ON A QUESTION OF DAVENPORT AND LEWIS ON CHARACTER SUMS AND PRIMITIVE ROOTS IN FINITE FIELDS

Mei-Chu Chang

ABSTRACT.

Let χ be a nontrivial multiplicative character of \mathbb{F}_{p^n} . We obtain the following results related to Davenport-Lewis' paper [DL] and the Paley Graph conjecture.

(1). Let $\varepsilon > 0$ be given. If

$$
B = \{ \sum_{j=1}^{n} x_j \omega_j : x_j \in [N_j + 1, N_j + H_j] \cap \mathbb{Z}, j = 1, ..., n \}
$$

is a box satisfying

$$
\mathop{\Pi}\limits_{j=1}^{n}H_{j}>p^{(\frac{2}{5}+\varepsilon)n},
$$

then for $p > p(\varepsilon)$ we have

$$
|\sum_{x \in B} \chi(x)| \ll_n p^{-\frac{\varepsilon^2}{4}} |B|
$$

unless *n* is even, χ is principal on a subfield F_2 of size $p^{n/2}$ and $\max_{\xi} |B \cap \xi F_2| > p^{-\varepsilon} |B|$.

As a corollary, we bound the number of primitive roots in B by

$$
\frac{\varphi(p^n-1)}{p^n-1}|B|(1+o(p^{-\tau'})).
$$

(2). Assume $A, B \subset \mathbb{F}_p$ such that

$$
|A| > p^{\frac{4}{9} + \varepsilon}, |B| > p^{\frac{4}{9} + \varepsilon}, |B + B| < K|B|.
$$

Then

$$
\Big|\sum_{x\in A, y\in B} \chi(x+y)\Big| < p^{-\tau}|A| \; |B|.
$$

Typeset by $A_{\mathcal{M}}S$ -TEX

Introduction.

In this paper we obtain new character bounds in finite fields \mathbb{F}_q with $q = p^n$, using methods from additive combinatorics related to the sum-product phenomenon. More precisely, Burgess' classical amplification argument is combined with our estimate on the 'multiplicative energy' for subsets in \mathbb{F}_q . (See Proposition 1 in §1.) The latter appears as a quantitative version of the sum-product theorem in finite fields (see [BKT] and [TV]) following arguments from [G], [KS1] and [KS2].

Our first results relate to the work [DL] of Davenport and Lewis. We recall their result. Let $\{\omega_1, \ldots, \omega_n\}$ be an arbitrary basis for \mathbb{F}_{p^n} over \mathbb{F}_p . Then elements of \mathbb{F}_{p^n} have a unique representation as

$$
\xi = x_1 \omega_1 + \ldots + x_n \omega_n, \qquad (0 \le x_i < p). \tag{0.1}
$$

We denote B a box in *n*-dimensional space, defined by

$$
N_j + 1 \le x_j \le N_j + H_j, \qquad (j = 1, ..., n)
$$
\n(0.2)

where N_j and H_j are integers satisfying $0 \le N_j < N_j + H_j < p$, for all j.

Theorem DL. ([DL], Theorem 2) Let $H_j = H$ for $j = 1, ..., n$, with

$$
H > p^{\frac{n}{2(n+1)} + \delta} \text{ for some } \delta > 0 \tag{0.3}
$$

and let $p > p_1(\delta)$. Then, with B defined as above

$$
\left|\sum_{x\in B}\chi(x)\right| < (p^{-\delta_1}H)^n,
$$

where $\delta_1 = \delta_1(\delta) > 0$.

For $n=1$ (i.e. $\mathbb{F}_q = \mathbb{F}_p$) we are recovering Burgess' result $(H > p^{\frac{1}{4}+\delta})$. But as n increases, the exponent in (0.3) tends to $\frac{1}{2}$. In fact, in [DL] the authors were quite aware of the shortcoming of their approach which they formulated as follows (see [DL], p130)

'The reason for this weakening in the result lies in the fact that the parameter q used in Burgess' method has to be a rational integer and cannot (as far as we can see) be given values in \mathbb{F}_q .

In this paper we address to some extent their problem and are able to prove the following

²⁰⁰⁰ Mathematics Subject Classification. Primary 11L40, 11L26; Secondary 11A07, 11B75. Key words. character sums, primitive roots, Davenport-Lewis, Paley Graph conjecture . Research partially financed by the National Science Foundation.

Theorem 2¹. Let χ be a nontrivial multiplicative character of \mathbb{F}_{p^n} , and let $\varepsilon > 0$ be given. If

$$
B = \left\{ \sum_{j=1}^{n} x_j \omega_j : x_j \in [N_j + 1, N_j + H_j] \cap \mathbb{Z}, j = 1, ..., n \right\}
$$

is a box satisfying

$$
\prod_{j=1}^n H_j > p^{(\frac{2}{5} + \varepsilon)n},
$$

then for $p > p(\varepsilon)$

$$
\Big|\sum_{x\in B}\chi(x)\Big|\ll_n p^{-\frac{\varepsilon^2}{4}}|B|,
$$

unless n is even and $\chi|_{F_2}$ is principal, F_2 the subfield of size $p^{n/2}$, in which case

$$
\Big|\sum_{x\in B}\chi(x)\Big|\leq \max_{\xi}|B\cap \xi F_2|+O_n(p^{-\frac{\varepsilon^2}{4}}|B|).
$$

Hence our exponent is uniform in n and supersedes [DL] for $n > 4$. The novelty of the method in this paper is to exploit the finite field combinatorics without the need to reduce the problem to a divisor issue in $\mathbb Z$ or in the integers of an algebraic number field K (as in the papers [Bu3] and [Kar]).

Let us emphasize that there are no further assumptions on the basis $\omega_1, \ldots, \omega_n$. If one assumes $\omega_i = g^{i-1}, (1 \leq i \leq n)$, where g satisfies a given irreducible polynomial equation (mod p)

$$
a_0 + a_1g + \cdots + a_{n-1}g^{n-1} + g^n = 0
$$
, with $a_i \in \mathbb{Z}$,

or more generally, if

$$
\omega_i \omega_j = \sum_{k=1}^n c_{ijk} \omega_k, \qquad (0.4)
$$

with c_{ijk} bounded and p taken large enough, a result of the strength of Burgess' was indeed obtained (see [Bu3] and [Kar]) by reducing the combinatorial problem to counting divisors in the integers of an appropriate number field. But such reduction seems not possible in the general context considered in [DL].

Character estimates as considered above have many applications, e.g. quadratic non-residues, primitive roots, coding theory, etc. We only mention the following consequence of Theorem 2 to the problem of primitive roots (see for instance [DL], p131).

¹The author is grateful to Andrew Granville for removing some additional restriction on the set B in an earlier version of this theorem.

Corollary 3. Let $B \subset \mathbb{F}_{p^n}$ be as in Theorem 2 and satisfying \max_{ξ} $|B \cap \xi F_2| < p^{-\varepsilon} |B|$ if n even. The number of primitive roots of \mathbb{F}_{p^n} belonging to B is

$$
\frac{\varphi(p^n-1)}{p^n-1}|B|(1+o(p^{-\tau'}))
$$

where $\tau' = \tau'(\varepsilon) > 0$ and assuming $n \ll \log \log p$.

The aim of [DL] (and in an extensive list of other works starting from Burgess' seminal paper [Bu1]) was to improve on the Polya-Vinogradov estimate (i.e. breaking the \sqrt{q} -barrier), when considering incomplete character sums of the form

$$
\Big|\sum_{x\in A}\chi(x)\Big|,\tag{0.5}
$$

where $A \subset \mathbb{F}_q$ has certain additive structure.

Note that the set B considered above has a small doubling set, i.e.

$$
|B + B| < c(n)|B| \tag{0.6}
$$

and this is the property relevant to us in our combinatorial Proposition 1 in $\S1$.

In the case of a prime field $(q = p)$, our method provides the following generalization of Burgess' inequality.

Theorem 4. Let P be a proper d-dimensional generalized arithmetic progression in \mathbb{F}_p with

$$
|\mathcal{P}| > p^{2/5+\varepsilon}
$$

for some $\varepsilon > 0$. If X is a nontrivial multiplicative character of \mathbb{F}_p , we have

$$
\Big|\sum_{x\in\mathcal{P}}\mathcal{X}(x)\Big|
$$

where $\tau = \tau(\varepsilon, d) > 0$ and assuming $p > p(\varepsilon, d)$.

See §4, where we also recall the notion of a 'proper generalized arithmetic progression'. Let us point out here that the proof of Proposition 1 below and hence Theorem 2, uses the full linear independence of the elements $\omega_1, \ldots, \omega_n$ over the base field \mathbb{F}_p . Assuming in Theorem 2 only that B is a proper generalized arithmetic progression requires us to make a stronger assumption on $|B|$.

Next, we consider the problem of estimating character sums over sumsets of the form

$$
\sum_{x \in A, y \in B} \chi(x + y),\tag{0.7}
$$

where χ is a nontrivial multiplicative character modulo p (we consider again only the prime field case for simplicity). In this situation, a well-known conjecture (sometimes referred to as the Paley Graph conjecture) predicts a nontrivial bound on (0.7) as soon as $|A|, |B| > p^{\delta}$, for some $\delta > 0$. Presently, such result is only known (with no further assumptions) provided $|A| > p^{\frac{1}{2}+\delta}$ and $|B| > p^{\delta}$ for some $\delta > 0$. The problem is open even for the case $|A| \sim p^{\frac{1}{2}} \sim |B|$. Using Proposition 1 (combined with Freiman's theorem), we prove the following

Theorem 6. Assume $A, B \subset \mathbb{F}_p$ such that

- (a) $|A| > p^{\frac{4}{9} + \varepsilon}, |B| > p^{\frac{4}{9} + \varepsilon}$
- (b) $|B + B| < K|B|$.

