EXPLICIT SUM-PRODUCT THEOREMS
FOR LARGE SUBSETS OF [,

MEI-CHU CHANG

Abstract. In this note, we use ‘classical’ methods to obtain sum-product theorems for
subsets A C F,.

Let A be a subset of a ring. The sum set and the product set of A are
A+ A=2A={a+b:a€ A and b e A}

and
AA=A?={ab:ac A, and b€ A},

respectively.
Theorem 1. Let A C IF;. Then

2 > - 2

The following corollary is obvious. It improves on earlier results [HIS], [V], and also
slightly on [G].
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Corollary 2. Let A CF;. Then

max (|A + A],|A4]) > %min <(%)”g, <|%|>1/3>\A]. @)

Theorem 3. Let A C IF;. Then

1 . AP
AP 14+ 4] 2 min (B5 - 1aP?). Q

Note that Theorem 3 gives another proof of Corollary 2.

Combining Theorem 1 and Theorem 3, we have

Corollary 4. Let A CF;. Then

1 C (AM3 p—1N\2/3 9
> —— .
A+ A 144] 2 mm< a7 ( a ) |A] (4)

Proof of Theorem 1.
Denote e, (£) = 7%/,
Let f,g:F, — R be functions. We define the following terms
() (&) = Xper, f@)ep(—2f),
(b.) fxg(x)=2yer, @ —1y)g(y).
Then the following are easy to verify:
(c.) f&) =23 ecr F(&)ep(f),
(d.) Fxg(6) = F(©)(6),

() Yeew, IF(OF = 5 Xoer, ()]

For a set S C F,, let Ig be the indicator function of S. Let —S = {—s: s € S}.
Then

(£) T_s(€) = TIs(€).
(g.) Is(0) = |S].




It follows from the Cauchy-Schwarz inequality and change of variables that we have

|A|2:ZZHA ]IQA u+y)

uclF, yc A

=) La(v—y) La(v)

veF, yeA

<A+ AR (Y -y’
v yeA

:]A+A|%< Z ]IA>|<]I_A(y1—y2))E (5)
Yy1,Y2€A

Therefore, there exists y € A such that

ZHA*]I Alv—y) > Al (6)
B A+ Al
vEA

Next, we look at

Z]IA*I[ Alv—v) ]IA2(UZ)>ﬂ. (7)

- ~ A+ A
vEA
z€A

After change of variables and the Cauchy-Schwarz inequality, the left-hand side of (7)
is bounded by

> LarIoa(S —y) Le() < |AA|%( > (Y1 —y))Z)%.

z€F, x€F, z€A
z€EA

Hence
|A[®

Z Z <]1A*H A) ;—y) <]IA*]I_A>(,2£_y)Z|A+A|2|AA|' (8)

z€F, z1,22€A 2

We write the Fourier expansion of T4 1 _ 4.

(s1-a)@ = > 3 [T enle).

S
3



Hence

(HA * 1 —A) (f —y) = ]13 Z | H//\x(zf)’2 ep(—28y)e,(§x)

£€ly
and
Z (HA * 1 —A) (j—l —y) (HA * 1 —A) (% —y) < ]10 Z | ﬂ(zlf)‘z | H/Z(sz)ﬁ- 9)
T &gk,
It follows from (8) and (9) that
A 8
Z Z|HA %18)] ‘]IA 225)| ]A+|A||2 A4 (10)

Zl zo€A E€F,

Hence, there exists z; € A such that

A"
A+ A2 [AA] = Z > Lol [ Lol

z€A &€l

EIESHAmﬁ | Ta(z6)". (11)

zEA fEIF*

The second term in (11) is at most
—Z Z’hzﬁ ‘HAZ§|
P lcF, éer:

Making a change of variables z — % and using Parseval identity, we get

(X1 T@oF) (X ITEF) = 3 (14l - 147) pldl. (12)

E€F z€F,

Combining (11) and (12), we have

AT AP

2 p—
ATATTAA S AP 14D, (13)

which implies (1). d

Proof of Theorem 3.



We denote the multiplicative convolution of f and g by

(f©g)(x foyl

One can easily write down the multiplicative versions of (a)-(g).

The starting argument is similar to that of Theorem 1, so we will be brief.

|A‘2:ZZHA ]IA2 uy

u€lf, yeA
=3 P L) Ll
velF, ycA
1
<aai( Y neLad)’ (14)
Y1,Yy2€A Y2

Therefore, by (14), there exists y € A such that

> (La@ - )( ) > ||j§| (15)

vEA

Next, we look at

Z (HA ® HA—l) (g) ]IA‘FA(U + Z) ||;l41’4| (16)

veEA
z€A

After change of variables and the Cauchy-Schwarz inequality, the left-hand side of (16)
is bounded by

> (el) (5 )HA+A(><|A+A|2<Z(Z Iy ® L1 x_z))z)

z€F, z€lF, z€A
z€EA

N

Hence

> > (h@ﬂw)(xz/zl) (JIA®11A1)(33;’22)2 ’AA‘lﬁ+A’. (17)

x€F, 21,22€A
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Expanding in multiplicative characters 1, we have
(14 @ L) :—Z}HA W(u)

We extend v to all of F), by setting ¢(0) = 0. Note that the previous equality remains
valid. Hence

p—1
and the left hand side of (17) is bounded by

(p—1)2 Z |HA 1) ‘]IA (¥2)| ‘Z Z Yi(z — 2 ¢2($—Z2)‘ (18)

z€F, z1,22€A

(L) (=2) = = S T 96) via - 2)
¥

Denote xq the principal character mod p. In (18), the contribution of ¥; = 15 = x¢
is

Al Al®
S [048 1) -2+ e - 1] = 2 e -2ia ] 9
while the contribution of ¥1 = xq, %2 # X0 or ¥1 # X0, %2 = Xo is at most
A 4
22 (- 1 4D 4] - 1), (20)

Now assume 11 # X0, %2 # Xo.- Then

o> ti(m—z2)pe(z — 2)

z€F, z1,22€A

=3 Y pianla+ - =)

z€F, 2z1,22€A

=3 Y wi@eale+w(Lax T a)(w)

z€F, u€lF,
=3 S @ale + ( S D) enlew)

z€F, uclF, £€ly

< SILOF | X wi@hate+u) e

£€IF z,uck,
<IA] max| 30 va(@)a(w) ey(€(u )

z,uck,

=|A] max |3 wir(@)ey(—&2) | | 3 alu) e(6u)
<p |A]. (21)



(The last inequality is by the Gauss sum estimate.) Hence the corresponding contri-
bution to (18) is bounded by

plAJ?

oo P14 (22)

From (17)-(20), and (22), it follows that

A]°
|AA|? |A+ A
AP Al plAP° 2
<D0 =24l + 1+ 2 S o= 1 AN - )+ o= 1 - 4]
A 6
<J—l——+pLAP.
p—1
The last inequality holds because
[AP(AI-1) | IA(AI-1)  2p[A]Y  plAP
-3 +2 — + < 0. 23
(p—1)? (p—1) p—1  (p—1)? #)

Now it is clear that (3) follows from (23). O
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