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Abstract.

Let χ be a nontrivial multiplicative character of Fpn . We obtain the following results
related to Davenport-Lewis’ paper [DL] and the Paley Graph conjecture.

(1). Let ε > 0 be given. If

B = {
n∑

j=1

xjωj : xj ∈ [Nj + 1, Nj + Hj ] ∩ Z, j = 1, . . . , n}

is a box satisfying
n
Π

j=1
Hj > p( 2

5+ε)n,

then for p > p(ε) we have

|
∑

x∈B

χ(x)| ¿n p−
ε2
4 |B|

unless n is even, χ is principal on a subfield F2 of size pn/2 and maxξ |B∩ξF2| > p−ε|B|.
As a corollary, we bound the number of primitive roots in B by

ϕ(pn − 1)

pn − 1
|B|(1 + o(p−τ ′ )).

(2). Assume A, B ⊂ Fp such that

|A| > p
4
9+ε, |B| > p

4
9+ε, |B + B| < K|B|.

Then ∣∣∣
∑

x∈A,y∈B

χ(x + y)
∣∣∣ < p−τ |A| |B|.
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Introduction.

In this paper we obtain new character bounds in finite fields Fq with q = pn, using
methods from additive combinatorics related to the sum-product phenomenon. More
precisely, Burgess’ classical amplification argument is combined with our estimate on
the ‘multiplicative energy’ for subsets in Fq. (See Proposition 1 in §1.) The latter
appears as a quantitative version of the sum-product theorem in finite fields (see
[BKT] and [TV]) following arguments from [G], [KS1] and [KS2].

Our first results relate to the work [DL] of Davenport and Lewis. We recall their
result. Let {ω1, . . . , ωn} be an arbitrary basis for Fpn over Fp. Then elements of Fpn

have a unique representation as

ξ = x1ω1 + . . . + xnωn, (0 ≤ xi < p). (0.1)

We denote B a box in n-dimensional space, defined by

Nj + 1 ≤ xj ≤ Nj + Hj , (j = 1, . . . , n) (0.2)

where Nj and Hj are integers satisfying 0 ≤ Nj < Nj + Hj < p, for all j.

Theorem DL. ([DL], Theorem 2) Let Hj = H for j = 1, . . . , n, with

H > p
n

2(n+1)+δ for some δ > 0 (0.3)

and let p > p1(δ). Then, with B defined as above
∣∣ ∑

x∈B

χ(x)
∣∣ < (p−δ1H)n,

where δ1 = δ1(δ) > 0.

For n = 1 (i.e. Fq = Fp) we are recovering Burgess’ result (H > p
1
4+δ). But as n

increases, the exponent in (0.3) tends to 1
2 . In fact, in [DL] the authors were quite

aware of the shortcoming of their approach which they formulated as follows (see [DL],
p130)

‘The reason for this weakening in the result lies in the fact that the parameter q used
in Burgess’ method has to be a rational integer and cannot (as far as we can see) be
given values in Fq’.

In this paper we address to some extent their problem and are able to prove the
following
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Theorem 21. Let χ be a nontrivial multiplicative character of Fpn , and let ε > 0 be
given. If

B =
{ n∑

j=1

xjωj : xj ∈ [Nj + 1, Nj + Hj ] ∩ Z, j = 1, . . . , n

}

is a box satisfying
n

Π
j=1

Hj > p( 2
5+ε)n,

then for p > p(ε) ∣∣∣
∑

x∈B

χ(x)
∣∣∣ ¿n p−

ε2
4 |B|,

unless n is even and χ|F2 is principal, F2 the subfield of size pn/2, in which case
∣∣∣
∑

x∈B

χ(x)
∣∣∣ ≤ max

ξ

∣∣B ∩ ξF2

∣∣ + On(p−
ε2
4 |B|).

Hence our exponent is uniform in n and supersedes [DL] for n > 4. The novelty of
the method in this paper is to exploit the finite field combinatorics without the need
to reduce the problem to a divisor issue in Z or in the integers of an algebraic number
field K (as in the papers [Bu3] and [Kar]).

Let us emphasize that there are no further assumptions on the basis ω1, . . . , ωn. If
one assumes ωi = gi−1, (1 ≤ i ≤ n), where g satisfies a given irreducible polynomial
equation (mod p)

a0 + a1g + · · ·+ an−1g
n−1 + gn = 0, with ai ∈ Z,

or more generally, if

ωiωj =
n∑

k=1

cijkωk, (0.4)

with cijk bounded and p taken large enough, a result of the strength of Burgess’
was indeed obtained (see [Bu3] and [Kar]) by reducing the combinatorial problem to
counting divisors in the integers of an appropriate number field. But such reduction
seems not possible in the general context considered in [DL].

Character estimates as considered above have many applications, e.g. quadratic
non-residues, primitive roots, coding theory, etc. We only mention the following con-
sequence of Theorem 2 to the problem of primitive roots (see for instance [DL], p131).

1The author is grateful to Andrew Granville for removing some additional restriction on the set
B in an earlier version of this theorem.

3



Corollary 3. Let B ⊂ Fpn be as in Theorem 2 and satisfying maxξ

∣∣B∩ξF2

∣∣ < p−ε|B|
if n even. The number of primitive roots of Fpn belonging to B is

ϕ(pn − 1)
pn − 1

|B|(1 + o(p−τ ′))

where τ ′ = τ ′(ε) > 0 and assuming n ¿ log log p.

The aim of [DL] (and in an extensive list of other works starting from Burgess’
seminal paper [Bu1]) was to improve on the Polya-Vinogradov estimate (i.e. breaking
the

√
q-barrier), when considering incomplete character sums of the form

∣∣∣
∑

x∈A

χ(x)
∣∣∣, (0.5)

where A ⊂ Fq has certain additive structure.

Note that the set B considered above has a small doubling set, i.e.

|B + B| < c(n)|B| (0.6)

and this is the property relevant to us in our combinatorial Proposition 1 in §1.

In the case of a prime field (q = p), our method provides the following generalization
of Burgess’ inequality.

Theorem 4. Let P be a proper d-dimensional generalized arithmetic progression in
Fp with

|P| > p2/5+ε

for some ε > 0. If X is a nontrivial multiplicative character of Fp, we have

∣∣∣
∑

x∈P
X (x)

∣∣∣ < p−τ |P|

where τ = τ(ε, d) > 0 and assuming p > p(ε, d).

