ON A QUESTION OF DAVENPORT AND LEWIS
ON CHARACTER SUMS IN FINITE FIELDS
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ABSTRACT.

Let x be a nontrivial multiplicative character of F,n. We obtain the following results.
(1). Let € >0 be given. If B={3>"_; zjw; :z; €[N; +1,N; + H;|NZ,j=1,... ,n}
is a box satisfying ﬁ H; > p(%+a)"7 then for p > p(e) we have

j=1

62
| x(@)| <np~ 7B
xeB
unless n is even, Y is principal on a subfield F» of size p™/2 and maxg |[BNEF| > p~¢|B.

(2). Assume A, B C Fj, such that

4 4
|A| > p9te,|B| > p5t°,|B+ B| < K|B.

Then

| > x@+y)|<pTIAlIBI.
rEA,yEB

3). Let I C F, be an interval with [I| = p® and let D C F,, be a pP- spaced set with
P P

|D| = p°. Assume 3 > i - ﬁ + 6. Then for a non-principal multiplicative character

X

_s2
> Xa+y)|<p Tl DI
zel,yeD

We also improve a result of Karacuba.
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Introduction.

In this paper we obtain new character bounds in finite fields F, with ¢ = p™, using
methods from additive combinatorics related to the sum-product phenomenon. More
precisely, Burgess’ classical amplification argument is combined with our estimate on
the ‘multiplicative energy’ for subsets in F,. (See Proposition 1 in §1.) The latter
appears as a quantitative version of the sum-product theorem in finite fields (see
[BKT] and [TV]) following arguments from [G], [KS1] and [KS2].

Our first results relate to the work [DL] of Davenport and Lewis. We recall their
result. Let {wy,...,wyn} be an arbitrary basis for Fyn» over F,. Then elements of Fyn
have a unique representation as

E=xw1 + ...+ Tpwn, (0 <z; <p). (0.1)

We denote B a box in n-dimensional space, defined by
N;j+1<z; <N, + Hj, (j=1,...,n) (0.2)
where N; and Hj are integers satisfying 0 < N; < N; + H; < p, for all j.
Theorem DL. ([DL], Theorem 2) Let H; = H for j =1,... ,n, with
H > pmﬂs for some § > 0 (0.3)

and let p > p1(9). Then, with B defined as above

> x@)| < @ H)",

rEB

where 61 = 61(5) > 0.

For n =1 (i.e. F, = F,) we are recovering Burgess’ result (H > pit%). But as n
increases, the exponent in (0.3) tends to 3. In fact, in [DL] the authors were quite
aware of the shortcoming of their approach which they formulated as follows (see [DL],
p130)

‘The reason for this weakening in the result lies in the fact that the parameter q used
in Burgess’ method has to be a rational integer and cannot (as far as we can see) be
gwen values in F, .

In this paper we address to some extent their problem and are able to prove the
following
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Theorem 2*. Let x be a nontrivial multiplicative character of Fpyn, and let € > 0 be
gen. If

B:{ijwj Zil?jG[Nj+1,Nj+Hj]ﬂZ,j:1,... ,n}

j=1

18 a box satisfying
ﬁ Hj > p(%+€)n,
i=1

then for p > p(e)
> @) < 71,

r€B

unless n is even and x|g, is principal, Fy the subfield of size p™2, in which case

|3 x(@)| < max |BO€R] + 0,077 |B).
reB

Hence our exponent is uniform in n and supersedes [DL] for n > 4. The novelty of
the method in this paper is to exploit the finite field combinatorics without the need
to reduce the problem to a divisor issue in Z or in the integers of an algebraic number
field K (as in the papers [Bu3] and [Kar2]).

Let us emphasize that there are no further assumptions on the basis wq,... ,w,. If
one assumes w; = ¢* 1, (1 < i < n), where g satisfies a given irreducible polynomial
equation (mod p)

ag + arg + -+ an—lgn_l + gn = 07 with a; € Z7

or more generally, if
n

wiwj = Zcijkwk, (04)
k=1

with ¢;j, bounded and p taken large enough, a result of the strength of Burgess’
was indeed obtained (see [Bu3] and [Kar2]) by reducing the combinatorial problem to
counting divisors in the integers of an appropriate number field. But such reduction
seems not possible in the general context considered in [DL].

*The author is grateful to Andrew Granville for removing some additional restriction on the set
B in an earlier version of this theorem.
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Character estimates as considered above have many applications, e.g. quadratic
non-residues, primitive roots, coding theory, etc. Corollary 3 in §2 is a standard
consequence of Theorem 2 to the problem of primitive roots (see for instance [DL],
pl31).

The aim of [DL] (and in an extensive list of other works starting from Burgess’
seminal paper [Bul]) was to improve on the Polya-Vinogradov estimate (i.e. breaking
the ,/g-barrier), when considering incomplete character sums of the form

> x|, (0.5)
€A
where A C F, has certain additive structure.

Note that the set B considered above has a small doubling set, i.e.
|B + B| < ¢(n)|B| (0.6)

and this is the property relevant to us in our combinatorial Proposition 1 in §1.

In the case of a prime field (¢ = p), our method provides the following generalization
of Burgess’ inequality.

Theorem 4. Let P be a proper d-dimensional generalized arithmetic progression in
F), with
|73| > p2/5+5

for some ¢ > 0. If X is a non-principal multiplicative character of ), we have

> x@)| <pIP

zeP

where T = 1(g,d) > 0 and assuming p > p(e,d).

See §4, where we also recall the notion of a ‘proper generalized arithmetic progres-
sion’. Let us point out here that the proof of Proposition 1 below and hence Theorem
2, uses the full linear independence of the elements wy, ... ,w, over the base field F,,.
Assuming in Theorem 2 only that B is a proper generalized arithmetic progression
requires us to make a stronger assumption on |B].