Then

$$
\Big|\sum_{x\in A, y\in B} \chi(x+y)\Big| < p^{-\tau}|A| \; |B|,
$$

where $\tau = \tau(\varepsilon, K) > 0$, $p > p(\varepsilon, K)$ and χ is a nontrivial multiplicative character of \mathbb{F}_p .

This result may be compared with those obtained in [FI] on estimating (0.7) assuming the sets A, B have certain extra structure (for instance, assuming $A = B$ is a large subset of an interval). We also consider the case when B is an interval, in which case we can obtain a stronger result. (See Theorem 8.)

We believe that this is the first paper exploring the application of recent developments in combinatorial number theory (for which we especially refer to [TV]) to the problem of estimating (multiplicative) character sums. (Those developments have been particularly significant in the context of exponential sums with additive characters. See [BGK] and subsequent papers.) One could clearly foresee more investigations along these lines.

The paper is organized as follows. We prove Proposition 1 in $\S1$, Theorem 2 in $\S2$, Corollary 3 in §3 and Theorem 6 in §4.

Notations. Let $*$ be a binary operation on some ambient set S and let A, B be subsets of S. Then

- (1) $A * B := \{a * b : a \in A \text{ and } b \in B\}.$
- (2) $a * B := \{a\} * B$.
- (3) $AB := A * B$, if $*=$ multiplication.

(4)
$$
A^n := AA^{n-1}
$$
.

Note that we use $Aⁿ$ for both the *n*-fold product set and *n*-fold Cartesian product when there is no ambiguity.

(5) $[a, b] := \{i \in \mathbb{Z} : a \leq i \leq b\}.$

§1. Multiplicative energy of a box.

Let A, B be subsets of a commutative ring. Recall that the multiplicative energy of A and B is \overline{a} \overline{a} ª \overline{a}

$$
E(A, B) = |\{(a_1, a_2, b_1, b_2) \in A^2 \times B^2 : a_1 b_1 = a_2 b_2\}|.
$$
 (1.1)

(See [TV] p.61.)

We will use the following

Fact 1. $E(A, B) \le E(A, A)^{1/2} E(B, B)^{1/2}$.

Proposition 1. Let $\{\omega_1, \dots, \omega_n\}$ be a basis for \mathbb{F}_{p^n} over \mathbb{F}_p and let $B \subset \mathbb{F}_{p^n}$ be the box

$$
B = \left\{ \sum_{j=1}^{n} x_j \omega_j : x_j \in [N_j + 1, N_j + H_j], j = 1, \dots, n \right\},\
$$

where $1 \leq N_j < N_j + H_j < p$ for all j. Assume that

$$
\max_{j} H_j < \frac{1}{2} (\sqrt{p} - 1) \tag{1.2}
$$

Then we have

$$
E(B, B) < C^n(\log \, p) \, |B|^{11/4} \tag{1.3}
$$

for an absolute constant $C < 2^{\frac{9}{4}}$.

The argument is an adaptation of [G] and [KS1] with the aid of a result in [KS2]. The structure of B allows us to carry out the argument directly from [KS1] leading to the same statement as for the case $n = 1$.

We will use the following estimates from [KS1]. (See also [G].)

Let X, B_1, \dots, B_k be subsets of a commutative ring and $a, b \in X$. Then

Fact 2. $|B_1 + \cdots + B_k| \leq \frac{|X + B_1| \cdots |X + B_k|}{|X|^{k-1}}$. Fact 3. $\exists X' \subset X$ with $|X'| > \frac{1}{2}$ $\frac{1}{2}|X|$ and $|X' + B_1 + \cdots + B_k| \leq 2^k \frac{|X + B_1| \cdots |X + B_k|}{|X|^{k-1}}$ $\frac{|X|^{k-1}}{|X|^{k-1}}$. Fact 4. $|aX \pm bX| \leq \frac{|X+X|^2}{|aX \cap bX|}$ $\frac{|X+X|}{|aX \cap bX|}$.

Proof of Proposition 1.

Claim 1. $\mathbb{F}_p \not\subset \frac{B-B}{B-B}$ $\frac{B-B}{B-B}$.

Proof of Claim 1. Take $t \in \mathbb{F}_p \cap \frac{B-B}{B-B}$ $\frac{B-B}{B-B}$. Then $t\Sigma x_j\omega_j = \Sigma y_j\omega_j$ for some $x_j, y_j \in$ $[-H_j, H_j]$, where $1 \leq j \leq n$ and $\sum x_j \omega_j \neq 0$. Since $tx_j = y_j$ for all $j = 1, ..., n$, choosing i such that $x_i \neq 0$, it follows that

$$
t \in \frac{[-H_i, H_i]}{[-H_i, H_i] \setminus \{0\}} \subset \frac{[-\frac{1}{2}(\sqrt{p}-1), \frac{1}{2}(\sqrt{p}-1)]}{[-\frac{1}{2}(\sqrt{p}-1), \frac{1}{2}(\sqrt{p}-1)] \setminus \{0\}}.
$$
 (1.4)

Since the set (1.4) is of size at most $\sqrt{p}(\sqrt{p}-1) < p$, it cannot contain \mathbb{F}_p . This proves our claim.

We may now repeat verbatim the argument in [KS1], with the additional input of the multiplicative energy.

Claim 2. There exist $b_0 \in B$, $A_1 \subset B$ and $N \in \mathbb{Z}_+$ such that

$$
|aB \cap b_0 B| \sim N \text{ for all } a \in A_1,
$$
\n
$$
(1.5)
$$

$$
N |A_1| > \frac{E(B, B)}{|B| \log |B|} \tag{1.6}
$$

and

$$
\frac{A_1 - A_1}{A_1 - A_1} + 1 \neq \frac{A_1 - A_1}{A_1 - A_1}.\tag{1.7}
$$

Proof of Claim 2.

F rom (1.1)

$$
E(B, B) = \sum_{a,b \in B} |aB \cap bB|.
$$

Therefore, there exists $b_0 \in B$ such that

$$
\sum_{a \in B} |aB \cap b_0 B| \ge \frac{E(B, B)}{|B|}.
$$

Let A_s be the level set

$$
A_s = \{a \in B : 2^{s-1} \le |aB \cap b_0B| < 2^s\}.
$$

Then for some s_0 with $1 \leq s_0 \leq \log_2 |B|$ we have

$$
2^{s_0} |A_{s_0}| \log_2 |B| \ge \sum_{s=0}^{\log_2 |B|} 2^s |A_s| > \sum_{a \in B} |aB \cap b_0 B| \ge \frac{E(B, B)}{|B|}.
$$

(1.5) and (1.6) are obtained by taking $A_1 = A_{s_0}$ and $N = 2^{s_0}$.

Next we prove (1.7) by assuming the contrary. By iterating t times, we would have

$$
\frac{A_1 - A_1}{A_1 - A_1} + t = \frac{A_1 - A_1}{A_1 - A_1} \text{ for } t = 0, 1, \dots, p - 1.
$$
 (1.8)

Since $0 \in \frac{A_1 - A_1}{A_1 - A_2}$ $\frac{A_1-A_1}{A_1-A_1}$, (1.8) would imply that $\mathbb{F}_p \subset \frac{A_1-A_1}{A_1-A_1}$ $\frac{A_1-A_1}{A_1-A_1} \subset \frac{B-B}{B-B}$ $\frac{B-B}{B-B}$, contradicting Claim 1. Hence (1.7) holds.

Take $c_1, c_2, d_1, d_2 \in A_1, d_1 \neq d_2$, such that

$$
\xi = \frac{c_1 - c_2}{d_1 - d_2} + 1 \not\subset \frac{A_1 - A_1}{A_1 - A_1}.
$$

It follows that for any subset $A'\subset A_1,$ we have

$$
|A'|^2 = |A' + \xi A'| = |(d_1 - d_2)A' + (d_1 - d_2)A' + (c_1 - c_2)A'|
$$

\n
$$
\le |(d_1 - d_2)A' + (d_1 - d_2)A_1 + (c_1 - c_2)A_1|.
$$
\n(1.9)

In Fact 3, we take $X = (d_1 - d_2)A_1$, $B_1 = (d_1 - d_2)A_1$ and $B_2 = (c_1 - c_2)A_1$. Then there exists $A' \subset A_1$ with $|A'| = \frac{1}{2}$ $\frac{1}{2}|A_1|$ and by (1.9)

$$
|A'|^2 \le |(d_1 - d_2)A' + (d_1 - d_2)A_1 + (c_1 - c_2)A_1|
$$

\n
$$
\le \frac{2^2}{|A_1|}|A_1 + A_1| \, |(d_1 - d_2)A_1 + (c_1 - c_2)A_1|.
$$
\n(1.10)

Since $|A_1 + A_1| \leq |B + B| \leq 2^n |B|$,

$$
2^{-2}|A_1|^3 \le 2^{n+2}|B| \mid (d_1 - d_2)A_1 + (c_1 - c_2)A_1|
$$

\n
$$
\le 2^{n+2}|B| \mid c_1B - c_2B + d_1B - d_2B|.
$$
 (1.11)

Facts 2, 4 and (1.5) imply

$$
2^{-2}|A_1|^3 \le 2^{n+2}|B|\frac{|B+B|^8}{N^4|B|^3}.\tag{1.12}
$$

Thus

$$
N^4 |A_1|^3 \le 2^{9n+4} |B|^6 \tag{1.13}
$$

and recalling (1.6)

$$
E(B,B)^4 \le (\log |B|)^4 |B|^5 N^4 |A_1|^3 < 2^{9n+4} (\log |p|^4 |B|^{11})
$$

implying (1.3) . \Box

§2. Burgess' method and the proof of Theorem 2.