See §4, where we also recall the notion of a ‘proper generalized arithmetic progres-
sion’. Let us point out here that the proof of Proposition 1 below and hence Theorem
2, uses the full linear independence of the elements ω1, . . . , ωn over the base field Fp.
Assuming in Theorem 2 only that B is a proper generalized arithmetic progression
requires us to make a stronger assumption on |B|.
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Next, we consider the problem of estimating character sums over sumsets of the
form

∑

x∈A,y∈B

χ(x + y), (0.7)

where χ is a nontrivial multiplicative character modulo p (we consider again only the
prime field case for simplicity). In this situation, a well-known conjecture (sometimes
referred to as the Paley Graph conjecture) predicts a nontrivial bound on (0.7) as soon
as |A|, |B| > pδ, for some δ > 0. Presently, such result is only known (with no further
assumptions) provided |A| > p

1
2+δ and |B| > pδ for some δ > 0. The problem is

open even for the case |A| ∼ p
1
2 ∼ |B|. Using Proposition 1 (combined with Freiman’s

theorem), we prove the following

Theorem 6. Assume A,B ⊂ Fp such that

(a) |A| > p
4
9+ε, |B| > p

4
9+ε

(b) |B + B| < K|B|.
Then ∣∣∣

∑

x∈A,y∈B

χ(x + y)
∣∣∣ < p−τ |A| |B|,

where τ = τ(ε, K) > 0, p > p(ε,K) and χ is a nontrivial multiplicative character of
Fp.

This result may be compared with those obtained in [FI] on estimating (0.7) as-
suming the sets A,B have certain extra structure (for instance, assuming A = B is a
large subset of an interval). We also consider the case when B is an interval, in which
case we can obtain a stronger result. (See Theorem 8.)

We believe that this is the first paper exploring the application of recent devel-
opments in combinatorial number theory (for which we especially refer to [TV]) to
the problem of estimating (multiplicative) character sums. (Those developments have
been particularly significant in the context of exponential sums with additive charac-
ters. See [BGK] and subsequent papers.) One could clearly foresee more investigations
along these lines.

The paper is organized as follows. We prove Proposition 1 in §1, Theorem 2 in §2,
Corollary 3 in §3 and Theorem 6 in §4.

Notations. Let * be a binary operation on some ambient set S and let A, B be subsets
of S. Then
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(1) A ∗B := {a ∗ b : a ∈ A and b ∈ B}.
(2) a ∗B := {a} ∗B.

(3) AB := A ∗B, if *=multiplication.

(4) An := AAn−1.

Note that we use An for both the n-fold product set and n-fold Cartesian product
when there is no ambiguity.

(5) [a, b] := {i ∈ Z : a ≤ i ≤ b}.

§1. Multiplicative energy of a box.

Let A,B be subsets of a commutative ring. Recall that the multiplicative energy of
A and B is

E(A,B) =
∣∣∣
{
(a1, a2, b1, b2) ∈ A2 ×B2 : a1b1 = a2b2

}∣∣∣. (1.1)

(See [TV] p.61.)

We will use the following

Fact 1. E(A,B) ≤ E(A,A)1/2E(B,B)1/2.

Proposition 1. Let {ω1, . . . , ωn} be a basis for Fpn over Fp and let B ⊂ Fpn be the
box

B =
{ n∑

j=1

xjωj : xj ∈ [Nj + 1, Nj + Hj ], j = 1, . . . , n

}
,

where 1 ≤ Nj < Nj + Hj < p for all j. Assume that

max
j

Hj <
1
2
(
√

p− 1) (1.2)

Then we have
E(B, B) < Cn(log p) |B|11/4 (1.3)

for an absolute constant C < 2
9
4 .

The argument is an adaptation of [G] and [KS1] with the aid of a result in [KS2].
The structure of B allows us to carry out the argument directly from [KS1] leading to
the same statement as for the case n = 1.

We will use the following estimates from [KS1]. (See also [G].)

Let X, B1, · · · , Bk be subsets of a commutative ring and a, b ∈ X. Then
6



Fact 2. |B1 + · · ·+ Bk| ≤ |X+B1|···|X+Bk|
|X|k−1 .

Fact 3. ∃X ′ ⊂ X with |X ′| > 1
2 |X| and |X ′ + B1 + · · ·+ Bk| ≤ 2k |X+B1|···|X+Bk|

|X|k−1 .

Fact 4. |aX ± bX| ≤ |X+X|2
|aX∩ bX| .

Proof of Proposition 1.

Claim 1. Fp 6⊂ B−B
B−B .

Proof of Claim 1. Take t ∈ Fp ∩ B−B
B−B . Then tΣxjωj = Σyjωj for some xj , yj ∈

[−Hj ,Hj ], where 1 ≤ j ≤ n and Σxjωj 6= 0. Since txj = yj for all j = 1, . . . , n,
choosing i such that xi 6= 0, it follows that

t ∈ [−Hi,Hi]
[−Hi,Hi]\{0} ⊂

[− 1
2 (
√

p− 1), 1
2 (
√

p− 1)]
[− 1

2 (
√

p− 1), 1
2 (
√

p− 1)]\{0} . (1.4)

Since the set (1.4) is of size at most
√

p(
√

p − 1) < p, it cannot contain Fp. This
proves our claim.

We may now repeat verbatim the argument in [KS1], with the additional input of
the multiplicative energy.

Claim 2. There exist b0 ∈ B, A1 ⊂ B and N ∈ Z+ such that

|aB ∩ b0B| ∼ N for all a ∈ A1, (1.5)

N |A1| > E(B, B)
|B| log |B| (1.6)

and
A1 −A1

A1 −A1
+ 1 6= A1 −A1

A1 −A1
. (1.7)

Proof of Claim 2.

F rom (1.1)
E(B, B) =

∑

a,b ∈B

|aB ∩ bB|.

Therefore, there exists b0 ∈ B such that

∑

a∈B

|aB ∩ b0B| ≥ E(B,B)
|B| .
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Let As be the level set

As = {a ∈ B : 2s−1 ≤ |aB ∩ b0B| < 2s}.

Then for some s0 with 1 ≤ s0 ≤ log2 |B| we have

2s0 |As0 | log2 |B| ≥
log2 |B|∑

s=0

2s|As| >
∑

a∈B

|aB ∩ b0B| ≥ E(B,B)
|B| .

(1.5) and (1.6) are obtained by taking A1 = As0 and N = 2s0 .

Next we prove (1.7) by assuming the contrary. By iterating t times, we would have

A1 −A1

A1 −A1
+ t =

A1 −A1

A1 −A1
for t = 0, 1, . . . , p− 1. (1.8)

Since 0 ∈ A1−A1
A1−A1

, (1.8) would imply that Fp ⊂ A1−A1
A1−A1

⊂ B−B
B−B , contradicting Claim 1.