Next, we consider the problem of estimating character sums over sumsets of the
form

> xz+uy), (0.7)

r€AyEB
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where x is a non-principal multiplicative character modulo p (we consider again only
the prime field case for simplicity). In this situation, a well-known conjecture (some-
times referred to as the Paley Graph conjecture) predicts a nontrivial bound on (0.7)
as soon as |A|,|B| > p°, for some § > 0. Presently, such result is only known (with
no further assumptions) provided |A| > p2z*? and |B| > p° for some § > 0. The
problem is open even for the case |A| ~ pz ~ |B|. Using Proposition 1 (combined
with Freiman’s theorem), we prove the following result.

Theorem 6. Assume A, B C F,, such that
(a) [A] > p5+e,|B| > pote
(b) |B + B| < K|B|.

Then

> x@+y)|<pIAlIBL
r€AYEB

where T = 1(e, K) > 0, p > p(e, K) and x is a non-principal multiplicative character
of Fp.

Assuming B = [ an interval, we obtain the next estimate.

Theorem 8. Let A C F,, be a subset with |A| = p* and let I C [1,p] be an arbitrary
interval with |I| = p®, where

a(l—ﬁ)—l—ﬁ>%—|—5

and 3 > 6 > 0. Then for a non-principal multiplicative character x, we have

S x| <Al

xel
yeA

The following variant of Theorem 8 may be compared with Theorem 2’ in [FI]. (See
the discussion in §4.)

Theorem 9. Let I C F, be an interval with |I| = p® and let D C F, be a p”-spaced
set modulo p with |D| = p°. Assume 3 > o and

a—|—2ﬁ(1—0)>%—|—5 (0.8)
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for some 6 > 0. Then

S xa+y)| <y TP (0.9

zel,yeD

for a non-principal multiplicative character x.

Rewriting (0.8) as 8 > i — ﬁ, we note that Theorem 9 breaks Burgess’ i

threshold as soon as o > 0.
The next result is a slight improvement of Karacuba’s [Karl].

Theorem 10. Let I C [1,p] be an interval with |I| = p” and S C [1,p] be an arbitrary
set with |S| = p®. Assume that o, 3 satisfy

1 2 2 1 1
< = N —
e<0 g and (1-g)at (1 )5>2+3k+€
for somee >0 and k € Zy. Then

Z‘Zx(ﬁs+y)‘ <p S|

yel zeS
for some e’ =¢€'(e) > 0.

We believe that this is the first paper exploring the application of recent devel-
opments in combinatorial number theory (for which we especially refer to [TV]) to
the problem of estimating (multiplicative) character sums. (Those developments have
been particularly significant in the context of exponential sums with additive charac-
ters. See [BGK] and subsequent papers.) One could clearly foresee more investigations
along these lines.

The paper is organized as follows. We prove Proposition 1 in §1, Theorem 2 in §2,
Theorems 6 in §3, and Theorems 8, 9, 10 in §4.

Notations. Let * be a binary operation on some ambient set S and let A, B be subsets
of S. Then

1) AxB:={axb:a€ Aandbe B}.
2) ax B :={a}* B.

3) AB := A x B, if *=multiplication.
) A

(
(
(
(4 AAPY,



Note that we use A™ for both the n-fold product set and n-fold Cartesian product
when there is no ambiguity.

(5) [a,b] :=={i€Z:a <i<b}.

§1. Multiplicative energy of a box.

Let A, B be subsets of a commutative ring. Recall that the multiplicative energy of
A and B is

E(A,B) = ‘{(al,ag,bl,bg) €EAXAxBxB: a1b1 = agbg}‘. (11)

(See [TV] p.61.)
We will use the following (see [TV] Corollary 2.10)
Fact 1. E(A,B) < E(A, A)Y/?E(B, B)/2.

Proposition 1. Let {w1,...,w,} be a basis for Fpn over F,, and let B C Fpn be the
box

B:{ijwj Iﬂij[Nj—l—l,Nj—l—Hj],j:l,... ,n},
j=1
where 1 < N;j < N; + H; <p for all j. Assume that

mJaXHj < %(\/}_9— 1) (1.2)

Then we have
E(B,B) < C"(log p) |B|""/* (1.3)

for an absolute constant C' < 21

The argument is an adaptation of [G] and [KS1] with the aid of a result in [KS2].
The structure of B allows us to carry out the argument directly from [KS1] leading to
the same statement as for the case n = 1.

We will use the following estimates from [KS1] (Corollaries 1.4-1.6). (See also [G].)

Let X, By,---, B be subsets of a commutative ring and a,b € X. Then

Fact 2. |By + -+ By| < |X+B|§'|};‘§+B’“|.

Fact 3. 3X' C X with |X'| > §|X| and [X' + By + -+« + By| < 28 XN,
7




[X+X]?
Fact 4. |CLX:|:bX| S m.

Proof of Proposition 1.
Claim 1. F, ¢ g;B

Proof of Claim 1. Take t € F, N = g Then t¥z;w; = Yy jw; for some x;,y; €
[—H;, Hj], where 1 < j <n and Yxjw; # 0. Since tz; = y; for all j = 1,... ,n,

choosing ¢ such that z; # 0, it follows that

Hi ) [H/P 1) 4P 1)
~H, HIVO} © [5(yp— 1), 3(yp— DO}

t €

(1.4)

Since the set (1.4) is of size at most \/p(/p — 1) < p, it cannot contain F,. This
proves our claim.

We may now repeat verbatim the argument in [KS1|, with the additional input of
the multiplicative energy.

Claim 2. There exist by € B, A1 C B and N € Z4 such that

laBNbyB| ~ N forall a € Ay, (1.5)
E(B, B)
—_— 1.
and A — A A — A
1— 4 1— 4
Al 1, +1# —— Al A, (1.7)

Proof of Claim 2.

F rom (1.1)
E(B,B)= Y  |aBNbB|.
a,b €B

Therefore, there exists by € B such that

E(B, B)

]aB N boBl 2
2 | Bl

a€EB

Let A, be the level set

Ay ={ac B:2°"! <|aBnNbyB| < 2%}.
8



Then for some sy with 1 < sy < log, | B| we have

log, | B|
2% |A,,| logy |B] > > 2°|A,| > ) [aBNboB| >
s=0 a€EB

E(B,B)
|B|

(1.5) and (1.6) are obtained by taking A; = A,, and N = 2%,

S0

Next we prove (1.7) by assuming the contrary. By iterating ¢ times, we would have

A —A A=Ay
t= for t=0,1,...,p—1. 1.8
Since 0 € ﬁ, (1.8) would imply that F,, C A ﬁi C =8 contradicting Claim 1.