The goal of this section is to prove the following theorem.

Theorem 2. Let χ be a nontrivial multiplicative character of \mathbb{F}_{p^n} . Given $\varepsilon > 0$, there is $\tau > \frac{\varepsilon^2}{4}$ $rac{z^2}{4}$ such that if

$$
B = \left\{ \sum_{j=1}^{n} x_j \omega_j : x_j \in [N_j + 1, N_j + H_j] \cap \mathbb{Z}, j = 1, ..., n \right\}
$$

is a box satisfying

$$
\prod_{j=1}^n H_j > p^{(\frac{2}{5} + \varepsilon)n},
$$

then for $p > p(\varepsilon)$

$$
\left|\sum_{x\in B} \chi(x)\right| \ll_n p^{-\tau}|B|,
$$

unless n is even and $\chi|_{F_2}$ is principal, F_2 the subfield of size $p^{n/2}$, in which case

$$
\Big|\sum_{x\in B}\chi(x)\Big|\leq \max_{\xi}|B\cap \xi F_2|+O_n(p^{-\tau}|B|).
$$

First we will prove a special case of Theorem 2, assuming some further restriction on the box B.

Theorem 2'. Let χ be a nontrivial multiplicative character of \mathbb{F}_{p^n} . Given $\varepsilon > 0$, there is $\tau > \frac{\varepsilon^2}{4}$ $rac{z^2}{4}$ such that if

$$
B = \left\{ \sum_{j=1}^{n} x_j \omega_j : x_j \in [N_j + 1, N_j + H_j], j = 1, \dots, n \right\}
$$

is a box satisfying

$$
\prod_{j=1}^n H_j > p^{(\frac{2}{5} + \varepsilon)n}
$$

and also

$$
H_j < \frac{1}{2}(\sqrt{p}-1) \text{ for all } j,\tag{2.1}
$$

then for $p > p(\varepsilon)$

$$
\left| \sum_{x \in B} \chi(x) \right| \ll_n p^{-\tau} |B|.
$$
 (2.2)

We will need the following version of Weil's bound on exponential sums. (See Theorem 11.23 in $[IK]$)

Theorem W. Let χ be a nontrivial multiplicative character of \mathbb{F}_{p^n} of order $d > 1$. Suppose $f \in \mathbb{F}_{p^n}[x]$ has m distinct roots and f is not a d-th power. Then for $n \geq 1$ we have $\overline{}$

$$
\sum_{x \in \mathbb{F}_{p^n}} \chi((f(x)) \le (m-1)p^{\frac{n}{2}}.
$$

Proof of Theorem 2'.

By breaking up B in smaller boxes, we may assume

$$
\prod_{j=1}^{n} H_j = p^{\left(\frac{2}{5} + \varepsilon\right)n}.\tag{2.3}
$$

Let $\delta > 0$ be specified later. Let

$$
I = [1, p^{\delta}] \tag{2.4}
$$

and

$$
B_0 = \left\{ \sum_{j=1}^n x_j \omega_j : x_j \in [0, p^{-2\delta} H_j], j = 1, \dots, n \right\}.
$$
 (2.5)

Since
$$
B_0 I \subset \left\{ \sum_{j=1}^n x_j \omega_j : x_j \in [0, p^{-\delta} H_j], j = 1, ..., n \right\}
$$
, clearly
\n
$$
\left| \sum_{x \in B} \chi(x) - \sum_{x \in B} \chi(x + yz) \right| < |B \setminus (B + yz)| + |(B + yz) \setminus B| < 2np^{-\delta} |B|
$$

for $y \in B_0, z \in I$. Hence

$$
\sum_{x \in B} \chi(x) = \frac{1}{|B_0| |I|} \sum_{x \in B, y \in B_0, z \in I} \chi(x + yz) + O\big(n p^{-\delta} |B|\big). \tag{2.6}
$$

Estimate

$$
\Big| \sum_{x \in B, y \in B_0, z \in I} \chi(x + yz) \Big| \leq \sum_{x \in B, y \in B_0} \Big| \sum_{z \in I} \chi(x + yz) \Big|
$$

=
$$
\sum_{x \in B, y \in B_0} \Big| \sum_{z \in I} \chi(xy^{-1} + z) \Big|
$$

=
$$
\sum_{u \in \mathbb{F}_{p^n}} w(u) \Big| \sum_{z \in I} \chi(u + z) \Big|,
$$
 (2.7)

where

$$
\omega(u) = \left| \left\{ (x, y) \in B \times B_0 : \frac{x}{y} = u \right\} \right|.
$$
\n(2.8)

Observe that

$$
\sum_{e \in \mathbb{F}_{p^n}} \omega(u)^2 = |\{(x_1, x_2, y_1, y_2) \in B \times B \times B_0 \times B_0 : x_1 y_2 = x_2 y_1\}|
$$

\n
$$
= \sum_{\nu} |\{(x_1, x_2) : \frac{x_1}{x_2} = \nu\}| |\{(y_1, y_2) : \frac{y_1}{y_2} = \nu\}|
$$

\n
$$
\leq E(B, B)^{\frac{1}{2}} E(B_0, B_0)^{\frac{1}{2}}
$$

\n
$$
< 2^{\frac{9}{4}n+1} (\log p) |B|^{\frac{11}{8}} |B_0|^{\frac{11}{8}}
$$

\n
$$
< 2^{\frac{9}{4}n+1} (\log p) (|B|)^{\frac{11}{4}} p^{-\frac{11}{4}n\delta}, \qquad (2.9)
$$

by the Cauchy-Schwarz inequality, Proposition 1 and (2.5).

Let r be the nearest integer to $\frac{n}{\varepsilon}$. Hence

$$
\left| r - \frac{n}{\varepsilon} \right| \le \frac{1}{2}.\tag{2.10}
$$

By Hölder's inequality, (2.7) is bounded by

$$
\left(\sum_{u\in\mathbb{F}_{p^n}}\omega(u)^{\frac{2r}{2r-1}}\right)^{1-\frac{1}{2r}}\left(\sum_{u\in\mathbb{F}_{p^n}}\left|\sum_{z\in I}\chi(u+z)\right|^{2r}\right)^{\frac{1}{2r}}.\tag{2.11}
$$

Since $\sum \omega(u) = |B_0| \cdot |B|$ and (2.9) holds, we have

$$
\left(\sum_{u} \omega(u)^{\frac{2r}{2r-1}}\right)^{1-\frac{1}{2r}} \leq \left[\sum_{u} \omega(u)\right]^{1-\frac{1}{r}} \left[\sum_{u} \omega(u)^{2}\right]^{\frac{1}{2r}} \left(\omega(u)^{2-\frac{1}{2r}}\right)^{\frac{1}{2r}} \
$$

The first inequality follows from the following fact, which is proved by using Hölder's inequality with $\frac{2r-2}{2r-1} + \frac{1}{2r-1}$ $\frac{1}{2r-1} = 1.$

Fact 5. ($\overline{ }$ u $f(u)^{\frac{2r}{2r-1}})^{1-\frac{1}{2r}} \leq [\sum f(u)]^{1-\frac{1}{r}} [\sum f(u)^2]^{\frac{1}{2r}}.$ *Proof.* Write $f(u)^\frac{2r}{2r-1} = f(u)^\frac{2r-2}{2r-1} f(u)^\frac{2}{2r-1}$. □

Next, we bound the second factor of (2.11).

Let

$$
q=p^n.
$$

Write

$$
\sum_{u \in \mathbb{F}_{p^n}} |\sum_{z \in I} \chi(u+z)|^{2r} \leq \sum_{z_1, \dots, z_{2r} \in I} |\sum_{u \in \mathbb{F}_q} \chi((u+z_1)\dots(u+z_r)(u+z_{r+1})^{q-2}\dots(u+z_{2r})^{q-2})|.
$$
\n(2.13)

For $z_1, \ldots, z_{2r} \in I$ such that at least one of the elements is not repeated twice, the polynomial $f_{z_1,...,z_{2r}}(x) = (x + z_1)...(x + z_r)(x + z_{r+1})^{q-2}...(x + z_{2r})^{q-2}$ clearly cannot be a d-th power. Since $f_{z_1,\ldots,z_{2r}}(x)$ has no more that $2r$ many distinct roots, Theorem W gives

$$
\left| \sum_{u \in \mathbb{F}_q} \chi((u+z_1)\dots(u+z_r)(u+z_{r+1})^{q-2}\dots(u+z_{2r})^{q-2}) \right| < 2rp^{\frac{n}{2}}.
$$
 (2.14)

For those $z_1, \ldots, z_{2r} \in I$ such that every root of $f_{z_1, \ldots, z_{2r}}(x)$ appears at least twice, For those z
we bound $\sum|$ $u \in \mathbb{F}_q$ $\chi(f_{z_1,\ldots,z_{2r}}(u))|$ by $|\mathbb{F}_q|$ times the number of such z_1,\ldots,z_{2r} . Since there are at most r roots in I and for each z_1, \ldots, z_{2r} there are at most r choices, we obtain a bound $|I|^r r^{2r} p^n$.