Hence (1.7) holds.

Take c1, c2, d1, d2 ∈ A1, d1 6= d2, such that

ξ =
c1 − c2

d1 − d2
+ 1 6⊂ A1 −A1

A1 −A1
.

It follows that for any subset A′ ⊂ A1, we have

|A′|2 = |A′ + ξA′| = |(d1 − d2)A′ + (d1 − d2)A′ + (c1 − c2)A′|
≤ |(d1 − d2)A′ + (d1 − d2)A1 + (c1 − c2)A1|. (1.9)

In Fact 3, we take X = (d1− d2)A1, B1 = (d1− d2)A1 and B2 = (c1− c2)A1. Then
there exists A′ ⊂ A1 with |A′| = 1

2 |A1| and by (1.9)

|A′|2 ≤ |(d1 − d2)A′ + (d1 − d2)A1 + (c1 − c2)A1|

≤ 22

|A1| |A1 + A1| | (d1 − d2)A1 + (c1 − c2)A1|. (1.10)

Since |A1 + A1| ≤ |B + B| ≤ 2n|B|,

2−2|A1|3 ≤ 2n+2|B| | (d1 − d2)A1 + (c1 − c2)A1|
≤ 2n+2|B| | c1B − c2B + d1B − d2B|. (1.11)
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Facts 2, 4 and (1.5) imply

2−2|A1|3 ≤ 2n+2|B| |B + B|8
N4 |B|3 . (1.12)

Thus
N4|A1|3 ≤ 29n+4|B|6 (1.13)

and recalling (1.6)

E(B, B)4 ≤ (log |B|)4|B|5N4|A1|3 < 29n+4(log p)4|B|11

implying (1.3). ¤

§2. Burgess’ method and the proof of Theorem 2.

The goal of this section is to prove the following theorem.

Theorem 2. Let χ be a nontrivial multiplicative character of Fpn . Given ε > 0, there
is τ > ε2

4 such that if

B =
{ n∑

j=1

xjωj : xj ∈ [Nj + 1, Nj + Hj ] ∩ Z, j = 1, . . . , n

}

is a box satisfying
n

Π
j=1

Hj > p( 2
5+ε)n,

then for p > p(ε) ∣∣∣
∑

x∈B

χ(x)
∣∣∣ ¿n p−τ |B|,

unless n is even and χ|F2 is principal, F2 the subfield of size pn/2, in which case

∣∣∣
∑

x∈B

χ(x)
∣∣∣ ≤ max

ξ

∣∣B ∩ ξF2

∣∣ + On(p−τ |B|).

First we will prove a special case of Theorem 2, assuming some further restriction
on the box B.
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Theorem 2’. Let χ be a nontrivial multiplicative character of Fpn . Given ε > 0,
there is τ > ε2

4 such that if

B =
{ n∑

j=1

xjωj : xj ∈ [Nj + 1, Nj + Hj ], j = 1, . . . , n

}

is a box satisfying
n

Π
j=1

Hj > p( 2
5+ε)n

and also
Hj <

1
2
(
√

p− 1) for all j, (2.1)

then for p > p(ε) ∣∣∣
∑

x∈B

χ(x)
∣∣∣ ¿n p−τ |B|. (2.2)

We will need the following version of Weil’s bound on exponential sums. (See
Theorem 11.23 in [IK])

Theorem W. Let χ be a nontrivial multiplicative character of Fpn of order d > 1.
Suppose f ∈ Fpn [x] has m distinct roots and f is not a d-th power. Then for n ≥ 1
we have ∑

x∈Fpn

χ((f(x)) ≤ (m− 1)p
n
2 .

Proof of Theorem 2’.

By breaking up B in smaller boxes, we may assume

n

Π
j=1

Hj = p( 2
5+ε)n. (2.3)

Let δ > 0 be specified later. Let

I = [1, pδ] (2.4)

and

B0 =
{ n∑

j=1

xjωj : xj ∈ [0, p−2δHj ], j = 1, . . . , n

}
. (2.5)
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Since B0I ⊂
{ ∑n

j=1 xjωj : xj ∈ [0, p−δHj ], j = 1, . . . , n

}
, clearly

∣∣∣
∑

x∈B

χ(x)−
∑

x∈B

χ(x + yz)
∣∣∣ < |B\(B + yz)|+ |(B + yz)\B| < 2np−δ|B|

for y ∈ B0, z ∈ I. Hence

∑

x∈B

χ(x) =
1

|B0| |I|
∑

x∈B,y∈B0,z∈I

χ(x + yz) + O
(
np−δ|B|). (2.6)

Estimate
∣∣∣

∑

x∈B,y∈B0,z∈I

χ(x + yz)
∣∣∣ ≤

∑

x∈B,y∈B0

∣∣ ∑

z∈I

χ(x + yz)
∣∣

=
∑

x∈B,y∈B0

∣∣ ∑

z∈I

χ(xy−1 + z)
∣∣

=
∑

u∈Fpn

w(u)
∣∣ ∑

z∈I

χ(u + z)
∣∣, (2.7)

where
ω(u) =

∣∣∣
{

(x, y) ∈ B ×B0 :
x

y
= u

}∣∣∣. (2.8)

Observe that
∑

e∈Fpn

ω(u)2 = |{(x1, x2, y1, y2) ∈ B ×B ×B0 ×B0 : x1y2 = x2y1}|

=
∑

ν

∣∣{(x1, x2) :
x1

x2
= ν}

∣∣ ∣∣{(y1, y2) :
y1

y2
= ν}

∣∣

≤ E(B, B)
1
2 E(B0, B0)

1
2

< 2
9
4 n+1(log p)|B| 118 |B0| 118

< 2
9
4 n+1(log p)

(
|B|

) 11
4

p−
11
4 nδ, (2.9)

by the Cauchy-Schwarz inequality, Proposition 1 and (2.5).

Let r be the nearest integer to n
ε . Hence

∣∣∣r − n

ε

∣∣∣ ≤ 1
2
. (2.10)
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By Hölder’s inequality, (2.7) is bounded by

( ∑

u∈Fpn

ω(u)
2r

2r−1

)1− 1
2r

( ∑

u∈Fpn

∣∣ ∑

z∈I

χ(u + z)
∣∣2r

) 1
2r

. (2.11)

Since
∑

ω(u) = |B0| · |B| and (2.9) holds, we have

( ∑
u

ω(u)
2r

2r−1

)1− 1
2r ≤

[∑
ω(u)

]1− 1
r
[ ∑

ω(u)2
] 1

2r

<2( 9
4 n+1) 1

2r

(
|B0| · |B|

)1− 1
r
(
|B|

) 11
8r

(log p) p−
11
8

n
r δ.

