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Abstract.
We establish character sum bounds of the form
> X@ k)| <pTH,
a<z<a+H
b<y<b+H

where y is a nontrivial character (mod p), p 1 *¢ < H < p, and |al, |b| <
P 6/2H‘
As an application, we obtain that given k € Z\{0}, 2* + k is a

1
quadratic non-residue (mod p) for some 1 < z < p 2V .

Introduction.

Let k be a nonzero integer. Let p be a large prime and let H < p. We
are interested in the character sum Zm,y x (2% + ky?), where x (mod q)
is a nontrivial character, and x and y run over intervals of length H;
saya<x<a+Handb<y<b+ H, and a and b are less than p“H.
The trivial bound for this character sum is H?, and we seek an upper
bound of the form H?p=° for some § > 0. Burgess [Bu3] considered
such character sums, and obtained the desired H?p~% estimate provided
H > pste. Moreover, in the case that 22 + ky? is irreducible (mod p)
(i.e., —k is a quadratic non-residue (mod p)), Burgess obtained such
cancelation in the wider range H > p it In this paper we obtain a
corresponding result in the case that x? + ky? is reducible (mod p) (
i.e., —k is a quadratic residue (mod p)).

More precisely, we prove

Theorem. Given € > 0, there is 7 > 0 such that if p is a sufficiently
large prime and H is an integer satisfying

pi+€<H<p, (0.1)

we have
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> x(@® + k)

a<z<a+H
b<y<b+H

<p TH? (0.2)

for any nontrivial character x (mod p) and arbitrary |a|, |b| < p=/*H.

Our argument is a variant of Burgess’ well-known method [Bul].
Following [Bu2], this estimate for binary forms allows us to deduce

Corollary. Given k € Z\{0}, we have <%) = —1 for some 1 <
T < pﬁ%, for all e > 0.

In [Bu2], Burgess established this statement for z < p e+ and for

x < p et provided z? + k is assumed irreducible (mod p). Thus,
both the theorem and the corollary are only new if —k is a quadratic
residue (mod p). The other case was treated by Burgess based on the
following approach.

Recall that if —k is a quadratic non-residue (mod p), then y(z%+ky?)
is a character (mod p) of x +wy with w = /—k. Estimate (0.2) is then
equivalent to bounding a character sum

> X(2) (0.3)

where B={rx+wy:a <z <a+Hb<y<b+ H}and \ is a
nontrivial multiplicative character of F2. In [Bub], Burgess established

the desired bound for (0.3) assuming H > p i<, A more general result
along these lines was obtained by A. Karacuba [Ka|, for boxes B C Fyn
of the form

B={zg+trwt+ - Fr,_ " iy <ax; <ri+H, fori=0,...,n—1}.
Here w is a root of a given polynomial of degree n, which is irreducible

(mod p) and assuming again H > p 1+<.

Notation.
o [a,b :={ie€Z:a<i<b}.
e r =y means z =y (mod p).
§1. Estimate of the character sums.

Denote f(z,y) = 2* + ky?, k € Z\{0} and assume
flz,y) = (x+ My)(x — My), A €T, (1.1)



Recall also that by Weil’s theorem

Z x(x? + a)‘ < cy/p logp (1.2)

max
acFy

for y a nontrivial character (mod p) and I C [1,p) an interval. Hence

Z X(f(x,y))‘ < ¢y/p (logp)H, (1.3)

a<z<a+H
b<y<b+H

and we may therefore assume H < p%.

Proof of the theorem.

We let a = b = 0. The modification needed in the argument below
to treat the situation |a|,|b| < p“/?H are straightforward and left to
the reader.

As mentioned earlier, the basic technique is Burgess’.