Hence (1.7) holds.
Take c¢1,co,dy,ds € Ay, dy 7é dso, such that

C1 — C2 A1 A1

S N S T

It follows that for any subset A’ C Ay, we have
A = |A" + €A = |(dy — d2) A + (di — d2) A" + (c1 — c2) A'|
S ‘(dl — dg)A/ + (dl — dg)Al + (Cl — CQ)Al‘. (19)

In Fact 3, we take X = (dl — dg)Al, B1 = (dl — dg)Al and BQ = (Cl — Cg)Al. Then
there exists A’ C A; with |A’| = 1|A;| and by (1.9)

|A'|2 < |(dy — d2) A" + (di — da) Ay + (1 — c2) A1

22
S m’Al + Al‘ ’ (dl — dz)Al + (Cl — CQ)A]_‘. (110)

Since |A1 + A1] < |B+ B| < 2"|B|,

2_2|A1|3 < 2n+2|B| | (d1 — dg)Al + (Cl — 02)A1|
< 2""2|B| | 1B — ¢oB + d1 B — dyB). (1.11)
Facts 2, 4 and (1.5) imply

B+ B[

27214 3<2"+2B’ . 1.12
| 1| = | |N4 ‘B‘S ( )



Thus
N4 AP <24 B|° (1.13)

and recalling (1.6)
E(B,B)" < (log |B)*|BPN*|As | < 27" (log p)*|B["

implying (1.3). O

62. Burgess’ method and the proof of Theorem 2.

The goal of this section is to prove the theorem below.

Theorem 2. Let x be a non-principal multiplicative character of Fpn. Given € > 0,
there is T > % such that if

B:{ijwj 333']'E[Nj+1,Nj+Hj]ﬂZ,jzl,... ,?’L}

j=1
18 a box satisfying

ﬁ H; > p(%J“E)"
=17 ’

then for p > p(e)

‘ > x(w)( <n p 7|Bl,

rEB

unless n is even and x|r, is principal, Fy the subfield of size p™/?, in which case

‘ 3 X(m)‘ < max |BOEF| +0,(p77|B)).
rxeB

First we will prove a special case of Theorem 2, assuming some further restriction
on the box B.

Theorem 2’. Let x be a non-principal multiplicative character of Fpn. Given € > 0,
there is T > % such that if

B:{Z%% o, €[N+ LN+ Hjj=1,... n}
71=1
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is a box satisfying

0 H- > p(%+€)n
=1’

and also )
H; < 5(\/]_)— 1) for all j, (2.1)
then for p > p(e)
> x(@)| < p7IBI (2:2)
reB

We will need the following version of Weil’s bound on exponential sums. (See
Theorem 11.23 in [IK])

Theorem W. Let x be a non-principal multiplicative character of Fpn of order d > 1.
Suppose f € Fpn[z] has m distinct roots and f is not a d-th power. Then for n > 1
we have

) > X((f(x))‘ < (m—1)p%.

:CG]Fp'n

Proof of Theorem 2°.

By breaking up B in smaller boxes, we may assume

L Hi~ perem, (2.3)

Let 6 > 0 be specified later. Let
I=11,7p% (2.4)

and

BOZ{ijWj 1T € [O,p_26Hj],j:1,... ,n}. (25)
j=1

Since Byl C {Z?Zl ziw; cx; €[0,p70H,],ji=1,... ,n}, clearly

|37 x@) X e+ 2)| < [B\B +2)] + (B + y)\B| < 2057018
reEB reB 1



for y € By,z € I. Hence

ZX(@:wO—hﬂ S x@+ys) +O(mp 0 B|). (2.6)

x€EB r€B,yeBp,z€1l

Estimate (up to an error term)

> Xy Y [ Y@ty

reB,yeBg,zel rzeB,yeBy zel

= D [Doxy Tt +2)

reB,yeBy ze€l

= > w)|) xu+2), (2.7)

u€lf,n zel

where

w(u)z’{(m,y)eBxBozgzuH. (2.8)x

Observe that

Z w(u)? = [{(z1,22,41,42) € B X B x By X By : 21y2 = 21 }|

- ZH T1,T3) = v} {(y1,92) —V}‘

< E(B,BPE(BO,B())%
< 21" (log p)|B| = | Byl

< 28" 10g p)(|B) "p~ "7, (2.9)

by the Cauchy-Schwarz inequality, Proposition 1 and (2.5).

Let r be the nearest integer to 2. Hence

(2.10)

By Hélder’s inequality, (2.7) is bounded by

( 3 w(u)m?Tl)l_;T( 3 |Zx(u+z)}2r)21*. (2.11)

u€lf,n u€lF,n zel
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Since Y w(u) = |By| - |B| and (2.9) holds, we have

(¥ wws) ™ <[Tow] T [Sew?]”

u

1-¢ & 11 n
<2035 (1o 1Bl) " (1B)” (tog p)p~ ¥ ¥,
(2.12)

The first inequality follows from the following fact, which is proved by using Holder’s
inequality with 2’”—:% + = 1.

27“

Fact 5. (Z fu )zT 1)l - < <[> f(u )]1_%[Zf(u)2]%-

Proof. Write f(u)Tzl = f(u )2r 1f( )zT T, [

Next, we bound the second factor of (2.11).

Let
qg=7p".
Write
SIS )P < S 1Y k) () ()T ()T,
u€lF,n z€I Z1,...,22-,€1 u€l,
(2.13)
For zi,...,29, € I such that at least one of the elements is not repeated twice,

the polynomial f,, ., (x) = (z+21)...(x+2.)(®+ 2,41)T 2 ... ( + 29,)7 2 clearly
cannot be a d-th power. Since f,, . ., (z) has no more that 2r many distinct roots,
Theorem W gives

‘ Z x((uw+z1) . (u+2)(u+ 2001)7 2 (w4 220)972)| < 2rp3. (2.14)
u€elF,

For those 21, ... , 29, € I such that every root of f,, ., () appears at least twice,
we bound | > X(le,... 2. (0))| by |Fg| times the number of such z,. .. , z2,. Since

ueq

there are at most r roots in I and for each z1,... , 2o, there are at most r choices, we
obtain a bound |I|"r?"p".

