immediately follows.

By (1.12), it is sufficient that we work on the function f =
∑

j∈Z+
2−jXj .

Let
β = min(αq, α

1
p−1 ).
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I =
{
j ∈ Z+ : |Aj | > β 2pj

}

I ′ =
⋃

j∈I

{
k ∈ Z+ : 2−|k−j| > β

}
=

⋃

j∈I

{
k ∈ Z+ : |k − j| < log2

1
β

}
.

Hence

|I| < 1
β

, and |I ′| . 1
β

log
1
β

. (1.16)

Write
f = f1 + f2 + f3,

where

f1 =
∑

j∈I

2−jXj ,

f2 =
∑

j∈I′\I
2−jXj ,

f3 =
∑

j 6∈I′
2−jXj .

Hence

α = ‖f ∗ f‖q ≤ ‖(f − f3) ∗ (f − f3)‖q + 2‖f1 ∗ f3‖q + 2‖f2 ∗ f3‖q + ‖f3 ∗ f3‖q

≤ ‖(f − f3) ∗ (f − f3)‖q + 2‖f1 ∗ f3‖q + ‖(f − f1) ∗ (f − f1)‖q.
(1.17)

(Here we use the shorthand that 2 ‖f ∗ g‖q = ‖f ∗ g‖q + ‖g ∗ f‖q.)

Claim. α . ‖(f − f3) ∗ (f − f3)‖q.

Proof of Claim.

First, by Fact 2, we have

‖f1 ∗ f3‖q ≤
∑

j∈I

2−|k−j|≤β

2−j−k‖Xj ∗ Xk‖q

<
∑

k>j

2j−k≤β

2−j−k‖Xj‖1 ‖Xk‖q +
∑

k<j

2k−j≤β

2−j−k‖Xj‖q ‖Xk‖1,
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where the first term is bounded by

∑

j

∑

k>j

2j−k≤β

2−j−k|Aj | 2k p
q .

∑

j

2−j |Aj | (β2−j)1−
p
g

< β1− p
q

∑

j

2−j(2− p
q )|Aj |

∼ β1− p
q = βp−1 ≤ α,

estimating the geometry series
∑

k>j,2k≥ 2j

β

2−k(1− p
q ), and using (1.10) and (1.13). Sim-

ilarly, we bound the second term by α. Thus

‖f1 ∗ f3‖q . α. (1.18)

Next,
‖(f − f1) ∗ (f − f1)‖q ≤

∑

j,k 6∈I

2−j−k‖Xj ∗ Xk‖q,

and from definition of I

∑

j≤k;j,k 6∈I

2−j−k‖Xj ∗ Xk‖q ≤
∑

j≤k,k 6∈I

2−j−k |Aj |(β 2pk)1/q

≤ β1/q
∑

j

2−j2−j(1−p/q) |Aj |

. β1/q ≤ α.

Hence
‖(f − f1) ∗ (f − f1)‖q . α. (1.19)

The claim follows from (1.18) and (1.19). ¤

The claim implies that for some j ≤ k ∈ I ′

2−j−k‖Xj ∗ Xk‖q & αβ2
(

log
1
β

)−2

.

Let

γ = αβ2
(

log
1
β

)−2

.
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Then γ > αc(p) for some constant c(p), and

‖Xj ∗ Xk‖q & γ 2j+k. (1.20)

Also, Fact 2 and (1.10) imply that

γ . 2−j−k‖Xj‖1 ‖Xk‖q ≤ 2−j−k2pj2
p
q k = 2(p−1)(j−k). (1.21)

Assume 2 ≤ q < ∞ (for 1 < q < 2 the argument is similar). We have

‖Xj ∗ Xk‖q ≤ ‖Xj ∗ Xk‖1−
2
q∞ ‖Xj ∗ Xk‖

2
q

2

≤ 2pk(1− 2
q ) ‖Xj ∗ Xk‖

2
q

2

and by (1.20) and (1.21)

‖Xj ∗ Xk‖2 &
(
γ2j+k−pk(1− 2

q )
) q

2

& γq2
p
2 (j+2k)

& γq+ 1
2

p
p−1 2

3
2 pk = αc′(p)2

3
2 pk. (1.22)

Denote
A = Aj ∪Ak.