Therefore

$$
\sum_{u \in \mathbb{F}_{p^n}} \left| \sum_{z \in I} \chi(u+z) \right|^{2r} < |I|^r r^{2r} p^n + 2r |I|^{2r} p^{\frac{n}{2}} \tag{2.15}
$$

and

$$
\left(\sum_{u \in \mathbb{F}_{p^n}} \left| \sum_{z \in I} \chi(u+z) \right|^{2r} \right)^{\frac{1}{2r}} \le r |I|^{\frac{1}{2}} p^{\frac{n}{2r}} + 2 |I| p^{\frac{n}{4r}}.
$$
\n(2.16)

Putting $(2.7), (2.11), (2.12)$ and (2.16) together, we have

$$
\frac{1}{|B_0| |I|} \sum_{x \in B, y \in B_0, z \in I} \chi(x + yz)
$$
\n
$$
\langle 4^{\frac{n}{r}} (\log p) (|B_0| |B|)^{-\frac{1}{r}} (|B|)^{1 + \frac{11}{8r}} p^{-\frac{11}{8} \frac{n}{r} \delta} (r|I|^{-\frac{1}{2}} p^{\frac{n}{2r}} + 2p^{\frac{n}{4r}})
$$
\n
$$
\langle 4^{\frac{n}{r}} (\log p) p^{\frac{1}{r} 2n\delta - \frac{11}{8} \frac{n}{r} \delta} (|B|)^{1 - \frac{5}{8r}} (rp^{\frac{-\delta}{2}} p^{\frac{n}{2r}} + 2p^{\frac{n}{4r}})
$$
\n
$$
\langle 4^{\frac{n}{r}} (\log p) 2rp^{\frac{n}{4r} + 2\delta \frac{n}{r} - \frac{5}{8r} (\frac{2}{5} + \varepsilon) n} |B|
$$
\n
$$
\langle 2 \cdot 4^{\frac{n}{r}} (\log p) r |B| p^{-\frac{5}{8} \frac{n}{r} (\varepsilon - \delta)}.
$$
\n(2.17)

The second to the last inequality holds because of (2.3) and assuming $\delta \ge n/2r$.

Let

$$
\delta = \frac{n}{2r}.\tag{2.18}
$$

To bound the exponent $\frac{5}{8}$ n $\frac{n}{r}(\varepsilon-\delta)=\frac{5}{16}\varepsilon^2\frac{n}{r\varepsilon}$ $\frac{n}{r\varepsilon}(2-\frac{n}{r\varepsilon})$ $\frac{n}{r\epsilon}$, we let

$$
\theta = \frac{n}{\varepsilon r} - 1.
$$

Then by (2.10),

$$
|\theta| < \frac{1}{2r} < \frac{\varepsilon}{2n - \varepsilon} < \frac{3}{(10n - 3)} \le \frac{3}{7}
$$

and

$$
\frac{5}{8}\frac{n}{r}(\varepsilon-\delta) = \frac{5}{16}\varepsilon^2(1+\theta)(1-\theta) > \frac{25}{98}\varepsilon^2.
$$

Returning to (2.6), we have

$$
\left|\sum_{x\in B} \chi(x)\right| < cn\varepsilon^{-1}(\log\,p)p^{-\frac{25}{98}\varepsilon^2}|B| < np^{-\frac{\varepsilon^2}{4}}|B|\tag{2.19}
$$

and thus proves Theorem 2'. \Box

Our next aim is to remove the additional hypothesis (2.1) on the shape of B. We proceed in several steps and rely essentially on a further key ingredient provided by a result of Nick Katz.

First we make the following observation (extending slightly the range of the applicability of Theorem 2').

Let $H_1 \geq H_2 \geq \cdots \geq H_n$. If $H_1 \leq p^{\frac{1}{2}+\frac{\epsilon}{2}}$, we may clearly write B as a disjoint union of boxes $B_{\alpha} \subset B$ satisfying the first condition in (2.1) and $|B_{\alpha}| > (\frac{1}{2})$ $\frac{1}{2}p^{-\frac{\varepsilon}{2}})^n|B|>$ $2^{-n}p^{(\frac{2}{5}+\frac{\varepsilon}{2})n}$. Since (2.1) holds for each B_{α} , we have

$$
\Big|\sum_{x\in B_{\alpha}} \chi(x)\Big| < cnp^{-\tau}|B_{\alpha}|.
$$

Hence

$$
\Big|\sum_{x\in B}\chi(x)\Big|< cnp^{-\tau}|B|.
$$

Therefore we may assume that $H_1 > p^{\frac{1}{2} + \frac{\varepsilon}{2}}$.

Next we recall some results of Nick Katz.

Proposition K1. ([K1]) Let χ be a nontrivial multiplicative character of \mathbb{F}_q and let $g \in \mathbb{F}_q$ be a generating element, i.e. $\mathbb{F}_q = \mathbb{F}_p(g)$. Then

$$
\left|\sum_{t \in \mathbb{F}_p} \chi(g+t)\right| \le (n-1)\sqrt{p} \tag{2.21}
$$

It was pointed out by N. Katz that a similar result remains valid when an extra additive character appears.

Proposition K2. ([K2]) Under the same assumption as Proposition K1. We have

$$
\max_{a} \left| \sum_{t \in \mathbb{F}_p} e_p(at) \chi(g+t) \right| \le c(n)\sqrt{p}.\tag{2.22}
$$

Following a standard argument, we may restate Proposition K2 for incomplete sums.

Proposition K3. Under the same assumption as Proposition K1. For any integral interval $I \subset [1, p],$ ¯ $\overline{}$ \overline{a}

$$
\left|\sum_{t \in I} \chi(g+t)\right| \le c(n)\sqrt{p} \, \log p \tag{2.23}
$$

Note that (2.23) is nontrivial as soon as $|I| \gg \sqrt{p} \log p$.

Proof of Proposition K3. Let \mathbb{I}_I be the indicator function of I. Write $\mathbb{I}_I(t)$ = $\overline{ }$ $\int_a \hat{\mathbb{I}}_I(a)e_p(at)$. Then $\sum_a |\hat{\mathbb{I}}_I(a)| \leq c \log p$. Hence

$$
\left|\sum_{t \in I} \chi(g+t)\right| \le \left|\sum_{a} |\widehat{\mathbb{I}_I}(a)| \sum_{t \in \mathbb{F}_p} \chi(g+t) e_p(at)\right| \le c(n)\sqrt{p} \log p
$$

by Proposition K2. \Box

Proof of Theorem 2.

Case 1. n is odd.

We denote $I_i = [N_i + 1, N_i + H_i]$ and estimate using (2.23)

$$
\left| \sum_{x \in B} \chi(x) \right| = \left| \sum_{\substack{x_i \in I_i \\ 2 \le i \le n}} \sum_{x_1 \in I_1} \chi \left(x_1 + x_2 \frac{\omega_2}{\omega_1} + \dots + x_n \frac{\omega_n}{\omega_1} \right) \right| \le c(n) p^{\frac{1}{2}} \log p \frac{|B|}{H_1} + (*), \tag{2.24}
$$

where

$$
(*) = \left| \sum_{x_1 \in I_1} \sum_{(x_2, \dots, x_n) \in D} \chi \left(x_1 + x_2 \frac{\omega_2}{\omega_1} + \dots + x_n \frac{\omega_n}{\omega_1} \right) \right| \tag{2.25}
$$

and

$$
D = \Big\{ (x_2, \ldots, x_n) \in I_2 \times \cdots \times I_n : \mathbb{F}_p \Big(x_2 \frac{\omega_2}{\omega_1} + \cdots + x_n \frac{\omega_n}{\omega_1} \Big) \neq \mathbb{F}_q \Big\}.
$$

In particular,

$$
(*) \leq p |D| \leq p \sum_{G} |G \bigcap {\rm Span}_{F_p} \left(\frac{\omega_2}{\omega_1}, \ldots, \frac{\omega_n}{\omega_1} \right)|,
$$

where G runs over nontrivial subfields of \mathbb{F}_q . Since $q = p^n$ and n is odd, obviously $[\mathbb{F}_q : G] \geq 3$. Hence $[G : \mathbb{F}_p] \leq \frac{n}{3}$ $\frac{n}{3}$. Furthermore, since $\{\omega_1, \dots, \omega_n\}$ is a basis of \mathbb{F}_q over \mathbb{F}_p , $1 \notin \text{Span}_{\mathbb{F}_p}(\frac{\omega_2}{\omega_1})$ $\frac{\omega_2}{\omega_1}, \ldots, \frac{\omega_n}{\omega_1}$ $\frac{\omega_n}{\omega_1}$) and the proceeding implies that

$$
\dim_{\mathbb{F}_p}\left(G\bigcap \text{Span}_{\mathbb{F}_p}\left(\frac{\omega_2}{\omega_1},\ldots,\frac{\omega_n}{\omega_1}\right)\right) \le \frac{n}{3} - 1. \tag{2.26}
$$

Therefore, under our assumption on $|H_1|$, back to (2.24)

$$
\left| \sum_{x \in B} \chi(x) \right| < c(n) \left((\log p)p^{-\frac{\varepsilon}{2}} |B| + p^{\frac{n}{3}} \right) \\
&< \left(c(n) (\log p)p^{-\frac{\varepsilon}{2}} + p^{-\frac{n}{13}} \right) |B|,
$$

since $|B| > p^{\frac{2}{5}n}$. This proves our claim.