Therefore )
ST w2 < 1t 4 2|12 pE (2.15)

u€lF,n zel
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and

1
( Z ‘Zx(u—l—z)‘%)% §r|]|%p%+2|l|p4%. (2.16)

u€l,n zel

Putting (2.7), (2.11), (2.12) and (2.16) together, we have

1
Bor 2 xetye)

xeB,yeBp,z€l

n _% 1+% _llng
<a%(log p)(1Bol 1BI) " (1BI) " p ¥ (r|1]73p 4+ 2p)
2 5 11 n 1 %
<4%(log p) pr2=% % (!B|> (p per +2p4r)

<4%(10g P) 2rp4r+25”*( +E)”|B|
<2-47 (logp) r|B|p~ §r(E=9), (2.17)

The second to the last inequality holds because of (2.3) and assuming § > n/2r.
Let

0= —. 2.18
2r ( )
To bound the exponent 32 (e —§) = 22 2(2 — ), we let

n
0=——1. 2.19
- (2.19)
Then by (2.10),
1 € 3 3
0 < — < = 2.20
Ol < S < <=3 =7 (2:20)
and 5 5 25
n
——(e—4¢ 1+6)(1—6) > —¢> 2.21
2 d) = 2RO 0) > o (2.21)
Returning to (2.6), we have
2 g2
‘ Z ‘ < cne (log p)p_%E |B| <np~ *|B| (2.22)
zeB
and thus proves Theorem 2’. 0

Our next aim is to remove the additional hypothesis (2.1) on the shape of B. We
proceed in several steps and rely essentially on a further key ingredient provided by
the following estimate. (See [PS].)
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Proposition &*. Let x be a non-principal multiplicative character of F, and let g €
F, be a generating element, i.e. F, =F,(g). For any integral interval I C [1,p],

1D “x(g+1)] < e(n)y/p logp (2.23)

tel

Note that (2.23) is nontrivial as soon as [I| > /p logp.

First we make the following observation (extending slightly the range of the appli-
cability of Theorem 27).

Let Hy > Hy > --- > H,. If H < p2T5, we may clearly write B as a disjoint
union of boxes B, C B Satlsfymg the first condition in (2.1) and |Ba| > (5p~2)"|B| >

2-mp(3+2)" . Since (2.1) holds for each B,, we have
’ Z ‘<cnp "|Bal-

Hence

‘ Z ‘ < cnp~"|B.

xeB

£

Therefore we may assume that H; > p%+2.
Proof of Theorem 2.
Case 1. n is odd.

We denote I; = [N; + 1, N; + H;] and estimate using (2.23)

w2 Wn 1 ’B|
= — etz — 2] — , (2.24
Sx@] =] © 8 a2 )| < ol osp 240, (220
reB x,€l; 1€l
2<i<n
where
W Wn,
>y x(w1+x2—2+---+xn—>‘ (2.25)
w1 w1
1€l (z2,...,xn)ED
and

D:{(mg,...,:cn)elgx~~><ln:]F(acg——i— )%]F}

*This was originally communicated to the author by Nick Katz as an extension of his work [K].
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In particular,
w9 Wn
x) <p|D| < ‘G S <—,...,—>‘,
(x) <pl |_p; () Span,, RIRER b

where G runs over nontrivial subfields of F,. Since ¢ = p" and n is odd, obviously

[F, : G] > 3. Hence [G : Fy] < %. Furthermore, since {wi,... ,w,} is a basis of F,
over I, 1 ¢ Span, (5—?, cee ‘:’J—T) and the proceeding implies that
. w2 Wn
dim, (Gﬂ Span, (w_17 e )) < 3~ 1. (2.26)

Therefore, under our assumption on |H;|, back to (2.24)

\Z 2)| <e(n) ((logp)p~#|B| +p¥ )
<(etm)togp)p~# + 1) | B,
since |B| > p3™. This proves our claim.

We now treat the case when n is even. The analysis leading to the second part of
Theorem 2 was kindly communicated by Andrew Granville to the author.

Case 2. n is even.

In view of the earlier discussion, our only concern is to bound

w w
Z Z X<x1 +x2—2+‘~~+xn—n> (2.27)
w1 w1
1€l (z2,... ,@n)ED>
with
w W
Dy = {(IIZ‘Q,... ,an) el x---x1,: <$2—2 —f-—f-!l?‘n—n) € FQ} (228)
w1 w1
and Fy the subfield of size p™/2.
First, we note that since 1, “2 . ‘:)’IL are 1ndependent € F5 for at most 21

many j’s. After reordering, we may assume that € F; for 2 <j<k and L d F2 for

k+1<j<mn,wherek < 3 Wealsoassumethat Hk-|—1 <. <H lexz,... Tp_1-

Obviously there is no more than one value of x,, such that o i RIS S s o € Fy,

since otherwise (x,, — ! )“"" € Fy with x,, # 2/, contradicting the fact that == g Fs.
16



Therefore,
| D2| < [Lo] -+ 1] (2.29)

and B
(*2) < o, (2.30)

If H, > p™, we are done. Otherwise
Hypq - H, <p=h7, (2.31)
Define w w
By = {:1:1 +x2—2+--~+xk—k cx; € 1,1 gigk}.
w1

w1

Hence By C F5 and by (2.31)

|B| 2_1 n
Byl > — 121 5 pG=5n 5 8, 2.32
52| Hyy1--- Hy (2:32)
2
(We can assume 7 < 1%.)
Clearly, if (x2,... ,x,) € Ds, then z = xk+1wﬂ1 4+ 4 xnz—l € F5. Assume x|p,

non-principal, it follows from the generalized Polya-Vinogradov inequality and (2.32 )
that

> xy+2)

yEDB>

< (logp)? - |Fa|> < p~15|Bal, (2.33)

Y da)x()

HZGFQ

< (logp)¥ max

where 1) runs over all additive characters. Therefore, clearly
(#2) < Hyyr -+ Hop~ 15| By| = p~ 15[ B (2.34)

providing the required estimate.