Since j ≤ k,
|A| . 2pk.

Also, by Fact 2 and (1.22)

|A|3/2 = ‖XA‖1 ‖XA‖2 ≥ ‖XA ∗ XA‖2 > αc′(p)2
3
2 pk & αc′(p) |A| 32 .

Hence
2−kp |A| ≥ αc(p), (1.23)

and
‖XA ∗ XA‖2 > αc′(p) |A| 32 . (1.24)

Invoking Proposition 1 (i), we obtain therefore that

|A ∩ S| > αC(p)|A|, (1.25)

where S is a coset of an abelian subgroup.
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Hence, by (1.23)

‖f‖′p ≥
( ∑

x∈S

|f(x)|p
)1/p

& 2−j |S ∩Aj |1/p + 2−k|S ∩Ak|1/p

> 2−k|S ∩A|1/p

> αC(p)2−k|A|1/p

> αC′(p)

which is (1.15).

This proves Theorem 2.

§2 The SL3(Z) case.

Our goal in this section is to establish the analogue of Theorem 2 for G = SL3(Z),
defining now

‖f‖′p = max
x,G1

( ∑

y∈G1

|f(xy)|p
)1/p

and the maximum being taken over all nilpotent subgroups G1 of G and x ∈ G.

This requires however to prove the analogue of Proposition 1 (i) in SL3(Z) (with
“abelian” replaced by “nilpotent”), which is a stronger statement then Proposition 1
(ii) (which covers only the case when log M ∼ log |A|). ’This will require to revisit the
arguments in [C] and refine some of those steps.Thus at this point, a certain familiarity
with the method explained in [C] is desirable.

Once the counterpart of Proposition 1 (i) for SL3(Z) is obtained, the proof of
Theorem 2 for SL3(Z) (Theorem 3 below) proceeds exactly the same way.

We will use the following proposition proved in [C]

Proposition C. If A ⊂ GL3(C) is a finite set and M large, then one of the following
holds.

(1) There is g̃ ∈ A[3] such that |Tr (g̃A)| > M,

(2) There is a subset A′ of A, |A′| > M−C |A| (C an absolute constant) such that A′

is contained in a coset of a nilpotent subgroup.

Let A ⊂ SL3(Z) be a finite set and M be a large number, such that

|A3| < M |A| (2.1)
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and
|A ∩ S| < M−C |A| (2.2)

whenever S is a coset of a nilpotent subgroup of G = SL3(Z).

In (2.2), C is an absolute constant and our aim in what follows is to show that if
we take C large enough, a contradiction follows.

Applying Proposition C, we obtain g̃ ∈ A[3] such that

|Tr g̃A| > MC1 (2.3)
(
as a consequence of assumption (2.2)

)
, where C1(C) →∞ as C →∞.

For any x ∈ G, let Cx be the conjugacy class containing x,

Cx = {g−1xg : g ∈ G}. (2.4)

Let Q be the number of non-congugate elements in A[4], i.e.

Q = |{Cx : x ∈ A[4]}|.

By (2.3)
Q ≥ MC1 .

From Helfgott’s argument (see also [C] §4 Claim 1), we obtain a subset D ⊂ A−1A of
simultaneously diagonalizable matrices with

|D| = Q ≥ MC1 . (2.5)

Next, we aim to amplify the number of conjugacy classes.

We fix a basis in which the elements of D are diagonal. Therefore, each g ∈ D
is diagonal with diagonal entries Λ(g) = {λ1(g), λ2(g), λ3(g)} forming a system of
conjugate units in OK . Here OK denotes the unit group of a certain extension field K
of Q with [K : Q] ≤ 6.

Case 1. There exists an element h = (hij) ∈ A such that every column of h has at
least two nonzero entries.