We now treat the case when n is even. The analysis leading to the second part of Theorem 2 was kindly communicated by Andrew Granville to the author.

Case 2. n is even.

In view of the earlier discussion, our only concern is to bound

$$
(*) = \left| \sum_{x_1 \in I_1} \sum_{(x_2, \dots, x_n) \in D_2} \chi \left(x_1 + x_2 \frac{\omega_2}{\omega_1} + \dots + x_n \frac{\omega_n}{\omega_1} \right) \right| \tag{2.27}
$$

with

$$
D_2 = \left\{ (x_2, \dots, x_n) \in I_2 \times \dots \times I_n : \left(x_2 \frac{\omega_2}{\omega_1} + \dots + x_n \frac{\omega_n}{\omega_1} \right) \in F_2 \right\}
$$
 (2.28)

and F_2 the subfield of size $p^{n/2}$.

First, we note that since $1, \frac{\omega_2}{\omega_1}$ $\frac{\omega_2}{\omega_1}, \ldots, \frac{\omega_n}{\omega_1}$ $\frac{\omega_n}{\omega_1}$ are independent, $\frac{\omega_j}{\omega_1} \in F_2$ for at most $\frac{n}{2} - 1$ many j's. After reordering, we may assume that $\frac{\omega_j}{\omega_1} \in F_2$ for $2 \leq j \leq k$ and $\frac{\omega_j}{\omega_1} \notin \overline{F}_2$ for $k+1 \leq j \leq n$, where $k \leq \frac{n}{2}$ $\frac{n}{2}$. We also assume that $H_{k+1} \leq \ldots \leq H_n$. Fix x_2, \ldots, x_{n-1} . Obviously there is no more than one value of x_n such that $x_2 \frac{\omega_2}{\omega_1}$ $\frac{\omega_2}{\omega_1} + \cdots + x_n \frac{\omega_n}{\omega_1}$ $\frac{\omega_n}{\omega_1} \in F_2$, since otherwise $(x_n - x'_n) \frac{\omega_n}{\omega_1}$ $\frac{\omega_n}{\omega_1} \in F_2$ with $x_n \neq x'_n$ contradicting the fact that $\frac{\omega_n}{\omega_1} \notin F_2$.

Therefore,

$$
|D_2| \le |I_2| \cdots |I_{n-1}| \tag{2.29}
$$

and

$$
(*) \le \frac{|B|}{H_n}.\tag{2.30}
$$

If $H_n > p^{\tau}$, we are done. Otherwise

$$
H_{k+1} \cdots H_n \le p^{(n-k)\tau}.
$$
\n(2.31)

Define

$$
B_2 = \Big\{ x_1 + x_2 \frac{\omega_2}{\omega_1} + \dots + x_k \frac{\omega_k}{\omega_1} : x_i \in I_i, 1 \leq i \leq k \Big\}.
$$

Hence $B_2 \subset F_2$ and by (2.31)

$$
|B_2| > \frac{|B|}{H_{k+1}\cdots H_n} > p^{\left(\frac{2}{5} - \frac{\tau}{2}\right)n} > p^{\frac{n}{3}}.\tag{2.32}
$$

(We can assume $\tau < \frac{2}{15}$.)

Clearly, if $(x_2, \ldots, x_n) \in D_2$, then $z = x_{k+1} \frac{\omega_{k+1}}{\omega_k}$ $\frac{\omega_{k+1}}{\omega_1} + \cdots + x_n \frac{\omega_n}{\omega_1}$ $\frac{\omega_n}{\omega_1} \in F_2$. Assume $\chi|_{F_2}$ non-principal, it follows from the generalized Polya-Vinogradov inequality (proved as that of Proposition K3) and (2.32) that

$$
\left|\sum_{y \in B_2} \chi(y+z)\right| \le (\log p)^{\frac{n}{2}} \max_{\psi} \left|\sum_{x \in F_2} \psi(x)\chi(x)\right| \le (\log p)^{\frac{n}{2}} \cdot |F_2|^{\frac{1}{2}} \le p^{-\frac{n}{13}}|B_2|, (2.33)
$$

where ψ runs over all additive characters. Therefore, clearly

$$
(*_{2}) \leq H_{k+1} \cdots H_{n} p^{-\frac{n}{13}} |B_{2}| = p^{-\frac{n}{13}} |B|
$$
\n(2.34)

providing the required estimate.

If $\chi|_{F_2}$ is principal, then obviously

$$
(*_2) = H_1 \cdot |D_2| = \left| F_2 \cap \frac{1}{\omega} B \right| \tag{2.35}
$$

and

$$
\left| \sum_{x \in B} \chi(x) \right| = |F_2 \cap B| + O_n(p^{-\tau}|B|). \tag{2.36}
$$

This complete the proof of Theorem 2. \Box

Remark 2.1. The conclusion of Theorem 2 certainly holds, if we replace the assumption of $\prod_{j=1}^n H_j > p^{(\frac{2}{5} + \varepsilon)n}$ by the stronger assumption

$$
p^{\frac{2}{5}+\varepsilon} < H_j \text{ for all } j. \tag{2.37}
$$

This improves on Theorem 2 of [DL] for $n > 4$. In [DL], the condition $H_j > p^{\frac{n}{2(n+1)} + \varepsilon}$ is required. Our assumption (2.37) is independent of n, while, in the [DL] result, when *n* goes to ∞ , the exponent $\frac{n}{2(n+1)}$ goes to $\frac{1}{2}$.

§3. Distribution of primitive roots.

Theorem 2 allows us to evaluate the number of primitive roots of \mathbb{F}_{p^n} that fall into B.

We denote the Euler function by ϕ .

Corollary 3. Let $B \subset \mathbb{F}_{p^n}$ be as in Theorem 2 and satisfying \max_{ξ} $|B \cap \xi F_2| < p^{-\varepsilon} |B|$ if n even. The number of primitive roots of \mathbb{F}_{p^n} belonging to B is

$$
\frac{\varphi(p^n - 1)}{p^n - 1} |B| (1 + o(p^{-\tau'}))
$$
\n(3.1)

where $\tau' = \tau'(\varepsilon) > 0$ and assuming $n \ll \log \log p$.

The deduction from Theorem 2 follows the argument of Burgess [Bu2]. We include it here for the readers' convenience.

Proof. Let p_1, \ldots, p_s be all the distinct primes of $p^n - 1$ and let $H_{p_i} < \mathbb{F}_{p^n}^*$ be the subgroup of order $|H_{p_i}| = \frac{p^n-1}{p_i}$ subgroup of order $|H_{p_i}| = \frac{p^{n-1}}{p_i}$. Then α is a primitive root of \mathbb{F}_{p^n} if and only if $(1-\mathbb{I}_{H_{p_i}}(\alpha))=1$, where \mathbb{I}_H is the indicator function of H.

Let

$$
m=p_1\cdots p_s.
$$

Then

$$
\prod (1 - \mathbb{I}_{H_{p_i}}) = \sum_{r \ge 0} (-1)^r \sum_{i_1 < \dots < i_r} \mathbb{I}_{H_{p_{i_1}} \cap \dots \cap H_{p_{i_r}}}
$$
\n
$$
= \sum_{d \mid p^n - 1} \mu(d) \, \mathbb{I}_{H_d}
$$
\n
$$
= \sum_{d \mid m} \mu(d) \, \mathbb{I}_{H_d}.
$$

Here μ is the Möbius function. (Recall that $\mu(d) = (-1)^r$, if d is the product of r distinct primes, $\mu(d) = 0$ otherwise.)

Observe that

$$
\mathbb{I}_{H_d} = \frac{1}{d} \sum_{\chi^d=1} \chi = \frac{1}{d} \sum_{d_1 | d} \sum_{\chi \in \mathcal{E}_{d_1}} \chi,
$$

where χ is a multiplicative character and $\mathcal{E}_{d_1} = {\chi : \text{ord}(\chi) = d_1}.$

Then

$$
\sum_{d|m} \mu(d) \left(\frac{1}{d} \sum_{d_1|d} \sum_{\chi \in \mathcal{E}_{d_1}} \chi \right) = \sum_{d_1|m} \frac{\mu(d_1)}{d_1} \left(\sum_{\chi \in \mathcal{E}_{d_1}} \chi \right) \left(\sum_{r \mid \frac{m}{d_1}} \frac{\mu(r)}{r} \right)
$$

$$
= \frac{\phi(p^n - 1)}{p^n - 1} \sum_{d_1|m} \frac{\mu(d_1)}{\phi(d_1)} \left(\sum_{\chi \in \mathcal{E}_{d_1}} \chi \right)
$$

$$
= \frac{\phi(p^n - 1)}{p^n - 1} \sum_{d_1|p^n - 1} \frac{\mu(d_1)}{\phi(d_1)} \left(\sum_{\chi \in \mathcal{E}_{d_1}} \chi \right).
$$
18

The second identity is because

$$
\sum_{r \mid \frac{m}{d_1}} \frac{\mu(r)}{r} = \prod_{p_i \mid \frac{m}{d_1}} \left(1 - \frac{1}{p_i}\right) = \frac{\phi(\frac{m}{d_1})}{\frac{m}{d_1}} = \frac{d_1}{\phi(d_1)} \frac{\phi(p^n - 1)}{p^n - 1}.
$$