(2.12)

The first inequality follows from the following fact, which is proved by using Hölder’s
inequality with 2r−2

2r−1 + 1
2r−1 = 1.

Fact 5. (
∑
u

f(u)
2r

2r−1 )1−
1
2r ≤ [

∑
f(u)]1−

1
r [

∑
f(u)2]

1
2r .

Proof. Write f(u)
2r

2r−1 = f(u)
2r−2
2r−1 f(u)

2
2r−1 . ¤

Next, we bound the second factor of (2.11).

Let
q = pn.

Write
∑

u∈Fpn

|
∑

z∈I

χ(u+z)|2r ≤
∑

z1,... ,z2r∈I

|
∑

u∈Fq

χ((u+z1) . . . (u+zr)(u+zr+1)q−2 . . . (u+z2r)q−2)|.

(2.13)

For z1, . . . , z2r ∈ I such that at least one of the elements is not repeated twice,
the polynomial fz1,... ,z2r (x) = (x + z1) . . . (x + zr)(x + zr+1)q−2 . . . (x + z2r)q−2 clearly
cannot be a d-th power. Since fz1,... ,z2r (x) has no more that 2r many distinct roots,
Theorem W gives

∣∣∣
∑

u∈Fq

χ((u + z1) . . . (u + zr)(u + zr+1)q−2 . . . (u + z2r)q−2)
∣∣∣ < 2rp

n
2 . (2.14)

For those z1, . . . , z2r ∈ I such that every root of fz1,... ,z2r (x) appears at least twice,
we bound

∑ | ∑
u∈Fq

χ(fz1,... ,z2r (u))| by |Fq| times the number of such z1, . . . , z2r. Since
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there are at most r roots in I and for each z1, . . . , z2r there are at most r choices, we
obtain a bound |I|rr2rpn.

Therefore ∑

u∈Fpn

∣∣ ∑

z∈I

χ(u + z)
∣∣2r

< |I|rr2rpn + 2r|I|2rp
n
2 (2.15)

and ( ∑

u∈Fpn

∣∣ ∑

z∈I

χ(u + z)
∣∣2r

) 1
2r ≤ r|I| 12 p

n
2r + 2|I|p n

4r . (2.16)

Putting (2.7), (2.11), (2.12) and (2.16) together, we have

1
|B0| |I|

∑

x∈B,y∈B0,z∈I

χ(x + yz)

<4
n
r (log p)

(
|B0| |B|

)− 1
r
(
|B|

)1+ 11
8r

p−
11
8

n
r δ

(
r|I|− 1

2 p
n
2r + 2p

n
4r

)

<4
n
r (log p) p

1
r 2nδ− 11

8
n
r δ

(
|B|

)1− 5
8r

(
rp

−δ
2 p

n
2r + 2p

n
4r

)

<4
n
r (log p) 2rp

n
4r +2δ n

r− 5
8r ( 2

5+ε)n|B|
<2 · 4n

r (log p) r|B|p− 5
8

n
r (ε−δ). (2.17)

The second to the last inequality holds because of (2.3) and assuming δ ≥ n/2r.

Let
δ =

n

2r
. (2.18)

To bound the exponent 5
8

n
r (ε− δ) = 5

16ε2 n
rε (2− n

rε ), we let

θ =
n

εr
− 1.

Then by (2.10),

|θ| < 1
2r

<
ε

2n− ε
<

3
(10n− 3)

≤ 3
7

and
5
8

n

r
(ε− δ) =

5
16

ε2(1 + θ)(1− θ) >
25
98

ε2.

Returning to (2.6), we have
∣∣∣
∑

x∈B

χ(x)
∣∣∣ < cnε−1(log p)p−

25
98 ε2 |B| < np−

ε2
4 |B| (2.19)
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and thus proves Theorem 2’. ¤

Our next aim is to remove the additional hypothesis (2.1) on the shape of B. We
proceed in several steps and rely essentially on a further key ingredient provided by a
result of Nick Katz.

First we make the following observation (extending slightly the range of the appli-
cability of Theorem 2’).

Let H1 ≥ H2 ≥ · · · ≥ Hn. If H1 ≤ p
1
2+ ε

2 , we may clearly write B as a disjoint
union of boxes Bα ⊂ B satisfying the first condition in (2.1) and |Bα| > ( 1

2p−
ε
2 )n|B| >

2−np( 2
5+ ε

2 )n. Since (2.1) holds for each Bα, we have

∣∣∣
∑

x∈Bα

χ(x)
∣∣∣ < cnp−τ |Bα|.

Hence ∣∣∣
∑

x∈B

χ(x)
∣∣∣ < cnp−τ |B|.

Therefore we may assume that H1 > p
1
2+ ε

2 .

Next we recall some results of Nick Katz.

Proposition K1. ([K1]) Let χ be a nontrivial multiplicative character of Fq and let
g ∈ Fq be a generating element, i.e. Fq = Fp(g). Then

∣∣ ∑

t∈Fp

χ(g + t)
∣∣ ≤ (n− 1)

√
p (2.21)

It was pointed out by N. Katz that a similar result remains valid when an extra
additive character appears.

Proposition K2. ([K2]) Under the same assumption as Proposition K1. We have

max
a

∣∣ ∑

t∈Fp

ep(at) χ(g + t)
∣∣ ≤ c(n)

√
p. (2.22)

Following a standard argument, we may restate Proposition K2 for incomplete sums.
14



Proposition K3. Under the same assumption as Proposition K1. For any integral
interval I ⊂ [1, p], ∣∣ ∑

t∈I

χ(g + t)
∣∣ ≤ c(n)

√
p log p (2.23)

Note that (2.23) is nontrivial as soon as |I| À √
p log p.

Proof of Proposition K3. Let II be the indicator function of I. Write II(t) =∑
a ÎI(a)ep(at). Then

∑
a |ÎI(a)| ≤ c log p. Hence

∣∣ ∑

t∈I

χ(g + t)
∣∣ ≤

∣∣∣
∑

a

|ÎI(a)|
∑

t∈Fp

χ(g + t)ep(at)
∣∣∣ ≤ c(n)

√
p log p

by Proposition K2. ¤

Proof of Theorem 2.

Case 1. n is odd.