Note that our assumption implies that every row of h has at least two nonzero
entries. Hence

(*) For i fixed, there exist k 6= k′ and j, with hik 6= 0, hik′ 6= 0, hkj 6= 0, hk′j 6= 0.

(¦) Given i and j, there exists k with hik 6= 0, hkj 6= 0.
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Let us fix such h ∈ A.

Also let z ∈ SL3(Z) be any (fixed) element, which we will specify later.

We consider the set{
g(1)hg(2)h · · ·hg(`)z : g(1), · · · , g(`) ∈ D

}
(2.6)

For ḡ =
(
g(1) · · · g(`)

) ∈ D` = D × · · · ×D, we let

ḡz = g(1)h g(2)h · · · g(`)z (2.7)

be in the set (2.6). Then

Tr ḡz =
∑

i,... ,i`

hi1i2 · · ·hi`−1i`
zi`i1 λi1

(
g(1)

) · · ·λi`

(
g(`)

)
,

which we consider as a polynomial in λi

(
g(j)

) ∈ OK with 1 ≤ i ≤ 3, and 1 ≤ j ≤ `.

Thus
Tr ḡz =

∑

1≤s≤t

asxs, (2.8)

where
xs = λi1

(
g(1)

) · · ·λi`

(
g(`)

) ∈ OK , (2.9)

a1, . . . , at are the non-vanishing coefficients

as = hi1i2hi2i3 . . . hi`−1i`
zi`i1 6= 0, (2.10)

and s corresponds to the multi-index (i1, . . . , i`) such that (2.10) holds.

We will use the following some result derived from the Subspace theorem by Evertse,
Schlickewei, and Schmidt [ESS].

Proposition D. Let G < 〈C∗, ·〉 be a multiplicative group of rank r and fix an integer
t ≥ 2. Let a1, . . . , a2t ∈ C\{0}. There is a set E ⊂ C depending on a1, . . . , a2t,

|E| < C(r, t)

such that the following holds.

Let A be a finite subset of Gt = G× · · · ×G and such that
xi

xj
6∈ E for all x = (xs)s ∈ A and 1 ≤ i 6= j ≤ t. (2.11)

Then
∣∣{(x, x′) ∈ A×A : a1x1 + · · ·+ atxt = at+1x

′
1 + · · ·+ a2tx

′
t}

∣∣ < C(r, t)|A|. (2.12)
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Proposition D’. Let G be as in Proposition D. Given a1, . . . , at ∈ C\{0}, there is a
subset E ⊂ C with |E| < C(r, t), such that if A is a finite subset of Gt = G× · · · ×G
satisfying (2.11), then

∣∣∣
{ t∑

s=1

asxs : x ∈ A
}∣∣∣ >

1
C(r, t)

|A|.

Let D ⊂ D` = D×· · ·×D consisting of all ḡ =
(
g(1), · · · , g(`)

)
such that (x1, · · · , xt)

arisen from ḡ via (2.8)-(2.10) satisfies

xi

xj
∈ E for 1 ≤ i 6= j ≤ t.

Let A be the image of D`\D under the map

ψ : D`\D → A → 0

given by
ḡ =

(
g(1), . . . , g(`)

) 7→ x = (xs)1≤s≤t

(notice that D and A may obviously be taken independently of z).

From Proposition D’, it follows then that

∣∣∣
{
Tr ḡz : ḡ ∈ D`\D}∣∣∣ >

|A|
C(`)

.

But for our purpose, we need the stronger statement provided by Proposition D. Thus
by (2.12) ∣∣∣

{
(x, x′) ∈ A×A :

∑
asxs =

∑
asx

′
s

}∣∣∣ < C(`)|A|.

Next we examine the map ψ in (2.11) for its bijective properties. We will show that

|ψ−1(x)| < 4`−4 |D|4

.

Take i1, . . . , i`−4 such that hi1i2 6= 0, . . . , hi`−5i`−4 6= 0.

Take i`−3 6= i′`−3 and i`−2 such that hi`−4 i`−3 6= 0, hi`−4 i′`−3
6= 0, hi`−3 i`−2 6= 0 and

hi′`−3 i`−2 6= 0.
(
This is possible by (*).