Let k be the number of primitive roots of \mathbb{F}_{p^n} in the box B. Then

$$
k = \frac{\phi(p^n - 1)}{p^n - 1} \sum_{a \in B} \sum_{\substack{d \mid p^n - 1 \\ d \mid p^n - 1}} \frac{\mu(d)}{\phi(d)} \left(\sum_{\chi \in \mathcal{E}_d} \chi(a) \right)
$$

=
$$
\frac{\phi(p^n - 1)}{p^n - 1} \left(|B| + \sum_{\substack{d \mid p^n - 1 \\ d > 1}} \frac{\mu(d)}{\phi(d)} \left(\sum_{\chi \in \mathcal{E}_d} \sum_{a \in B} \chi(a) \right) \right).
$$

Hence, by Theorem 2,

$$
\left| k - \frac{\phi(p^n - 1)}{p^n - 1} |B| \right| < \frac{\phi(p^n - 1)}{p^n - 1} \sum_{\substack{d \mid p^n - 1 \\ d > 1}} \frac{1}{\phi(d)} \phi(d) p^{-\tau} |B| \\
< \frac{\phi(p^n - 1)}{p^n - 1} \exp\left(\frac{\log p^n}{\log \log p^n}\right) p^{-\tau} |B|.
$$

Remark 3.1. In the case of a prime field $(n = 1)$, Burgess theorem (see [Bu1]) requires the assumption $H > p^{\frac{1}{4} + \varepsilon}$, for some $\varepsilon > 0$, which seems to be the limit of this method. For $n > 1$, the exact counterpart of Burgess' estimate seems unknown in the generality of an arbitrary basis $\omega_1, \ldots, \omega_n$ of \mathbb{F}_{p^n} over \mathbb{F}_p , as considered in [DL] and here. Higher dimensional results of the strength of Burgess seem only known for certain special basis (see [Bu3] when $n = 2$ and basis of the form $\omega_j = g^j$ with given g generating \mathbb{F}_{p^n} , see [Bu4] and [Kar]).

§4. Some further implications of the method.

In what follows, we only consider for simplicity the case of a prime field (several statements below have variants over a general finite field, possibly with worse exponents).

4.1. Recall that a generalized d-dimensional arithmetic progression in \mathbb{F}_p is a set of the form

$$
\mathcal{P} = a_0 + \left\{ \sum_{j=1}^d x_j a_j : x_j \in [0, N_j - 1] \right\}
$$
\n(4.1)

for some elements $a_0, a_1, \ldots, a_d \in \mathbb{F}_p$. If the representation of elements of P in (4.1) is unique, we call P proper. Hence $\mathcal P$ is proper if and only if $|\mathcal P| = N_1 \cdots N_d$ (which we assume in the sequel).

Assume $|\mathcal{P}| < 10^{-d}\sqrt{p}$, hence $\mathbb{F}_p \neq \frac{\mathcal{P}-\mathcal{P}}{\mathcal{P}-\mathcal{P}}$ (in the considerations below, $|\mathcal{P}| \ll p^{1/2}$ so that there is no need to consider the alternative $|\mathcal{P}| \gg p^{1/2}$). Following the argument in [KS1] (or the proof of Proposition 1), we have

$$
E(\mathcal{P}, \mathcal{P}) < c^d (\log \, p) |\mathcal{P}|^{11/4}.\tag{4.2}
$$

Also, repeating the proof of Theorem 2, we obtain

Theorem 4. Let P be a proper d-dimensional generalized arithmetic progression in \mathbb{F}_p with

$$
|\mathcal{P}| > p^{2/5 + \varepsilon} \tag{4.3}
$$

for some $\varepsilon > 0$. If X is a nontrivial multiplicative character of \mathbb{F}_p , we have

$$
\left| \sum_{x \in \mathcal{P}} \mathcal{X}(x) \right| < p^{-\tau} |\mathcal{P}| \tag{4.4}
$$

where $\tau = \tau(\varepsilon, d) > 0$ and assuming $p > p(\varepsilon, d)$.

Theorem 4 is another extension of Burgess' inequality. A natural problem is to try to improve the exponent $\frac{2}{5}$ in (4.3) to $\frac{1}{4}$.

Let us point out one consequence of Theorem 4 which gives an improvement of a result in [HIS]. (See [HIS], Corollary 1.3.)

Corollary 5. Given $C > 0$ and $\varepsilon > 0$, there is a constant $c = c(C, \varepsilon) > 0$ and a positive integer $k < k(\varepsilon)$, such that if $A \subset \mathbb{F}_p$ satisfies

- (i) $|A + A| < C|A|$
- (ii) $|A| > p^{\frac{2}{5} + \varepsilon}$.

Then we have

$$
|A^k| > cp.
$$

Proof.

According to Freiman's structural theorem for sets with small doubling constants (see $[TV]$), under assumption (i), there is a proper generalized d-dimensional progression P such that $A \subset P$ and

$$
d \le C \tag{4.5}
$$

$$
\log\frac{|\mathcal{P}|}{|A|} < C^2(\log C)^3 \tag{4.6}
$$

By assumption (ii), Theorem 4 applies to P . Let τ be as given in Theorem 4. We fix

$$
k \in \mathbb{Z}_+, \quad k > \frac{1}{\tau}.\tag{4.7}
$$

(Hence $k > k(\varepsilon)$.) Denote by ν the probability measure on \mathbb{F}_p obtained as the image measure of the normalized counting measure on the k-fold product \mathcal{P}^k under the product map

$$
\mathcal{P} \times \cdots \times \mathcal{P} \longrightarrow \mathbb{F}_p
$$

$$
(x_1, \ldots, x_k) \longmapsto x_1 \ldots x_k.
$$

Hence by the Fourier inversion formula, we have

$$
\nu(x) = \frac{1}{p-1} \sum_{\chi} \chi(x)\hat{\nu}(\chi)
$$

=
$$
\frac{1}{p-1} \sum_{\chi} \chi(x) \left(\sum_{t} \nu(t)\overline{\chi(t)} \right)
$$

=
$$
\frac{|\mathcal{P}|^{-k}}{p-1} \sum_{\chi} \chi(x) \left(\sum_{y \in \mathcal{P}} \overline{\chi}(y) \right)^{k}
$$

$$
\leq \frac{|\mathcal{P}|^{-k}}{p-1} \sum_{\chi} \left| \sum_{y \in \mathcal{P}} \chi(y) \right|^{k},
$$

 χ denoting a multiplicative character.

Applying the circle method and (4.4), we get

$$
\max_{x \in \mathbb{F}_p^*} \nu(x) \le \frac{1}{p-1} + \max_{\chi \text{ nontrivial}} |\mathcal{P}|^{-k} \left| \sum_{x \in \mathcal{P}} \chi(x) \right|^k
$$

< $\frac{1}{p-1} + p^{-\tau k}$
< $\frac{2}{p}$. (4.8)

The last inequality is by (4.7). Assuming $A \subset \mathbb{F}_p^*$, we write

$$
|A|^k \le |A^k| \max_{x \in \mathbb{F}_p^*} |\{(x_1, \dots, x_k) \in A \times \dots \times A : x_1 \dots x_k = x\}|
$$

$$
\le |A^k| |P|^k \max_{x \in \mathbb{F}_p^*} \nu(x)
$$

implying by (4.6) and (4.8)

$$
|A^k| > \left(\frac{|A|}{|\mathcal{P}|}\right)^k \frac{p}{2} > \frac{p}{2} \exp\left(-kC^2(\log C)^3\right) > c(C,\varepsilon)p.
$$

This proves Corollary 5. \Box

4.2. Recall the well-known Paley Graph conjecture stating that if $A, B \subset \mathbb{F}_p, |A| >$ $p^{\varepsilon}, |B| > p^{\varepsilon}$, then ¯ $\overline{}$ \overline{a}

$$
\left|\sum_{x \in A, y \in B} \chi(x+y)\right| < p^{-\delta} |A| \, |B| \tag{4.9}
$$

where $\delta = \delta(\varepsilon) > 0$ and χ a nontrivial multiplicative character.

An affirmative answer is only known in the case $|A| > p^{\frac{1}{2}+\varepsilon}, |B| > p^{\varepsilon}$ for some $\varepsilon > 0$ ammative answer is only known in the case $|A| > p^2$, $|B| > p^2$ for some (as a consequence of Weil's inequality (2.14)). Even for $|A| > p^{1/2}$, $|B| > p^{1/2}$, an inequality of the form (4.9) seems unknown.

Next result provides a statement of this type, assuming A or B has a small doubling constant.

Theorem 6. Assume $A, B \subset \mathbb{F}_p$ such that

(a) $|A| > p^{\frac{4}{9} + \varepsilon}, |B| > p^{\frac{4}{9} + \varepsilon}$ (b) $|B + B| < K|B|$.

Then

$$
\Big|\sum_{x\in A,y\in B}\chi(x+y)\Big|
$$

where $\tau = \tau(\varepsilon, K) > 0$, $p > p(\varepsilon, K)$ and χ is a nontrivial multiplicative character of \mathbb{F}_p .

Proof.