We denote Ii = [Ni + 1, Ni + Hi] and estimate using (2.23)

∣∣∣
∑

x∈B

χ(x)
∣∣∣ =

∣∣∣∣
∑

xi∈Ii
2≤i≤n

∑

x1∈I1

χ
(
x1+x2

ω2

ω1
+· · ·+xn

ωn

ω1

)∣∣∣∣ ≤ c(n)p
1
2 log p

|B|
H1

+(∗), (2.24)

where

(∗) =
∣∣∣∣

∑

x1∈I1

∑

(x2,... ,xn)∈D

χ
(
x1 + x2

ω2

ω1
+ · · ·+ xn

ωn

ω1

)∣∣∣∣ (2.25)

and
D =

{
(x2, . . . , xn) ∈ I2 × · · · × In : Fp

(
x2

ω2

ω1
+ · · ·+ xn

ωn

ω1

)
6= Fq

}
.

In particular,

(∗) ≤ p |D| ≤ p
∑

G

∣∣∣G
⋂

SpanFp
(ω2

ω1
, . . . ,

ωn

ω1

)∣∣∣,

where G runs over nontrivial subfields of Fq. Since q = pn and n is odd, obviously
[Fq : G] ≥ 3. Hence [G : Fp] ≤ n

3 . Furthermore, since {ω1, . . . , ωn} is a basis of Fq

over Fp, 1 6∈ SpanFp (ω2
ω1

, . . . , ωn

ω1
) and the proceeding implies that

dimFp

(
G

⋂
SpanFp

(ω2

ω1
, . . . ,

ωn

ω1

))
≤ n

3
− 1. (2.26)
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Therefore, under our assumption on |H1|, back to (2.24)

∣∣∣
∑

x∈B

χ(x)
∣∣∣ <c(n)

(
(log p)p−

ε
2 |B|+ p

n
3

)

<
(
c(n)(log p)p−

ε
2 + p−

n
13

)
|B|,

since |B| > p
2
5 n. This proves our claim.

We now treat the case when n is even. The analysis leading to the second part of
Theorem 2 was kindly communicated by Andrew Granville to the author.

Case 2. n is even.

In view of the earlier discussion, our only concern is to bound

(∗2) =
∣∣∣∣

∑

x1∈I1

∑

(x2,... ,xn)∈D2

χ
(
x1 + x2

ω2

ω1
+ · · ·+ xn

ωn

ω1

)∣∣∣∣ (2.27)

with

D2 =
{

(x2, . . . , xn) ∈ I2 × · · · × In :
(
x2

ω2

ω1
+ · · ·+ xn

ωn

ω1

)
∈ F2

}
(2.28)

and F2 the subfield of size pn/2.

First, we note that since 1, ω2
ω1

, . . . , ωn

ω1
are independent, ωj

ω1
∈ F2 for at most n

2 − 1
many j’s. After reordering, we may assume that ωj

ω1
∈ F2 for 2 ≤ j ≤ k and ωj

ω1
6∈ F2 for

k+1 ≤ j ≤ n, where k ≤ n
2 . We also assume that Hk+1 ≤ . . . ≤ Hn. Fix x2, . . . , xn−1.

Obviously there is no more than one value of xn such that x2
ω2
ω1

+ · · · + xn
ωn

ω1
∈ F2,

since otherwise (xn − x′n)ωn

ω1
∈ F2 with xn 6= x′n contradicting the fact that ωn

ω1
6∈ F2.

Therefore,
|D2| ≤ |I2| · · · |In−1| (2.29)

and

(∗2) ≤ |B|
Hn

. (2.30)

If Hn > pτ , we are done. Otherwise

Hk+1 · · ·Hn ≤ p(n−k)τ . (2.31)
16



Define
B2 =

{
x1 + x2

ω2

ω1
+ · · ·+ xk

ωk

ω1
: xi ∈ Ii, 1 ≤ i ≤ k

}
.

Hence B2 ⊂ F2 and by (2.31)

|B2| > |B|
Hk+1 · · ·Hn

> p( 2
5− τ

2 )n > p
n
3 . (2.32)

(We can assume τ < 2
15 .)

Clearly, if (x2, . . . , xn) ∈ D2, then z = xk+1
ωk+1
ω1

+ · · · + xn
ωn

ω1
∈ F2. Assume χ|F2

non-principal, it follows from the generalized Polya-Vinogradov inequality (proved as
that of Proposition K3) and (2.32 ) that∣∣∣∣

∑

y∈B2

χ(y + z)
∣∣∣∣ ≤ (log p)

n
2 max

ψ

∣∣∣∣
∑

x∈F2

ψ(x)χ(x)
∣∣∣∣ ≤ (log p)

n
2 · |F2| 12 ≤ p−

n
13 |B2|, (2.33)

where ψ runs over all additive characters. Therefore, clearly

(∗2) ≤ Hk+1 · · ·Hnp−
n
13 |B2| = p−

n
13 |B| (2.34)

providing the required estimate.

If χ|F2 is principal, then obviously

(∗2) = H1 · |D2| =
∣∣∣F2 ∩ 1

ω
B

∣∣∣ (2.35)

and ∣∣∣
∑

x∈B

χ(x)
∣∣∣ =

∣∣F2 ∩B
∣∣ + On(p−τ |B|). (2.36)

This complete the proof of Theorem 2. ¤

Remark 2.1. The conclusion of Theorem 2 certainly holds, if we replace the assump-
tion of

n

Π
j=1

Hj > p( 2
5+ε)n by the stronger assumption

p
2
5+ε < Hj for all j. (2.37)

This improves on Theorem 2 of [DL] for n > 4. In [DL], the condition Hj > p
n

2(n+1)+ε

is required. Our assumption (2.37) is independent of n, while, in the [DL] result, when
n goes to ∞, the exponent n

2(n+1) goes to 1
2 .

§3. Distribution of primitive roots.

Theorem 2 allows us to evaluate the number of primitive roots of Fpn that fall into
B.

We denote the Euler function by φ.
17



Corollary 3. Let B ⊂ Fpn be as in Theorem 2 and satisfying maxξ

∣∣B∩ξF2

∣∣ < p−ε|B|
if n even. The number of primitive roots of Fpn belonging to B is

ϕ(pn − 1)
pn − 1

|B|(1 + o(p−τ ′)) (3.1)

where τ ′ = τ ′(ε) > 0 and assuming n ¿ log log p.

The deduction from Theorem 2 follows the argument of Burgess [Bu2]. We include
it here for the readers’ convenience.