)
Finally, take i` such that zi` i1 6= 0 and i`−1

satisfying hi`−2 i`−1 6= 0 and hi`−1 i`
6= 0.

(
This is possible by (¦).)
13



Hence
s ↔ (i1, . . . , i`−4, i`−3, i`−2, i`−1, i`)

and
s′ ↔ (i1, . . . , i`−4, i

′
`−3, i`−2, i`−1, i`)

are admissible (meaning that (2.10) holds) and

xs

xs′
=

λi`−3(g
(`−3))

λi′`−3(g
(`−3))

.

Hence by the following fact, (xs) determines g(`−3) ∈ D, up to four choices.

Fact 5. Let D ⊂ GL3(C) be a set of diagonal matrices obtained from a subset of
SL3(Z) after base change. Then given any z ∈ C, for i 6= j, there are at most four
elements g ∈ D for which

λi(g)
λj(g)

= z,

where λi(g) and λj(g) are the eigenvalues of g.

Similarly we recover g(`−4), . . . , g(2). Consequently the map ψ has multiplicity at
most 4`−4|D|4 and (2.11)-(2.13) imply that

∣∣∣
{
(ḡ, ḡ′) ∈ (D`\D)× (D`\D) : Tr ḡz = Tr ḡ′z

}∣∣∣
<C(`) |D|8|A|
<C(`) |D|`+8. (2.13)

This statement is valid for all z ∈ SL3(Z).

Next, we prove

Claim 1. ∑

ḡ∈D`\D
|Cḡz ∩A| < C(`) |D| `+8

2 |A|, for any z ∈ SL3(Z).

Proof of Claim 1.

Denote
n(τ) =

∣∣∣
{
ḡ ∈ D`\D : Cḡz = Cτ

}∣∣∣.
14



Hence ∑
τ

n(τ) = |D`\D| ∼ |D|`,

and by (2.13), we clearly also have that

∑
n(τ)2 < C(`)|D|`+8. (2.14)

Estimate using Cauchy-Schwartz and (2.14)

∑

ḡ∈D`\D
|Cḡz

∩A| =
∑

τ

n(τ)|Cτ ∩A|

≤
[ ∑

τ

n(τ)2
]1/2[∑

τ

|Cτ ∩A|2
]1/2

< C(`)|D| `+8
2 |A|. (2.15)

Here z ∈ SL3(Z) is still arbitrary. ¤

Let
A1 = A[3`].

Next, we prove

Claim 2. ∑

ḡ∈D`\D
|Cḡz ∩A| & Q`−1 |A|2

|A1| , for some z ∈ A1.

Proof. Averaging
∑

ḡ∈D`\D |Cḡz ∩A| over all z ∈ A1, we have

1
|A1|

∑

z∈A1

∑

ḡ∈D`\D
|Cḡz ∩A| = 1

|A1|
∑

ḡ∈D`\D

∑

z∈A1

|Cḡz ∩A|. (2.16)

Fix ḡ ∈ D`\D. We want to show

∑

z∈A1

|Cḡz ∩A| ≥ |A|2
Q

. (2.17)

Denote
n0(τ) =

∣∣{z′ ∈ A : Cz′ = Cτ}
∣∣ = |Cτ ∩A|.

15



Since |{τ : n0(τ) 6= 0}| is the number of non-conjugate elements of A, it is ≤ Q.
(

cf
(2.4)

)
We obtain

|A| =
∑

τ

n0(τ) ≤
∣∣{τ : n0(τ) 6= 0}

∣∣1/2
[ ∑

n0(τ)2
]1/2

≤ Q1/2
[∑

n0(τ) |Cτ ∩A|
]1/2

Hence ∑
n0(τ) |Cτ ∩A| ≥ |A|2

Q
. (2.18)

Taking z of the particular form

z =
(
g(1)h · · · g(`)

)−1
z′, with z′ ∈ A,

by (2.18), we certainly have

∑

z∈A1

|Cḡz ∩A| ≥
∑

z′∈A

|Cz′ ∩A| =
∑

τ

n0(τ) |Cτ ∩A| ≥ |A|2
Q

.