If x|r, is principal, then obviously

1
(k2) = Hy - [Do| = \Fzﬁ;B‘ (2.35)
and
S (@) = [0 Bl + 0 1B). (2.36)
xeB

This complete the proof of Theorem 2. O
17



Remark 2.1. The conclusion of Theorem 2 certainly holds, if we replace the assump-

n
tion of TI H, > p(379)" by the stronger assumption
i=1

pite < H; for all j. (2.37)

This improves on Theorem 2 of [DL] for n > 4. In [DL], the condition H; > pFn tE
is required. Our assumption (2.37) is independent of n, while, in the [DL] result, when
n goes to oo, the exponent m goes to %
Remark 2.2. In the case of a prime field (n = 1), Burgess theorem (see [Bul])
requires the assumption H > p%“, for some € > 0, which seems to be the limit of
this method. For n > 1, the exact counterpart of Burgess’ estimate seems unknown
in the generality of an arbitrary basis wi, ... ,w, of Fyn over F,, as considered in [DL]
and here. Higher dimensional results of the strength of Burgess seem only known for

certain special basis, in particular, basis of the form w; = g’ with given g generating
Fyn. (See [Bu3], [Bud] and [Kar2].)

Theorem 2 allows us to evaluate the number of primitive roots of F,» that fall into
B.
We denote the Euler function by ¢.

Corollary 3. Let B C F» be as in Theorem 2 and satisfying maxe ‘BﬂfFQ‘ < p~¢|B]
if n even. The number of primitive roots of Fpn belonging to B is

2= DiBi1+ o)

where 7" = 7/(¢) > 0 and assuming n < loglog p.

§3. Some further implications of the method.

In what follows, we only consider for simplicity the case of a prime field (several
statements below have variants over a general finite field, possibly with worse expo-
nents).

3.1. Recall that a generalized d-dimensional arithmetic progression in F, is a set of
the form

d
P:ao—l—{Zl’jajlﬂijE[O,Nj—l]} (31)
j=1

18



for some elements ag, a1, ... ,aq € Fp. If the representation of elements of P in (3.1)
is unique, we call P proper. Hence P is proper if and only if |P| = Ny --- N4 (which
we assume in the sequel).

Assume |P| < 1074, /p, hence F,, # % (in the considerations below, |P| < p'/? so

that there is no need to consider the alternative |P| > p'/2). Following the argument
in [KS1] (or the proof of Proposition 1), we have

E(P,P) < c*(log p)|[P|'/*. (3.2)
Also, repeating the proof of Theorem 2, we obtain

Theorem 4. Let P be a proper d-dimensional generalized arithmetic progression in
F, with
|P| > p*/ote (3.3)

for some € > 0. If X is a non-principal multiplicative character of F),, we have

> @) <pIP) (3.4)

zEP

where T = 7(g,d) > 0 and assuming p > p(e,d).

Theorem 4 is another extension of Burgess’ inequality. A natural problem is to try
to improve the exponent 2 in (3.3) to ;.

Let us point out one consequence of Theorem 4 which gives an improvement of a
result in [HIS]. (See [HIS], Corollary 1.3.)
Corollary 5. Given C > 0 and € > 0, there is a constant ¢ = ¢(C,e) > 0 and a
positive integer k < k(e), such that if A C IF,, satisfies

(i) |A+ Al < ClA|

(i) |4] > pi+e.

Then we have
|AF| > ep.

Proof.

According to Freiman’s structural theorem for sets with small doubling constants
(see [TV]), under assumption (i), there is a proper generalized d-dimensional progres-
sion P such that A C P and
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d<C (3.5)

log :% < C*(log 0)? (3.6)

By assumption (ii), Theorem 4 applies to P. Let 7 be as given in Theorem 4. We

fix )
keZy, k>-—. (3.7)
T

(Hence k > k(c).) Denote by v the probability measure on F, obtained as the image
measure of the normalized counting measure on the k-fold product P*¥ under the
product map

Px--xP—TF,

(X1, . ,T) —> T1 ... T

Hence by the Fourier inversion formula, we have

0)=— > x(e)o00) = Ll S X (3 o)

p—= N p
i Pl k
ZX 2 W) =5 | 2 W)
yeP X yeP
x denoting a multiplicative character.
Applying the circle method and (3.4), we get
(z) < L4 1P|~ ‘ > ’ < bk < 2
maxv(zr) < —— max — —.
zelFy T p— 1 X non-principal :rG’PX D — 1 p P (38)
The last inequality is by (3.7). Assuming A C F}, we write
|AF < |A¥| m%x {(@1,...,0p) €EAX - x Aray...xp =}
e *
< |A*] |P|* maxv(z)

zelFy

implying by (3.6) and (3.8)

k |A] p_p L2 3
|A*| > (‘P’) b > oxp (— KC2(10g C)*) > c(C.e)p.
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This proves Corollary 5. U

3.2. Recall the well-known Paley Graph conjecture stating that if A, B C I, |A| >
p°,|B| > p®, then
> x(@+y)| <p0l4l|B] (3.9)
r€AyEB

where § = §(e) > 0 and x a non-principal multiplicative character.

An affirmative answer is only known in the case |A| > pz*e,|B| > p° for some
e > 0 (as a consequence of Weil’s inequality (2.14)). Even for [A| > p/2,|B| > p'/2,
an inequality of the form (3.9) seems unknown. On the other hand, for more structured
sets A and B, better results can be obtained (See in particular [Karl] and [FI].) In
the rest of this section and the next section, we will establish further estimates in this
vein.

Our first result provides a statement of this type, assuming A or B has a small
doubling constant.

Theorem 6. Assume A, B C F,, such that
(a) |A] > po+=,|B| > poe
(b) |B + B| < K|B|.