Proof. Let p1, . . . , ps be all the distinct primes of pn − 1 and let Hpi < F∗pn be the
subgroup of order |Hpi

| = pn−1
pi

. Then α is a primitive root of Fpn if and only if∏
(1− IHpi

(α)) = 1, where IH is the indicator function of H.

Let
m = p1 · · · ps.

Then
∏

(1− IHpi
) =

∑

r≥0

(−1)r
∑

i1<···<ir

IHpi1
∩···∩Hpir

=
∑

d|pn−1

µ(d) IHd

=
∑

d|m
µ(d) IHd

.

Here µ is the Möbius function. (Recall that µ(d) = (−1)r, if d is the product of r
distinct primes, µ(d) = 0 otherwise.)

Observe that
IHd

=
1
d

∑

χd=1

χ =
1
d

∑

d1|d

∑

χ∈Ed1

χ,

where χ is a multiplicative character and Ed1 = {χ : ord(χ) = d1}.
Then

∑

d|m
µ(d)

(1
d

∑

d1|d

∑

χ∈Ed1

χ
)

=
∑

d1|m

µ(d1)
d1

( ∑

χ∈Ed1

χ
)( ∑

r| m
d1

µ(r)
r

)

=
φ(pn − 1)

pn − 1

∑

d1|m

µ(d1)
φ(d1)

( ∑

χ∈Ed1

χ
)

=
φ(pn − 1)

pn − 1

∑

d1|pn−1

µ(d1)
φ(d1)

( ∑

χ∈Ed1

χ
)
.

18



The second identity is because

∑

r| m
d1

µ(r)
r

=
∏

pi| m
d1

(
1− 1

pi

)
=

φ( m
d1

)
m
d1

=
d1

φ(d1)
φ(pn − 1)

pn − 1
.

Let k be the number of primitive roots of Fpn in the box B. Then

k =
φ(pn − 1)

pn − 1

∑

a∈B

∑

d|pn−1

µ(d)
φ(d)

( ∑

χ∈Ed

χ(a)
)

=
φ(pn − 1)

pn − 1

(
|B|+

∑

d|pn−1
d>1

µ(d)
φ(d)

( ∑

χ∈Ed

∑

a∈B

χ(a)
))

.

Hence, by Theorem 2,
∣∣∣k − φ(pn − 1)

pn − 1
|B|

∣∣∣ <
φ(pn − 1)

pn − 1

∑

d|pn−1
d>1

1
φ(d)

φ(d)p−τ |B|

<
φ(pn − 1)

pn − 1
exp

( log pn

log log pn

)
p−τ |B|. ¤

Remark 3.1. In the case of a prime field (n = 1), Burgess theorem (see [Bu1])
requires the assumption H > p

1
4+ε, for some ε > 0, which seems to be the limit of

this method. For n > 1, the exact counterpart of Burgess’ estimate seems unknown
in the generality of an arbitrary basis ω1, . . . , ωn of Fpn over Fp, as considered in [DL]
and here. Higher dimensional results of the strength of Burgess seem only known for
certain special basis (see [Bu3] when n = 2 and basis of the form ωj = gj with given
g generating Fpn , see [Bu4] and [Kar]).

§4. Some further implications of the method.

In what follows, we only consider for simplicity the case of a prime field (several
statements below have variants over a general finite field, possibly with worse expo-
nents).

4.1. Recall that a generalized d-dimensional arithmetic progression in Fp is a set of
the form

P = a0 +
{ d∑

j=1

xjaj : xj ∈ [0, Nj − 1]
}

(4.1)
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for some elements a0, a1, . . . , ad ∈ Fp. If the representation of elements of P in (4.1)
is unique, we call P proper. Hence P is proper if and only if |P| = N1 · · ·Nd (which
we assume in the sequel).

Assume |P| < 10−d√p, hence Fp 6= P−P
P−P (in the considerations below, |P| ¿ p1/2 so

that there is no need to consider the alternative |P| À p1/2). Following the argument
in [KS1] (or the proof of Proposition 1), we have

E(P,P) < cd(log p)|P|11/4. (4.2)

Also, repeating the proof of Theorem 2, we obtain

Theorem 4. Let P be a proper d-dimensional generalized arithmetic progression in
Fp with

|P| > p2/5+ε (4.3)

for some ε > 0. If X is a nontrivial multiplicative character of Fp, we have
∣∣∣
∑

x∈P
X (x)

∣∣∣ < p−τ |P| (4.4)

where τ = τ(ε, d) > 0 and assuming p > p(ε, d).

Theorem 4 is another extension of Burgess’ inequality. A natural problem is to try
to improve the exponent 2

5 in (4.3) to 1
4 .

Let us point out one consequence of Theorem 4 which gives an improvement of a
result in [HIS]. (See [HIS], Corollary 1.3.)

Corollary 5. Given C > 0 and ε > 0, there is a constant c = c(C, ε) > 0 and a
positive integer k < k(ε), such that if A ⊂ Fp satisfies

(i) |A + A| < C|A|
(ii) |A| > p

2
5+ε.

Then we have
|Ak| > cp.

Proof.

According to Freiman’s structural theorem for sets with small doubling constants
(see [TV]), under assumption (i), there is a proper generalized d-dimensional progres-
sion P such that A ⊂ P and
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d ≤ C (4.5)

log
|P|
|A| < C2(log C)3 (4.6)

By assumption (ii), Theorem 4 applies to P. Let τ be as given in Theorem 4. We
fix

k ∈ Z+, k >
1
τ

. (4.7)

(Hence k > k(ε).) Denote by ν the probability measure on Fp obtained as the image
measure of the normalized counting measure on the k-fold product Pk under the
product map

P × · · · × P −→ Fp

(x1, . . . , xk) 7−→ x1 . . . xk.

Hence by the Fourier inversion formula, we have

ν(x) =
1

p− 1

∑
χ

χ(x)ν̂(χ)

=
1

p− 1

∑
χ

χ(x)
(∑

t

ν(t)χ(t)
)

=
|P|−k

p− 1

∑
χ

χ(x)
( ∑

y∈P
χ̄(y)

)k

≤ |P|−k

p− 1

∑
χ

∣∣∣
∑

y∈P
χ(y)

∣∣∣
k

,

χ denoting a multiplicative character.