Therefore, by (2.5) and (2.17), (2.16) is bounded below by

1
|A1| |D

`\D| |A|
2

Q
∼ |D|` |A|2

|A1| Q = Q`−1 |A|2
|A1| .

This concludes the proof of Claim 2. ¤

Putting together Claim 1 and Claim 2, we conclude that

C(`) |D| `+8
2 |A| & Q`−1 |A|2

|A1| .

Hence we proved that

|A1| > 1
C(`)

Q
`
2−5 |A| > 1

C(`)
MC1(

`
2−5) |A|, (2.19)

by (2.5).

Recalling assumption (2.1), we also have
(
see [TV], or Proposition 1.6 in [C]

)
that

|A1| < M3(3`−2) |A|.
16



Taking ` = 12 in (2.19), and taking C1

(
hence C in (2.2)

)
large enough, a contradiction

follows. Hence we completed the argument for Case 1.

Case 2. Every element in A has a column with exactly one nonzero entry.

Thus we can assume that there is a subset A1 ⊂ A with |A1| ≥ |A|
9 and elements

g ∈ A1 have the form

g =




λ ∗ ∗
0 ∗ ∗
0 ∗ ∗


 .

Let

B =

{
ḡ ∈ SL2(C) : ∃ g ∈ A1, g =


 λ ∗ ∗

0
0 λ′ḡ


 , where λ′ =

det g

λ

}
,

and we have a map A1 → B by sending g → ḡ in the above sense.

Pigeonholing guaranteers an element ḡ1 ∈ B and a subset A2 ⊂ A1 with

|A2| > |A1|
|B| & |A|

|B| (2.20)

such that
∀g ∈ A2, ḡ = ḡ1.

Therefore, for all g ∈ g−1
1 A2,

g =




λ ∗ ∗
0 λ′ 0
0 0 λ′


 .

The following fact implies that λ = 1 and λ′ = ±1.

Fact 6. Let f(x) ∈ Z[x] be a monic cubic polynomial over Z. Then either f(x) is
irreducible over Q and has three distinct roots, or one of the roots is in Q and the
other two roots are quadratic conjugates, or f(x) has three roots in Q. Hence if the
constant term of f(x) is −1, the only possible multiple roots are 1, 1, 1 or 1,−1,−1.

Case 2.(i). |B| < MC2/δ (where δ refers to Theorem B).
17



Let

S = g0

{


1 ∗ ∗
0 1 0
0 0 1




}
,

some coset of a nilpotent group. Here g0 = g1, if more than half of g−1
1 A2 have λ′ = 1.

Otherwise g0 = g1




1 0 0
0 −1 0
0 0 −1


 .

By (2.20), we have
|A ∩ S| & |A2| & M−C2/δ|A|

contradicting assumption (2.2).

Case 2.(ii). |B| ≥ MC1/δ

Claim. |B3| < |B|1+δ

Proof. Otherwise, assume |B3| > |B|1+δ > MC1 |B|.
For each b ∈ B3, denote

g
(1)
b , g

(2)
b , g

(3)
b ∈ A1

elements such that
g
(1)
b g

(2)
b g

(3)
b = b.

We note that

g
(1)
b1

g
(2)
b1

g
(3)
b1

A2

⋂
g
(1)
b2

g
(2)
b2

g
(3)
b2

A2 = ∅, for b1 6= b2.

Clearly

|A[4]| ≥ |A4
1| ≥

∣∣∣
⋃

b∈B3

g
(1)
b g

(2)
b g

(3)
b A2

∣∣∣ =
∑

b∈B3

|A2| > MC1 |B| |A1|
|B| & MC2 |A|.

This contradicts (2.1) for C1 large enough. ¤

Therefore, Theorem B permits us to assume B contained in some coset of an abelian
subgroup G1 of SL2(C).