Then

Y x@ww)| <pIAlBL,
r€eA,yeB

where T = 1(e, K) > 0, p > p(e, K) and x is a non-principal multiplicative character
of Fp.

Proof.

The argument is a variant of the proof of Theorem 2, so we will be brief. The case
|B| > p2+< is taken care of by Weil’s estimate (2.14). Since we can dissect B into < p©
subsets satisfying assumptions (a) and (b), we may assume that |B| < 3(,/p—1). We
denote the various constants (possibly depending on the constant K in assumption

(b)) by C.

Let B; be a generalized d-dimensional proper arithmetic progression in [F,, satisfying
B C By and

d<K (3.10)
log % < C. (3.11)
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Let

By = (—B1) U B;y.
We take 10
€

Similar to the proof of Theorem 2, we take a proper progression By C By C F, and an
integral interval I = [1, p°] with the following properties

|Bo| > p~2%|Bs|

B — BO] C Bs. (313)

Therefore,
1B| < |By| < eCHE)|B| and |By| = 2|By| — 1. (3.14)

Estimate

> x(fv+y)‘ SZ‘ZX@H‘Q)‘

r€A,yEB yeEB zxz€A

<|Bol 1 Y ‘Zx(x+y+zt)‘. (3.15)
yEBy x€A
ZGBo,tGI

The second inequality is by (3.13). Write

1
2

> ‘ZX(x+y+zt)‘ < (IBs] |Bo] |1])% ’ S X((:m +y)z1+t>

(xo +y)z=t 4+t

yeBy €A yEB2,zEBy tET
zE€By,tel r1,r2€A
(3.16)
The sum on the right-hand side of (3.16) equals
(75} +1
5 s S
uy,uz €Fy tel U2 i
1
2r 1_% u]_ + t 2r| 2r
< Zr—1 3.17
<[ X vtmm#=] | Y [ ()] 17
U,uU2 u,uz  tel
where for (u1,uz) € F2 we define
v(ug,uz) = |{(z1,22,y,2) € AXAxByx By : nry_ up and 22 Ty _ uz}|. (3.18)
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Hence

> wlur, uz) = |AP?|Ba| |Bol (3.19)
Uui,u2
and
> v(ug, up)?
ui,u2
, L4
= ‘{(mhazg,x’l,xé,y,y’,az/) € A* x B5 x B3 : Tty _ o —}:y fori=1,2}
z
/ /
< AP max|{ (' 2.7) € B x B TLFY - AV
z z

< |A]| E(BO,BO)%maxE(x—i—BQ,x—i—Bg)%
< |APlogp |Bo| ¥ |Ba| ®
< C|AP |By| T (3.20)

by Proposition 1, Fact 1 and several applications of the Cauchy-Schwarz inequality.
Therefore, by Fact 5 (after (2.12)), (4,19) and (3.20) , the first factor of (3.17) is
bounded by

3=

1= 27
[ZV(Ul,UQ)] [ZV(Ul,U2)2i|
<CIAP|B, | |By| (1414 |Bs| ~¥p) . (3.21)
Next, write using Weil’s inequality (2.14)

‘Z <u1+t> ‘Z ( (u+t1) - (u+t.) |2
Uy + ¢ - U + tr+1 (’LL + tzr)

ui,u2€l, te t1,... ,tor€l u€eF

< p? [I|" r* + COr?p |1*", (3.22)
so that the second factor in (3.17) is bounded by
Crp7 |17 + Cp=* |I]. (3.23)

Applying (3.14) and collecting estimates (3.16), (3.17), (3.21), (3.23) and assumption
(a), we bound (3.15) by

> x(@+y)| < CIAIBIII (A BI85 % (i ¥

r€AyeB

1]%)

1|7 4 pir

< Cy/r|A| |B| (p_(%-l-e)%-l-Zdé)%(pTlr_% +pT1T)

< OV JA] |B| (p3~ 3520787 4 pRerai) (3:24)
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Recall (3.12). The theorem follows by taking 7(¢) = 1557 0.

§4. The case of an interval.

Next, we consider the special case ) Ayel x(x +vy), where A C F, is arbitrary

and I C IF,, is an interval. We begin with the following technical lemma.

Lemma 7. Let A CFy andlet In,...,Is be intervals such that I; C [1,p’%‘]. Denote

w(u):‘{(y,zl,...,zs)eAxll><~~><IS: Y=uzy...2s (modp)}’
and
L]
’y_kjl kjs'
Then

S w(w)? < 4] p e

Proof. Using multiplicative characters and Plancherel, we have

2 _ 1 2
Zw(u) = Eg@»@ )

where
(w, x) = Zw(u)m = Z @) x(21) ... x(2s).
i
Hence
|(w, x)| = ) Zx(y)‘ H‘ > x(z)-
yeA i mel

Using generalized Holder inequality with 1 = (1 — ) + k:_11 +-- 4+ k—ls, we have

> w(u)? = ﬁg > | TI| S«

1 z; €l
< ﬁ(;‘%x(y) 1_27)1_7 H (Z‘ > x(z)

X z; €15

2
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(4.4)



Now we estimate different factors. Writing the exponent as —2— = % + 2 and

1—v
using the trivial bound, we have

Z‘ZX ‘1 <'A’”Z‘Z ’ A= 3T S xeY) = plA

yeA yeA y,2€A X

For an interval I C [1,p#], we define
n(w) = [{(z1,0 2) € Tx X T5 210z = u (mod p)}|.

Since 21 ...z, = 2] ... 2, (mod p) implies z; ...z =21 ...2,InZ,n(u) < (exp(log’igp))k.
On the other hand S 7n(u) < (p*)* = p. Therefore,

SIS = X () = S = - 1) Y nw? < g e,

X zel b% u X
(4.6)

Putting (4.4)-(4.6) together, we have the lemma. O

We may state Lemma 7 in the following sharper version.
Lemma 7’. Under the same assumption as Lemma 7, we have
S w(u)? < A B(A, A) T e
where E(A, A) is defined as in (1.1).