Let

€
0=-. 1.4
- (14)
We introduce parameters
M= [p (1.5)
and
D=piH 5 <p ¥H, (1.6)

Here the inequality is because of (0.1).
Thus forall 0 < u,v < D,0<t<M

Si= > x(fxy)= > x(flz+ut,y+ovt))+O0@p H?).
O0<z,y<H O0<z,y<H
(1.7)
Taking some subset D C [0, D]?, it follows that

1

DM > ‘Zx(f(erut,ervt)) +O(p P H?). (1.8)

0<z,y<H t=1
(u,v)€D

S| <

Assume u + Av,u — Av # 0 for (u,v) € D. By (1.2), the first term in
(1.8) equals



(:/,,’U)ED (19)
] M
=pTir o Ve | o X(E+ D+ )]
£,CeF t=1
where
r+Ay rT—Ay ‘
wgg—’{xy,u,v) [0,H]* x D +)\v—§a u—)\v_g}
Let 10
r= [?} (1.10)

To estimate (1.9), we follow the usual approach of applying Holder’s
inequality with suitable exponent 2r € Z, and Weil’s theorem later.
Thus, (1.9) is bounded by

ﬁ(; (o)) (Z\Zx g+ne+ol).

which is bounded by
1
1 1-1 2 V& ( (E4+t1)...(E+t,) >2 P
|D|M(Zw§’<) (2_wdo) <tZ ;X(§+tr+1)...(§+t2r)
Herei=1,...,2r, t; € [1,M] and £ € F, such that E+¢,41,...,§+ 1o

are nonzero.
Now by Weil’s theorem, (1.9) is bounded by

2 177 QT 2 3 g 2 2 12\ 5
|D|M(H|D\ (D wi ) (" M7p* + M (2rp2)?) >, (1.11)

(From the definition of wg ¢, we have | Y we | = H? |D|.)
By (1.4), (1.5) and (1.10), if
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p> (—0>3 , (1.12)
g

then p > r*’ M~"p?. Therefore, by (1.8) and (1.11) (after canceling
M), we have

S| < H*(H?D|) ™ (Y wi) > p> + O(p—H?). (1.13)

Our next aim is to estimate ) wg ., which is the number of solutions
of the following system of equations in [F,,.



T1+ Ay T+ Ays
Uy + Av; Uug + Avg
T1— Ay _ X9 — AY2

Ut —>\U1 - U2 —/\U27
when z;,y; € [0, H] and (u;,v;) € D for i =1, 2.
Define

D= {(u,v) € [g,Dr (u,v) = (u k) = (v, k) =1, utx v #0}.

(Here (u,v) denotes ged(u,v).)
Hence
|D| ~ D?.

Multiplying and adding the equations in the above system, we get
by (1.2)

(2% + kyt) (u3 + kv3) = (25 + ky3) (ui + ko) (1.14)
(z1u1 + kyv1) (U3 + kvd) = (zoug + kyov) (u? + kv?). (1.15)
We impose on H, D the condition
p
HD? < —. 1.16
< gz (1.16)
Hence (1.15) holds in Z and we have
(z1uy + ky1v1)(u3 + kv3) = (vaus + kyavy) (ul + kv?). (1.17)

Fix uy, ug, v1,ve and let A = ged(u? + kv? u3 + kv?).
Hence

(1.18)

Y

u? + kvl = Aw,
u3 + kv = Awy

where (wy,wy) = 1.
Since a rational integer a has at most lo{;fgo Za log D factorizations of
the form x 4+ yA in Q(\) with z,y € [0, D], the equation

u? + kv? =a
log(D+|a .
has at most exp ( c%) solutions (u,v) € [0, D]%. Therefore,
given wy, we, A, the system (1.18) has < p°! solutions (uq, vq, ug, vq). It

follows from (1.17) that



Tiuy + kyvy = twy (1.19)
Tolly + Koy = twsy '
for some t € Z, satisfying
HD
< ——— (1.20)
|wi| + Jws|

Let 2!, vy, x4, y5 be some solution (other than z1,y1, g, y2) of (1.19)
and (1.14) with specified uy, vy, ug, v2 and ¢. Then

(29 — 5)ug = k(Y — ya2)v2

Since (uy, kvy) = 1 = (ug, kvg), we get

1 — o) = s1kv;