After change basis, elements in G1 can be triangularized simultaneously. Either

half of B ⊂ xG1 are of the form x

(
λ′ ∗
0 λ′

)
for some λ′ ∈ C, or half are of the form

18



x

(
λ1 ∗
0 λ2

)
with λ1, λ2 ∈ C. The remark below implies that we may assume the

factorization is over Z.

Remark. If B = ξT ⊂ SLn(Z) with ξ ∈ SLn(C), and T ⊂ SLn(C) all upper
triangular or all diagonal, then there exists ξ′ ∈ SLn(Z) and T ′ ⊂ SLn(Z) all upper
triangular or all diagonal and B = ξ′T ′.

Proof. We pick any t ∈ T , and let ξ′ = ξt ∈ B ∈ SLn(Z). Then T ′ := (ξt)−1B =
t−1T ⊂ SLn(Z), all upper triangular or all diagonal, and B = (ξt)T ′.

There are 2 possibilities.

Case 2.(ii).(a).

A1 ⊂

 1 0 0

0
0 λx




{ 


1 ∗ ∗
0 1 ∗
0 0 1


 , where λ = 1 or − 1

}
.

Therefore, half of elements in A1 are in some coset of a nilpotent subgroup of G.

Case 2.(ii).(b).

A1 ⊂

 1 0 0

0
0 x




{


λ1 ∗ ∗
0 λ2 ∗
0 0 λ3




}

Let

A′1 =


 1 0 0

0
0 x



−1

A1,

and let

B′ =

{
ḡ ∈ SL2(Z) : ∃ g ∈ A′1, g =


 λḡ

∗
0

0 0 λ′




}
,

all upper triangular.

Repeating previous reasoning distinguishing Cases (i) and (ii), we have

A′1 ⊂

 x′

0
0

0 0 1




{ 


λ4 0 ∗
0 λ5 0
0 0 λ6




}
.
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Let

A′′1 =


 x′

0
0

0 0 1



−1

A′1,

and let

B′′ =

{
ḡ =

(
ḡ11 ḡ12

0 ḡ22

)
∈ SL2(Z) : ∃ g ∈ A′′1 , g =




ḡ11 0 ḡ12

0 λ 0
0 0 ḡ22




}
,

all upper triangular.

Repeating again, we obtain

B′′ ⊂
(

x′′11 x′′12
0 x′′22

) {(
λ̄6 0̄
0 λ7

)}
.

Hence

A′′1 ⊂



x′′11 0 x′′12
0 1 0
0 0 x′′22




{


λ6 0 ∗
0 λ5 0
0 0 λ7




}
.

Obviously this contradicts (2.2).

This concludes the proof that if A ⊂ SL3(Z) is a finite set and M a large constant,
then either

|A3| > M |A|
or

|A ∩ S| > M−C |A|
for some coset S of some nilpotent subgroup of SL3(Z).

From the discussion in the beginning of §1, we therefore obtain the following ana-
logue of Theorem 2 for SL3(Z).

Theorem 3. Let p, q ∈ R such that 1 < p < 2 and

2
p

= 1 +
1
q
.

Then there is a constant C = Cp > 0 and 1 > τ = τp > 0 such that if f ∈ `p
(
SL3(Z)

)
,

then
‖f ∗ f‖1/2

q ≤ C‖f‖1−τ
p (‖f‖′p)τ

20



defining

‖f‖′p = max
x,G1

( ∑

y∈G1

|f(xy)|p
)1/p

and the max taken over all nilpotent subgroups G1 of SL3(Z) and x ∈ SL3(Z).

§3. Further comments

1. Let G = SL2(Z) or G = SL3(Z) (we may also replace Z by the integers OK in a
finite extension K of Q).

Let µ ∈ `1+(G), ‖u‖1 = 1. Hence by Theorem 3 applied with q = 2, p = 4
3 ,

‖µ ∗ µ‖1/2
2 ≤ C‖µ‖1−τ

4/3 (‖µ‖′4/3)
τ

and we estimate

‖µ4/3‖ ≤ ‖µ‖1/2
2

‖µ‖′4/3 ≤ (‖µ‖′1)1/2(‖µ‖′2)1/2

≤ (‖µ‖′1)1/2‖µ‖1/2
2 .