Proof. Proceeding as in the proof of Lemma 7, we replace (4.5) by the estimate

S [Z\Zx 1] {zlzx T

X yeEA X y€eA

<(plA) T (p E(A,4)T7. O

Theorem 8. Let A C IF), be a subset with |A| = p* and let I C [1,p] be an arbitrary
interval with |I| = p®, where

ol =)+ 5> 5 +0 (@7)
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and 3 > 6 > 0. Then for a non-principal multiplicative character x, we have

_s2
Y x| <p A

xel
yeA

Proof. Let
o
== 4.8
r=t (1)
and .
R=|-| 4.9
2T (4.9)
Choose ki1, ... ,ks € ZT such that
1
2T<ﬁ—zk—i < 3r. (4.10)
Denote L
Iy=[1,p"], Ii=[1,p%] (1<i<s).
We perform the Burgess amplification as follows. First, for any zg € Iy, ... , zs € I,
D x@+y) = x@+y+z02...2) + O(APp" ).
zel z€l
yeEA yEA

Letting v = >, -, we have (up to the error term)

‘Zx(x+y)‘=p‘”‘T > x@ty+zm... )

zel zel, yc A
yeA zo€lg,... ,zsE1s

<p 77 Z ) Z X(T+y+ 2021 .. 25)

z€l, yeA zo€lp
z1€11,... ,2s€1;

< pP~7" 7 max
=P xzel Z

Tty
> x(5 )
Z1..-%g

yEA zo€lo
z1€1l1,... ,25€14

(4.11)

Fix z € I achieving maximum in (4.11), and replace A by A; = A + z. Denote
w(u) the function (4.1) with A replaced by A;. Hence (4.11) is

Py wlw)| 3 xu+2)]. (4.12)

u z€Ilpy
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By (4.12), Hélder inequality, Fact 5 and Weil estimate (cf (2.16)), (4.11) is bounded
by

pﬁ—v—T(;wm)zﬁRl)l‘* (X2 x<u+z>)2R)21R

u ZGIO

1-% % 11 1
< [ wl)| "D ww?] ™ (RlkolFpP + 2/lolpT )
<p™HIm AR ) < A,
In the last inequalities, we use | > w(u)| = |Alp?, (4.7)-(4.10) and Lemma 7. O

Next we consider the sum

Z x(z +y), (4.13)

xzel,yeD

where I C [, is an interval with || = p? and D is pP-spaced modulo p. Such sums
were estimated in [FI]. In particular, Theorem 2’ of [FI] gives a non-trivial estimate
for (4.13) under the following assumptions

(*) D lies in an interval of length D. Moreover, for some r € Z and € > 0

II|D <p't2 and |I||D|? > pitate. (4.14)

Note that if we do not specify D to be contained in an interval of size D, (hence
D = p), the restriction (4.14) forces I and D to satisfy

D+ 1| ~ |I||D] > p2+2, (4.15)

which can be dealt with in an elementary way.
In what follows we give new estimates without any restriction on the |I|-spaced set.

Observe that any sum as considered in Theorem 8 may be replaced by a sum of the
form (4.13). Conversely, Theorem 8 may be used to bound (4.13) as follows. Denote
I' = [1,p?~7] for some 7 > 0 and A = D+ I'. Hence |A| = |D| - |I'| by the separation
assumption. Also,

1 —T
> e +y) = 7 > x@+y+t)+0@pT|I|D])
zel,yeD wel tel’
yeD

1 -7
= 2 x@+2)+0pTIID). (4.16)
zel,z€A
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If |D| = p?, then |A| = p® with @ = 0+ — 7 and condition (4.7) becomes (for 7 small
enough)

o+ (2—B—0)8> % (4.17)

which improves over (4.15). One has in fact a stronger statement if 5 > o (when
Lemma 7’ is an improvement over Lemma 7).

Theorem 9. Let I C F, be an interval with |I| = p® and let D C F, be a p”-spaced
set with |D| = p?. Assume

1
oc+28(1l—0) > 5—1—5 (4.18)
for some 6 > 0. Then
_2
> xw+y)| <p Tl D) (4.19)
zel,yeD

for a non-principal multiplicative character x.

Sketch of the Proof. The argument is a technical refinement of that of Theorem 8

based on Lemma 7’. We use the same notation as above and assume 3 < . We

2
choose 7 = g and R,  the same as in Theorem 8. (See (4.8)-(4.10).)

Let A=D+I'. Asin (4.11), we write

S et = 3 X+ + 0 D)

/
xzel,yeD | | zel,z€ A

S
Sp_ ‘ Z X(T+y+2021-..25)

z€l, yecA
zo€lg,... ,zsE€1s

_ r+y
<p "ma ( >
=b I:fsle;{ Z ZX 21...z5+zo

yEA zo€lo
ZlGIh“- vzsejs

+O0(p " |1[|D])

+ O "[|[D)).

To use Lemma 7’ we bound E(A, A) as follows. Write
E(A,A)=EMD+I',D+1)<p* max E(dy +1',dy+ 1)
dl,dQE'D
< p4c+o(l)’1/‘2 < p20+0(1)|A|2. (420)

Here we use the well-known estimate (e.g. see [FI] p.369).

E(L, L) < p°WV|L| - | L]
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for the multiplicative energy of intervals Iy, Iy C IF,, such that |I1] - |I2| < p. Substitu-
tion of (4.20) in Lemma 7’ gives

ZM(U)Q < |A‘p'y(1+2a')+o(1)

and the proof is completed as in Theorem 8. O

Finally we establish some improvement over Karacuba’s theorem [Kal]. Recall the
statement of [Kal]. Let I C [1,p] be an interval with |I| = p® and S C [1,p] be an
arbitrary set with |S| = p®. If for some ¢ > 0

a>e,f>cand a+20>1+¢

then for some ¢’ > 0

Z‘Zx(ﬂy)\ <p 7| |5]. (4.21)

yel zeS
We will prove the following

Theorem 10. In the above setting, assume that o, 3 satisfy

1 2 2 2 1 1
<= 1--) —<1 —) 4. 4.22
5<ﬁ_kand< % a+3 —i—kﬁ>2+3k+€ (4.22)

for some e >0 and k € Z,. Then (4.21) holds for some ¢’ =¢€'(g) > 0.