The argument is a variant of the proof of Theorem 2, so we will be brief. The case $|B| > p^{\frac{1}{2}+\varepsilon}$ is taken care of by Weil's estimate (2.14). Since we can dissect B into $\leq p^{\varepsilon}$

subsets satisfying assumptions (a) and (b), we may assume that $|B| < \frac{1}{2}$ $\frac{1}{2}(\sqrt{p}-1)$. We subsets satisfying assumptions (a) and (b), we may assume that $|D| \leq \frac{1}{2}(\sqrt{p-1})$. We
denote the various constants (possibly depending on the constant K in assumption denote the
(b) by C .

Let \mathcal{B}_1 be a generalized d-dimensional proper arithmetic progression in \mathbb{F}_p satisfying $B \subset \mathcal{B}_1$ and

$$
d \le K \tag{4.10}
$$

$$
\log\frac{|\mathcal{B}_1|}{|B|} < C. \tag{4.11}
$$

Let

$$
\mathcal{B}_2 = (-\mathcal{B}_1) \cup \mathcal{B}_1.
$$

$$
\delta = \frac{\varepsilon}{4d}, \quad r = \left[\frac{10}{\delta}\right].
$$
 (4.12)

We take

Similar to the proof of Theorem 2, we take a proper progression $\mathcal{B}_0 \subset \mathcal{B}_2 \subset \mathbb{F}_p$ and an integral interval $I = [1, p^δ]$ with the following properties

$$
|B_0| > p^{-2d\delta} |\mathcal{B}_2|
$$

$$
B - \mathcal{B}_0 I \subset \mathcal{B}_2.
$$
 (4.13)

Therefore,

$$
|\mathcal{B}| \le |\mathcal{B}_1| \le e^{C(K)}|\mathcal{B}| \quad \text{and} \quad |\mathcal{B}_2| = 2|\mathcal{B}_1| - 1. \tag{4.14}
$$

Estimate

$$
\left| \sum_{x \in A, y \in B} \chi(x+y) \right| \leq \sum_{y \in B} \left| \sum_{x \in A} \chi(x+y) \right|
$$

$$
\leq |\mathcal{B}_0|^{-1} |I|^{-1} \sum_{\substack{y \in \mathcal{B}_2 \\ z \in \mathcal{B}_0, t \in I}} \left| \sum_{x \in A} \chi(x+y+zt) \right|. \tag{4.15}
$$

The second inequality is by (4.13). Write

$$
\sum_{\substack{y \in \mathcal{B}_2 \\ z \in \mathcal{B}_0, t \in I}} \left| \sum_{x \in A} \chi(x + y + zt) \right| \leq (|\mathcal{B}_2| \, |\mathcal{B}_0| \, |I|)^{\frac{1}{2}} \, \left| \sum_{\substack{y \in \mathcal{B}_2, z \in \mathcal{B}_0, t \in I \\ x_1, x_2 \in A}} \chi\left(\frac{(x_1 + y)z^{-1} + t}{(x_2 + y)z^{-1} + t}\right) \right|^{\frac{1}{2}}.
$$
\n
$$
(4.16)
$$

The sum on the right-hand side of (4.16) equals

$$
\Big| \sum_{u_1, u_2 \in \mathbb{F}_p} \nu(u_1, u_2) \sum_{t \in I} \chi\left(\frac{u_1 + t}{u_2 + t}\right) \Big|
$$

$$
\leq \Big[\sum_{u_1, u_2} \nu(u_1, u_2)^{\frac{2r}{2r-1}} \Big]^{1 - \frac{1}{2r}} \Big[\sum_{u_1, u_2} \Big| \sum_{t \in I} \chi\left(\frac{u_1 + t}{u_2 + t}\right) \Big|^{2r} \Big]^{\frac{1}{2r}} \tag{4.17}
$$

where for $(u_1, u_2) \in \mathbb{F}_p^2$ we define

$$
\nu(u_1, u_2) = |\{(x_1, x_2, y, z) \in A \times A \times B_2 \times B_0 : \frac{x_1 + y}{z} = u_1 \text{ and } \frac{x_2 + y}{z} = u_2\}|. (4.18)
$$

Hence

$$
\sum_{u_1, u_2} v(u_1, u_2) = |A|^2 |\mathcal{B}_2| |\mathcal{B}_0|
$$
\n(4.19)

and

$$
\sum_{u_1, u_2} \nu(u_1, u_2)^2
$$
\n
$$
= \left| \{ (x_1, x_2, x_1', x_2', y, y', z, z') \in A^4 \times B_2^2 \times B_0^2 : \frac{x_i + y}{z} = \frac{x_i' + y'}{z'} \text{ for } i = 1, 2 \} \right|
$$
\n
$$
\leq |A|^3 \max_{x_1, x_1'} \left| \{ (y, y', z, z') \in B_2^2 \times B_0^2 : \frac{x_1 + y}{z} = \frac{x_1' + y'}{z'} \} \right|
$$
\n
$$
\leq |A|^3 E(\mathcal{B}_0, \mathcal{B}_0)^{\frac{1}{2}} \max_x E(x + \mathcal{B}_2, x + \mathcal{B}_2)^{\frac{1}{2}}
$$
\n
$$
< |A|^3 \log p |\mathcal{B}_0|^{\frac{11}{8}} |\mathcal{B}_2|^{\frac{11}{8}}
$$
\n
$$
< C|A|^3 |\mathcal{B}_2|^{\frac{11}{4}}
$$
\n(4.20)

by Proposition 1, Fact 1 and several applications of the Cauchy-Schwarz inequality. Therefore, by Fact 5 (after (2.12)), (4.19) and (4.20) , the first factor of (4.17) is bounded by

$$
\left[\sum \nu(u_1, u_2)\right]^{1-\frac{1}{r}} \left[\sum \nu(u_1, u_2)^2\right]^{\frac{1}{2r}} \n\leq C|A|^2 |\mathcal{B}_2| |\mathcal{B}_0| (|A|^{-\frac{1}{2}} |\mathcal{B}_2|^{-\frac{5}{8}} p^{2d\delta})^{\frac{1}{r}}.
$$
\n(4.21)

Next, write using Weil's inequality (2.14)

$$
\sum_{u_1, u_2 \in \mathbb{F}_p} \left| \sum_{t \in I} \chi \left(\frac{u_1 + t}{u_2 + t} \right) \right|^{2r} \le \sum_{t_1, \dots, t_{2r} \in I} \left| \sum_{u \in \mathbb{F}_p} \chi \left(\frac{(u + t_1) \cdots (u + t_r)}{(u + t_{r+1}) \cdots (u + t_{2r})} \right)^2 \right|
$$

$$
\le p^2 |I|^r r^{2r} + Cr^2 p |I|^{2r}, \tag{4.22}
$$

so that the second factor in (4.17) is bounded by

$$
Crp^{\frac{1}{r}} |I|^{\frac{1}{2}} + Cp^{\frac{1}{2r}} |I|.
$$
\n(4.23)

Applying (4.14) and collecting estimates (4.16), (4.17), (4.21), (4.23) and assumption (a) , we bound (4.15) by

$$
\left| \sum_{x \in A, y \in B} \chi(x + y) \right| < C|A| |B| |I|^{-\frac{1}{2}} (|A|^{-\frac{1}{2}} |B|^{-\frac{5}{8}} p^{2d\delta})^{\frac{1}{2r}} \left(\sqrt{r} \ p^{\frac{1}{2r}} |I|^{\frac{1}{4}} + p^{\frac{1}{4r}} |I|^{\frac{1}{2}} \right) \\
 < C\sqrt{r} |A| |B| \left(p^{-(\frac{4}{9} + \varepsilon)\frac{9}{8} + 2d\delta} \right)^{\frac{1}{2r}} \left(p^{\frac{1}{2r} - \frac{\delta}{4}} + p^{\frac{1}{4r}} \right) \\
 < C\sqrt{r} |A| |B| \left(p^{\frac{1}{2} - \frac{9}{8}\varepsilon + 2d\delta - \frac{\delta}{2}r} + p^{-\frac{9}{8}\varepsilon + 2d\delta} \right)^{\frac{1}{2r}}.\n\tag{4.24}
$$

Recall (4.12). The theorem follows by taking $\tau(\varepsilon) = \frac{\varepsilon^2}{128}$ 128K $\square.$

Next, we consider the special case $A \subset \mathbb{F}_p$ and $I \subset \mathbb{F}_p$ an interval. First, we begin with the following technical lemma.