Therefore
‖µ ∗ µ‖2 ≤ C(‖µ‖′1)τ‖µ‖2. (3.1)

Recall that
‖µ‖′1 = max

x,G1

[ ∑

y∈G1

µ(xy)
]

with x ∈ G and G1 a nilpotent subgroup of G. Taking µ symmetric
(
i.e. µ(x) =

µ(x−1)
)
, (3.1) is equivalent to

(µ ∗ µ ∗ µ ∗ µ)(e) ≤ C(‖µ‖′1)2τ (µ ∗ µ)(e).

Decay estimates for iterated convolution of a given measure ν on G have been ex-
tensively studied in the literature, but to our knowledge, no prior results provide a
nontrivial bound for a single convolution.

We recall some well known facts.

Let Γ be a symmetric finite generating set for a linear group G in characteristic
zero.
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Denote dΓ the word metric with respect to Γ and by

BΓ(n) = {x ∈ G : dΓ(x, e) ≤ n}

the corresponding balls. Then either |BΓ(n)| grows exponentially in n or G is virtually
nilpotent. The first alternative occurs if G is not virtually solvable (hence by Tits’
alternative [Ti] contains a free group on 2 generators) or if G is solvable but not
virtually nilpotent. A uniform statement on the exponential growth for non virtually
nilpotent G may be found in [EMO], where it is proven that

inf
Γ

lim
n→∞

|BΓ(n)|1/n > 1

where the infinum is taken over all finite generating sets Γ of G.

Let us next consider the corresponding random walk and denote

ν = νΓ =
1
|Γ|

∑

g∈Γ

δg

the symmetric probability measure on G.

We are interested in the decay of ν(`)(e) of the `-fold convolution power of ν. There
are three cases. If G is not virtually solvable, then there is exponential decay for
` →∞

ν(`)(e) < e−c`. (3.2)

If G is solvable but not virtually nilpotent then

ν(`)(e) < e−c`1/3
(3.3)

(and this estimate is best possible, cf [Var]). If G is nilpotent, then there is power-like
decay and more precisely for ` →∞

ν(`)(e) = o(`−d/2) (3.4)

where d = d(G) =
∑

k≥1 k rank (Gk/Gk+1) and Gk+1 = [Gk, G] (see [CSV]).

Assume G not virtually solvable. Returning to (3.1), (3.3), we may easily estimate
‖ν(`)‖′1. Indeed, let H be a nilpotent subgroup and denote

δ =
∑

x∈H

ν(`)(x)

ν` =
1
δ
ν(`)|H .
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From (3.2), (3.4) one gets

e−c`m ≥ ν(`m)(e)

≥ δmν
(m)
` (e)

>
1

C(`)
m−d/2δm.

Hence letting m →∞, it follows

ν(`)(H) = δ ≤ e−c`

‖ν(`)‖′1 ≤ e−c`.

On the other hand, for solvable groups, the estimate on ‖ν(`)‖′1 may be much worse.
Consider the quotient map π : G → G/[G,G] and let π[ν] be the image measure on
the abelian group G/[G,G].

Since π[ν](`)(e) > `−C for ` →∞, it follows that

ν(`)([G,G]) > `−C

and [G,G] may be nilpotent for G solvable.

2. Returning to the Remark after Theorem 2 concerning the free group F2 on 2
generators, it may indeed be of interest to find a direct proof of the inequality

‖f ∗ f‖1/2
q ≤ C‖f‖1−τ

p (‖f‖′p)τ (3.5)

where 1 < p < q < ∞, 2
p = 1 + 1

q , f ∈ `p(F2) and

‖f‖′p = max
x1y∈F2

( ∑

n∈Z
|f(xyn)|p

)1/p

.

Notice that obvious necessary conditions for (3.5) to hold is that

τ ≤ min
(
p− 1, 1− p

2

)
.
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