To see the strength of Theorem 10, for example, we take o = (3, and let k = 3, then
estimate (4.21) is valid, provided

11
a7ﬂ>£+€

which is a slight improvement over the condition «, 8 > % gotten from [Kal].

The proof of Theorem 10 is a combination of variants of arguments used in [FI]
(Theorem 3) and [Ka2], together with the following

Lemma 7". Let A C F, and I be an interval such that I C [0, p*] for some k € Z.,..
Then . , )
(A, 1) < prtes [ A1 F B(4, )1, (4.23)

The proof of Lemma 77 is a slight modification of those of Lemmas 7 and 7. In
(4.4) (with v = 1), for the first factor we use the estimate in the proof of Lemma 7°.
For the second factor, we use (4.6) with >_n(u) < |I|*.
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Proof of Theorem 10.
Take f1 = 8 — 7 with 7 > 0 and 7 = o(1).

We partition [1,p] in intervals I; of size p51 and consider the intersections S N I -
Up to a factor of log p, one may clearly replace S by sets of the form

S=J (& +5n), (4.24)

§&-€D

where D is a pPi-spaced set with |D| = p” and S, C [0, p™] satisfying |S,| ~ p/=°
(for some o independent of 7) and |[D|.p% =7 > p=°(M)|S|. Hence

a>y+p1—o>a—o(l). (4.25)
We will carry out two estimates.
Case 1. oH—ﬁ—a—% >%+5forsome(5>0.

We assume o < (31 — 7 (more restrictive conditions will appear later).

By (4.24) and Cauchy-Schwarz, we have

Z‘Zx(wﬂ/)’ <Y Z‘ > X(§r+x+y)’

yel zeS €D yel z€S,

1,1 r o1+
S‘D|2‘[|2‘ 3 X(€—1y>

T
STED,yEIamlam?eSr 57’ + 2 + y

1
2

It will suffice to establish a non-trivial bound on the inner sum

Tr1 — X9
1+ —) 4.26
§r€Dyel
T1F#T2E€S,

Denote V' the interval [0,p%]. We recall that z1 — x5 € [—p®~7,pP~7]. After fixing

r and z1,z2 € S, in the summation (4.26), we may translate y € I by a product
t.(x1 — x2) with ¢ € V. The error is O(p~ 2 [I|(3p [S:?)).

Hence we obtain . )
V] Z X(l T i n t>’

&r€DyelteV T1—T2
T1#£x2€Sr
which we bound by
1 1
= 1+ ——) ‘ 4.27
7 2 1| (1 (4:27)
u€lkF, teV
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Here

n(u) = ‘{(graya«xl,IEQ) €EDXIxS?:21#xyand u= MH
T1 — T2

Under the assumption of the case, we claim

2
(Don(w)” > p3*o (S n(w?). (4.28)
It is obvious from the construction that

> n(u) ~ [DLI|p> =)~ i), (4.29)

Also

> n(u)?

= ){(€T7$T/7y7yl7x17x27l‘/17x/2) I 7& x?vxll 7& mIQ and

£r+y+x2:£r/+y’+x’2}‘
T1 — Xy x) —xh

7.1 57“ —’_g gr’ +§/
{(fr,fw,;%y/,z,z/) € D2 X [07 2]95]2 X [_pﬁlvpﬁl]z : z - 2! }‘

— p2(51—U)E('D + [0, 2p5]’ [_pﬁl ,pﬁl])‘

Applying Lemma 7" with A = D + [0,2p°] and I = [0,2p”] where 8; < 3 < %, we
get E(A, A) < |D[*p?$+°() (See (4.20)) and, by (4.23)

E(A,I) < pPtoit(ti)rted) (4.30)
Hence
> n(u)? < pPHIB Ao, (4.31)
and (4.28) holds by (4.29), (4.31) and recalling (4.25).

We follow the usual procedure (e.g. see the bounding of (4.11)), we have the bound
2
1]1S] p7 .

Note that since we may assume o < 3 + o(1), the condition o < #; — 7 for 7 small
enough, is automatically satisfied under the assumption of this case.

Case 2. 2a+6+0—2%>1+5f0rsome(5>0.
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Since

S| @y <t

yel zeS

Z X<a:1+y> 2

T2 +Y
T1,L2€S
yel

we need a nontrivial estimate on

Z X<$1+y>_

T2+ Y
r1,x2€S8
yel
Making a translation y — y + 2t with z € [1,p%1] = I;,t € V = [0,p?] leads to

U1+t>
— n(uy,u ,
V| ! 2’2 <u2+t

U, ugEIF

(4.32)

where

i +y

n(uy,ug) = H(a:l,xg,y,z) €S?xIxI:u = , for ¢ = 1,2}‘.

Let n(u) = n(uy,uz). We will show that the assumption of this case implies

(Snw) > p (X n(w?). (433)
Z 77 204—!—34—/31

Clearly, using the bound (4.30), we have

> n(w)?

/ / / / 4 2 2 .
= H(xl,asg,xl,xQ,y,y,z,z) €S xI*x1Ij:

Here

. I
z

/ /
{0 Y

&+x+y_£w+f+y?‘

Z/

< p“

{(ﬁr,ﬁw,x,m’,y,y’,z,z’) eED* x S?xI* x I?:

< pap2(51—”)E(D + [07 Qpﬁ], [0,}951])
< pa+ﬁ+3ﬂ1—20+(1+%)7+0(1).

Proceeding in the same way as before, we obtain the bound |I| |S| p_%(%_ﬁl).
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To reach condition (4.22), we assume Case 1 fails. Hence

2v 1
—o—T 1o
a+pf—-o k;<2+0()

and recalling (4.25), i.e.
ato(l)y>y+0—0>a—o1)

(letting 7 be small enough), it follows that

<1+%>0> <1—%)a+<1+%>ﬁ—%—0(1).

Therefore the assumption of Case 2 will be satisfied if

(1—3%)a+§(1+%)ﬁ>%+3ik+(%+3%)5.

This proves Theorem 10.
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