Applying the circle method and (4.4), we get

max
x∈F∗p

ν(x) ≤ 1
p− 1

+ max
χ nontrivial

|P|−k
∣∣∣
∑

x∈P
χ(x)

∣∣∣
k

<
1

p− 1
+ p−τk

<
2
p
. (4.8)
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The last inequality is by (4.7). Assuming A ⊂ F∗p, we write

|A|k ≤ |Ak| max
x∈F∗p

∣∣{(x1, . . . , xk) ∈ A× · · · ×A : x1 . . . xk = x}∣∣

≤ |Ak| |P|k max
x∈F∗p

ν(x)

implying by (4.6) and (4.8)

|Ak| >
( |A|
|P|

)k p

2
>

p

2
exp

(− kC2(log C)3
)

> c(C, ε)p.

This proves Corollary 5. ¤

4.2. Recall the well-known Paley Graph conjecture stating that if A,B ⊂ Fp, |A| >
pε, |B| > pε, then ∣∣∣

∑

x∈A,y∈B

χ(x + y)
∣∣∣ < p−δ|A| |B| (4.9)

where δ = δ(ε) > 0 and χ a nontrivial multiplicative character.

An affirmative answer is only known in the case |A| > p
1
2+ε, |B| > pε for some

ε > 0
(
as a consequence of Weil’s inequality (2.14)

)
. Even for |A| > p1/2, |B| > p1/2,

an inequality of the form (4.9) seems unknown.

Next result provides a statement of this type, assuming A or B has a small doubling
constant.

Theorem 6. Assume A,B ⊂ Fp such that

(a) |A| > p
4
9+ε, |B| > p

4
9+ε

(b) |B + B| < K|B|.
Then ∣∣∣

∑

x∈A,y∈B

χ(x + y)
∣∣∣ < p−τ |A| |B|,

where τ = τ(ε, K) > 0, p > p(ε,K) and χ is a nontrivial multiplicative character of
Fp.

Proof.

The argument is a variant of the proof of Theorem 2, so we will be brief. The case
|B| > p

1
2+ε is taken care of by Weil’s estimate (2.14). Since we can dissect B into ≤ pε
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subsets satisfying assumptions (a) and (b), we may assume that |B| < 1
2 (
√

p− 1). We
denote the various constants

(
possibly depending on the constant K in assumption

(b)
)

by C.

Let B1 be a generalized d-dimensional proper arithmetic progression in Fp satisfying
B ⊂ B1 and

d ≤ K (4.10)

log
|B1|
|B| < C. (4.11)

Let
B2 = (−B1) ∪ B1.

We take

δ =
ε

4d
, r =

[
10
δ

]
. (4.12)

Similar to the proof of Theorem 2, we take a proper progression B0 ⊂ B2 ⊂ Fp and an
integral interval I = [1, pδ] with the following properties

|B0| > p−2dδ|B2|

B − B0I ⊂ B2. (4.13)

Therefore,
|B| ≤ |B1| ≤ eC(K)|B| and |B2| = 2|B1| − 1. (4.14)

Estimate ∣∣∣
∑

x∈A,y∈B

χ(x + y)
∣∣∣ ≤

∑

y∈B

∣∣∣
∑

x∈A

χ(x + y)
∣∣∣

≤|B0|−1|I|−1
∑

y∈B2
z∈B0,t∈I

∣∣∣
∑

x∈A

χ(x + y + zt)
∣∣∣. (4.15)

The second inequality is by (4.13). Write

∑

y∈B2
z∈B0,t∈I

∣∣∣
∑

x∈A

χ(x + y + zt)
∣∣∣ ≤ (|B2| |B0| |I|) 1

2

∣∣∣∣
∑

y∈B2,z∈B0,t∈I
x1,x2∈A

χ
( (x1 + y)z−1 + t

(x2 + y)z−1 + t

)∣∣∣∣
1
2

.

(4.16)
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The sum on the right-hand side of (4.16) equals
∣∣∣

∑

u1,u2∈Fp

ν(u1, u2)
∑

t∈I

χ
(u1 + t

u2 + t

)∣∣∣

≤
[ ∑

u1,u2

ν(u1, u2)
2r

2r−1

]1− 1
2r

[ ∑
u1,u2

∣∣∣
∑

t∈I

χ
(u1 + t

u2 + t

)∣∣∣
2r

] 1
2r

(4.17)

where for (u1, u2) ∈ F2
p we define

ν(u1, u2) = |{(x1, x2, y, z) ∈ A×A×B2×B0 :
x1 + y

z
= u1 and

x2 + y

z
= u2}|. (4.18)

Hence ∑
u1,u2

v(u1, u2) = |A|2|B2| |B0| (4.19)

and ∑
u1,u2

ν(u1, u2)2

=
∣∣∣{(x1, x2, x

′
1, x

′
2, y, y′, z, z′) ∈ A4 × B2

2 × B2
0 :

xi + y

z
=

x′i + y′

z′
for i = 1, 2}

∣∣∣

≤ |A|3 max
x1,x′1

∣∣∣
{

(y, y′, z, z′) ∈ B2
2 × B2

0 :
x1 + y

z
=

x′1 + y′

z′

}∣∣∣

≤ |A|3E(B0,B0)
1
2 max

x
E(x + B2, x + B2)

1
2

< |A|3 log p |B0| 118 |B2| 118
< C|A|3 |B2| 114 (4.20)

by Proposition 1, Fact 1 and several applications of the Cauchy-Schwarz inequality.
Therefore, by Fact 5 (after (2.12)), (4,19) and (4.20) , the first factor of (4.17) is
bounded by

[∑
ν(u1, u2)

]1− 1
r
[∑

ν(u1, u2)2
] 1

2r

≤C|A|2|B2| |B0|(|A|− 1
2 |B2|− 5

8 p2dδ
) 1

r

. (4.21)

Next, write using Weil’s inequality (2.14)
∑

u1,u2∈Fp

∣∣∣
∑

t∈I

χ
(u1 + t

u2 + t

)∣∣∣
2r

≤
∑

t1,... ,t2r∈I

∣∣∣
∑

u∈Fp

χ
( (u + t1) · · · (u + tr)

(u + tr+1) · · · (u + t2r)

∣∣∣
2

≤ p2 |I|r r2r + Cr2p |I|2r, (4.22)
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so that the second factor in (4.17) is bounded by

Crp
1
r |I| 12 + Cp

1
2r |I|. (4.23)

Applying (4.14) and collecting estimates (4.16), (4.17), (4.21), (4.23) and assumption
(a), we bound (4.15) by

∣∣∣
∑

x∈A,y∈B

χ(x + y)
∣∣∣ < C|A| |B| |I|− 1

2 (|A|− 1
2 |B|− 5

8 p2dδ)
1
2r (
√

r p
1
2r |I| 14 + p

1
4r |I| 12 )

< C
√

r |A| |B| (p−( 4
9+ε) 9

8+2dδ)
1
2r (p

1
2r− δ

4 + p
1
4r )

< C
√

r |A| |B| (p 1
2− 9

8 ε+2dδ− δ
2 r + p−

9
8 ε+2dδ)

1
2r . (4.24)

Recall (4.12). The theorem follows by taking τ(ε) = ε2

128K ¤.