Lemma 7. Let $A \subset \mathbb{F}_p^*$ and let I_1, \ldots, I_s be intervals such that $I_i \subset [1, p^{\frac{1}{k_i}}]$. Denote

$$
w(u) = \left| \left\{ (y, z_1, \dots, z_s) \in A \times I_1 \times \dots \times I_s : y \equiv uz_1 \dots z_s \pmod{p} \right\} \right| \qquad (4.25)
$$

and

$$
\gamma = \frac{1}{k_1} + \dots + \frac{1}{k_s}.\tag{4.26}
$$

Then

$$
\sum w(u)^2 < |A|^{1+\gamma} p^{\gamma + \frac{s}{\log \log p}}.
$$

Proof. Using multiplicative characters and Plancherel, we have

$$
\sum w(u)^2 = \frac{1}{p-1} \sum_{\chi} \langle w, \chi \rangle^2, \tag{4.27}
$$

where

$$
\langle w, \chi \rangle = \sum w(u) \overline{\chi(u)} = \sum_{\substack{y \in A \\ z_i \in I_i}} \overline{\chi(y)} \chi(z_1) \dots \chi(z_s).
$$

Hence

$$
|\langle w, \chi \rangle| = \Big| \sum_{y \in A} \chi(y) \Big| \prod_{i} \Big| \sum_{z_i \in I_i} \chi(z_i) \Big|.
$$

Using generalized Hölder inequality with $1 = (1 - \gamma) + \frac{1}{k_1} + \cdots + \frac{1}{k_s}$ $\frac{1}{k_s}$, we have

$$
\sum w(u)^2 = \frac{1}{p-1} \sum_{\chi} \left| \sum_{y \in A} \chi(y) \right|^2 \prod_i \left| \sum_{z_i \in I_i} \chi(z_i) \right|^2
$$

$$
\leq \frac{1}{p-1} \left(\sum_{\chi} \left| \sum_{y \in A} \chi(y) \right|^{\frac{2}{1-\gamma}} \right)^{1-\gamma} \prod_i \left(\sum_{\chi} \left| \sum_{z_i \in I_i} \chi(z_i) \right|^{2k_i} \right)^{\frac{1}{k_i}}.
$$
(4.28)

Now we estimate different factors. Writing the exponent as $\frac{2}{1-\gamma} = \frac{2\gamma}{1-\gamma}$ $rac{2\gamma}{1-\gamma}+2$ and using the trivial bound, we have

$$
\sum_{\chi} \left| \sum_{y \in A} \chi(y) \right|^{\frac{2}{1-\gamma}} \le |A|^{\frac{2\gamma}{1-\gamma}} \sum_{\chi} \left| \sum_{y \in A} \chi(y) \right|^2 = |A|^{\frac{2\gamma}{1-\gamma}} \sum_{y,z \in A} \sum_{\chi} \chi(yz^{-1}) = p|A|^{\frac{1+\gamma}{1-\gamma}}.
$$
\n(4.29)

For an interval $I \subset [1, p^{\frac{1}{k}}]$, we define

$$
\eta(u) = \Big|\{(z_1,\ldots,z_k) \in I \times \cdots \times I : z_1 \ldots z_k \equiv u \pmod{p}\}\Big|.
$$

Since $z_1 \ldots z_k \equiv z'_1 \ldots z'_k \pmod{p}$ implies $z_1 \ldots z_k = z'_1 \ldots z'_k$ in $\mathbb{Z}, \eta(u) <$ $\left(\exp(\frac{\log p}{\log \log p})\right)^k$. On the other hand $\sum \eta(u) < (p^{\frac{1}{k}})^k = p$. Therefore,

$$
\sum_{\chi} \left| \sum_{z \in I} \chi(z) \right|^{2k} = \sum_{\chi} \left(\sum_{u} \eta(u) \chi(u) \right)^2 = \sum_{\chi} \langle \eta, \chi \rangle^2 = (p-1) \sum_{u} \eta(u)^2 < p^{2 + \frac{k}{\log \log p}}. \tag{4.30}
$$

Putting $(4.28)-(4.30)$ together, we have the lemma. \Box

Theorem 8. Let $A \subset \mathbb{F}_p$ be a subset with $|A| = p^{\alpha}$ and let $I \subset [1,p]$ be an arbitrary interval with $|I| = p^{\beta}$, where

$$
\alpha(1-\beta) + \beta > \frac{1}{2} + \delta \tag{4.31}
$$

and $\beta > \delta > 0$. Then for a non-principal multiplicative character χ , we have

$$
\Big|\sum_{\substack{x \in I \\ y \in A}} \chi(x+y)\Big| < p^{-\frac{\delta^2}{13}}|A| \; |I|.
$$

Proof. Let

$$
\tau = \frac{\delta}{6} \tag{4.32}
$$

and

$$
R = \left\lceil \frac{1}{2\tau} \right\rceil. \tag{4.33}
$$

Choose $k_1, \ldots, k_s \in \mathbb{Z}^+$ such that

$$
2\tau < \beta - \sum_{i} \frac{1}{k_i} < 3\tau. \tag{4.34}
$$

Denote

$$
I_0 = [1, p^{\tau}], \quad I_i = [1, p^{\frac{1}{k_i}}]
$$
 $(1 \le i \le s).$

We perform the Burgess amplification as follows. First, for any $z_0 \in I_0, \ldots, z_s \in I_s$,

$$
\sum_{\substack{x \in I \\ y \in A}} \chi(x+y) = \sum_{\substack{x \in I \\ y \in A}} \chi(x+y+z_0z_1\dots z_s) + O(|A|p^{\beta-\tau}).
$$

Letting $\gamma =$ $\overline{ }$ i 1 $\frac{1}{k_i}$, we have

$$
\left| \sum_{\substack{x \in I \\ y \in A}} \chi(x + y + z_0 z_1 \dots z_s) \right| = p^{-\gamma - \tau} \left| \sum_{\substack{x \in I, y \in A \\ z_0 \in I_0, \dots, z_s \in I_s}} \chi(x + y + z_0 z_1 \dots z_s) \right|
$$

$$
\leq p^{-\gamma - \tau} \sum_{\substack{x \in I, y \in A \\ z_1 \in I_1, \dots, z_s \in I_s}} \left| \sum_{z_0 \in I_0} \chi(x + y + z_0 z_1 \dots z_s) \right|
$$

$$
\leq p^{\beta - \gamma - \tau} \max_{\substack{x \in I \\ x \in I}} \sum_{\substack{y \in A \\ y \in A}} \left| \sum_{z_0 \in I_0} \chi\left(\frac{x + y}{z_1 \dots z_s} + z_0\right) \right|.
$$
 (4.35)

Fix $x \in I$ achieving maximum in (4.35), and replace A by $A_1 = A + x$. Denote $w(u)$ the function (4.25) with A replaced by A_1 . Hence (4.35) is

$$
p^{\beta-\gamma-\tau} \sum_{u} w(u) \Big| \sum_{z \in I_0} \chi(u+z) \Big|.
$$
 (4.36)

By (4.36) , Hölder inequality, Fact 5 and Weil estimate $(cf (2.16))$, (4.35) is bounded by

$$
p^{\beta-\gamma-\tau} \Big(\sum_{u} w(u)^{\frac{2R}{2R-1}} \Big)^{1-\frac{1}{2R}} \Big(\sum_{u} \Big| \sum_{z \in I_0} \chi(u+z) \Big|^{2R} \Big)^{\frac{1}{2R}}
$$

$$
\leq p^{\beta-\gamma-\tau} \Big[\sum_{u} w(u) \Big]^{1-\frac{1}{R}} \Big[\sum_{u} w(u)^{2} \Big]^{\frac{1}{2R}} \Big(R |I_0|^{\frac{1}{2}} p^{\frac{1}{2R}} + 2 |I_0| p^{\frac{1}{4R}} \Big)
$$

$$
\ll p^{\alpha+\beta-\frac{1}{2R}(\delta-3\tau-\frac{1}{\log\log p})} < |A| |I| p^{-\frac{\delta^{2}}{13}}.
$$

In the last inequalities, we use $|\sum w(u)| = |A|p^{\gamma}, (4.31)-(4.34)$ and Lemma 7. \square

Acknowledgement. The author is grateful to Andrew Granville for removing some additional restriction on the set B in Theorem 2 in an earlier version of the paper, and to the referee for many helpful comments. The author would also like to thank J. Bourgain and Nick Katz for communication on Propositions K1-K3, and Gwoho Liu for assistance.

REFERENCES

- [BGK]. J. Bourgain, A. Glibichuk, S. Konyagin, Estimate for the number of sums and products and for exponential sums in fields of prime order, submitted to J. London MS.
- [BKT]. J. Bourgain, N. Katz, T. Tao, A sum-product estimate in finite fields and their applications, GAFA 14 (2004), n1, 27–57.
- [Bu1]. D.A. Burgess, On character sums and primitive roots, Proc. London Math. Soc. (3) 12 (1962), 179-192.
- [Bu2]. , On primitive roots in finite fields, Quarterly J. of Math., 8 (1937), 308-312.
- [Bu3]. Character sums and primitive roots in finite fields, Proc. London Math. Soc. (3) 37 (1967), 11-35.
- [Bu4]. $_____$, A note on character sums over finite fields, J. Reine Angew. Math. 255 (1972), 80-82.
- [DL]. Davenport, D. Lewis, Character sums and primitive roots in finite fields, Rend. Circ. Matem. Palermo-Serie II-Tomo XII-Anno (1963), 129-136.
- [FI]. J. Friedlander, H. Iwaniec, Estimates for character sums, Proc. Amer. Math. Soc. 119, No 2, (1993), 265-372.
- [G]. M. Garaev, An explicit sum-product estimate in \mathbb{F}_p , (preprint).
- [HIS]. D. Hart, A. Iosevich, J. Solymosi, Sum product estimates in finite fields via Kloosterman sums, IMRN (to appear).
- [IK]. H. Iwaniec, E. Kowalski, Analytic number theory, AMS Colloquium Publications, Vol 53 (2004).
- [Kar]. A.A. Karacuba, Estimates of character sums, Math. USSR-Izvestija Vol. 4 (1970), No. 1 , 19-29.
- [KS1]. Nets Katz, C-Y. Shen, A slight improvement of Garaev's sum product estimate, (preprint).
- [KS2]. \Box , *Garaev's Inequality in finite fields not of prime order*, (preprint).
- [K1]. Nick Katz, An estimate for character sums, JAMS Vol 2, No 2 (1989), 197-200.
- [K2]. ______, Private communication.
- [TV]. T. Tao, V. Vu, Additive Combinatorics,, Cambridge University Press, 2006.