Next, we consider the special case A ⊂ Fp and I ⊂ Fp an interval. First, we begin
with the following technical lemma.

Lemma 7. Let A ⊂ F∗p and let I1, . . . , Is be intervals such that Ii ⊂ [1, p
1

ki ]. Denote

w(u) =
∣∣∣
{
(y, z1, . . . , zs) ∈ A× I1 × · · · × Is : y ≡ uz1 . . . zs (mod p)

}∣∣∣ (4.25)

and
γ =

1
k1

+ · · ·+ 1
ks

. (4.26)

Then ∑
w(u)2 < |A|1+γpγ+ s

log log p .

Proof. Using multiplicative characters and Plancherel, we have

∑
w(u)2 =

1
p− 1

∑
χ

〈w,χ〉2, (4.27)

where
〈w,χ〉 =

∑
w(u)χ(u) =

∑

y∈A
zi∈Ii

χ(y)χ(z1) . . . χ(zs).

Hence ∣∣〈w, χ〉∣∣ =
∣∣∣
∑

y∈A

χ(y)
∣∣∣

∏

i

∣∣∣
∑

zi∈Ii

χ(zi)
∣∣∣.
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Using generalized Hölder inequality with 1 = (1− γ) + 1
k1

+ · · ·+ 1
ks

, we have

∑
w(u)2 =

1
p− 1

∑
χ

∣∣∣
∑

y∈A

χ(y)
∣∣∣
2 ∏

i

∣∣∣
∑

zi∈Ii

χ(zi)
∣∣∣
2

≤ 1
p− 1

( ∑
χ

∣∣∣
∑

y∈A

χ(y)
∣∣∣

2
1−γ

)1−γ ∏

i

( ∑
χ

∣∣∣
∑

zi∈Ii

χ(zi)
∣∣∣
2ki

) 1
ki

.
(4.28)

Now we estimate different factors. Writing the exponent as 2
1−γ = 2γ

1−γ + 2 and
using the trivial bound, we have

∑
χ

∣∣∣
∑

y∈A

χ(y)
∣∣∣

2
1−γ ≤ |A| 2γ

1−γ

∑
χ

∣∣∣
∑

y∈A

χ(y)
∣∣∣
2

= |A| 2γ
1−γ

∑

y,z∈A

∑
χ

χ(yz−1) = p|A| 1+γ
1−γ .

(4.29)
For an interval I ⊂ [1, p

1
k ], we define

η(u) =
∣∣∣{(z1, . . . , zk) ∈ I × · · · × I : z1 . . . zk ≡ u (mod p)}

∣∣∣.

Since z1 . . . zk ≡ z′1 . . . z′k (mod p) implies z1 . . . zk = z′1 . . . z′k in Z, η(u) <
(
exp( log p

log log p )
)k.

On the other hand
∑

η(u) < (p
1
k )k = p. Therefore,

∑
χ

∣∣∣
∑

z∈I

χ(z)
∣∣∣
2k

=
∑

χ

( ∑
u

η(u)χ(u)
)2

=
∑

χ

〈η, χ〉2 = (p− 1)
∑

η(u)2 < p2+ k
log log p .

(4.30)

Putting (4.28)-(4.30) together, we have the lemma. ¤

Theorem 8. Let A ⊂ Fp be a subset with |A| = pα and let I ⊂ [1, p] be an arbitrary
interval with |I| = pβ, where

α(1− β) + β >
1
2

+ δ (4.31)

and β > δ > 0. Then for a non-principal multiplicative character χ, we have
∣∣∣
∑

x∈I
y∈A

χ(x + y)
∣∣∣ < p−

δ2
13 |A| |I|.

Proof. Let

τ =
δ

6
(4.32)
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and
R =

⌈ 1
2τ

⌉
. (4.33)

Choose k1, . . . , ks ∈ Z+ such that

2τ < β −
∑

i

1
ki

< 3τ. (4.34)

Denote
I0 =

[
1, pτ

]
, Ii =

[
1, p

1
ki

]
(1 ≤ i ≤ s).

We perform the Burgess amplification as follows. First, for any z0 ∈ I0, . . . , zs ∈ Is,
∑

x∈I
y∈A

χ(x + y) =
∑

x∈I
y∈A

χ(x + y + z0z1 . . . zs) + O(|A|pβ−τ ).

Letting γ =
∑

i
1
ki

, we have
∣∣∣
∑

x∈I
y∈A

χ(x + y + z0z1 . . . zs)
∣∣∣ = p−γ−τ

∣∣∣
∑

x∈I, y∈A
z0∈I0,... ,zs∈Is

χ(x + y + z0z1 . . . zs)
∣∣∣

≤ p−γ−τ
∑

x∈I, y∈A
z1∈I1,... ,zs∈Is

∣∣∣
∑

z0∈I0

χ(x + y + z0z1 . . . zs)
∣∣∣

≤ pβ−γ−τ max
x∈I

∑

y∈A
z1∈I1,... ,zs∈Is

∣∣∣∣
∑

z0∈I0

χ
( x + y

z1 . . . zs
+ z0

)∣∣∣∣.
(4.35)

Fix x ∈ I achieving maximum in (4.35), and replace A by A1 = A + x. Denote
w(u) the function (4.25) with A replaced by A1. Hence (4.35) is

pβ−γ−τ
∑

u

w(u)
∣∣∣
∑

z∈I0

χ(u + z)
∣∣∣. (4.36)

By (4.36), Hölder inequality, Fact 5 and Weil estimate
(
cf (2.16)

)
, (4.35) is bounded

by

pβ−γ−τ
( ∑

u

w(u)
2R

2R−1

)1− 1
2R

( ∑
u

∣∣∣
∑

z∈I0

χ(u + z)
∣∣∣
2R

) 1
2R

≤pβ−γ−τ
[∑

w(u)
]1− 1

R
[∑

w(u)2
] 1

2R
(
R|I0| 12 p

1
2R + 2|I0|p 1

4R

)

¿pα+β− 1
2R (δ−3τ− 1

log log p ) < |A||I|p− δ2
13 .
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In the last inequalities, we use |∑w(u)| = |A|pγ , (4.31)-(4.34) and Lemma 7. ¤
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