/ _
Yy — Y1 = s1ua

1.22
Ty — xh = Sokuy ( )
Yy — Yo = Saly
for some sy, 59 € Z satisfying
H
| <= fori=1,2. 1.23
sl < 5 ford (123

Substituting (1.22) in (1.14) and (1.18) yield the following equation
in S1, 89

wo (2 + s1kv1)® + k() — s1u1)?) = wi (25 + s0kv2)? + k(ys — s2us)?).
Hence
Awiws (52 — 83) + 2wo(xh vy — Yiur) s — 2wy (Thve — Yhus)sy = 0 (1.24)

and there are obviously at most ¢ solutions in (sy, s,) satisfying (1.23)
and (1.24). Summarizing, we showed that for given A, wq,ws, the
system of equations (1.14) and (1.15) has at most

o HD A (1.25)
p - .
wi| + we| D
solutions in xy,y1, T2, y2. Notice that by (1.18), A(|wy| + |we]) < D2
Summing (1.25) over A, wy, we we obtain



(> 1 (3 D2
P H” Z Z |wi| + |ws| <pH Z A

1<A<LD? |w1\+\w2|§%2 1<A<LD?
< psl H2D2
Therefore
> wi. < pHD?, (1.26)
&¢

provided H, D satisfy (1.16).
Substitute (1.26) in (1.13). By (0.1) and (1.6), we have

S| < H?p==/15, 0
With some small modification of the proof of the theorem, we can
also obtain the following more general statement.

Theorem’. Given ¢ > 0, there is T > 0 such that if p is a sufficiently
large prime and H is an integer satisfying

pi+€<H<p,

we have

< p TH?

> x(@ + k)

a<r<a+H
b<y<b+H

for any nontrivial character x(mod p) and arbitrary |a|, |b| < p*/?H.

§2. An application to quadratic non-residues.
In this section we will prove the corollary.
Let ¢(z) = 2? + k, with k& € Z\{0} and let p be a large prime.
Assume
¢(z)

(—)zlforleSH. (2.1)
p

The problem of estimating H = H(p) was considered in Burgess’
paper [Bu2]. (See also [Bu4].)

We distinguish the following two cases.

Case 1. k= (> (cZ.
Hence ¢(z) = (x + €)(z — ¢). In this case H < pie ™. Indeed, if

(%) = (%) for 1 < x < H, taking x = ¢,3(,5(..., gives that

(257‘”) = constant for 1 <y < %. Hence (%) = 1, which contradicts
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Burgess theorem [Bul] on the existence of quadratic non-residues in
1
short intervals [1, pive ] .

Case 2. —k is not a square.

We will follow the argument in [Bu2] with some adjustment. We
may assume k > 0, since the case k < 0 is similar. (See [Bu2|.) For
readers’ convenience we state below the lemmas we use from [Bu2].

(See Lemmas 1, 3 in [Bu2].)

1. For x,y € Z, there exists a representation of n = x* + ky?

n = u? l_J:(vZ2 + k), (2.2)
i=1
for some r € N, positive integers u,vy,...,v, all < n and a; = £1.
2. Given 1 < 3 < \/e, there is a constant M = M(3) > 0 such that if
2 k} 2
(x—k—y) =1 for 2* +ky* < H,
p

then for H sufficiently large and any prime p > H® we have

2 k 2
3 “_?J> - MHP,

x2+ky2<HPB p
where the sum is over all pairs x,y (not necessarily integers) for which
x4+ yv—k is an integer of Q(v/—k).

Since for —k = 3 (mod 4), = + yv/—k is an algebraic integer of
Q(v/—k) if and only if xz,y € Z, the sum is over all z,y € Z with
22+ ky? < HP. For —k = 1 (mod 4) the ring of algebraic integers is
generated by %jk Burgess showed that the inequality holds when
the sum is over all z,y € Z such that x> + 4ky? < H”. In both cases,
the proofs of the theorem are identical, so we give only the former here.

It follows from our assumption (2.1) and (2.2) that

<x2 + ky?
p

Hence we may apply Burgess’ second lemma and get a contradiction,
if we show that

) —1if 2?2+ Ky’ < H. (2.3)

2 k 2
> () = owtH, (2.4)
x24+ky2<HB p
We divide the region enclosed by the ellipse 22 + ky?> = H” into

squares of length h with A > p'/*t¢. For those squares completely
lying in the ellipse, we use Theorem’ to estimate the character sum.
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For the others, we count the number of lattice points and use the trivial

bound.
According to Theorem’, it follows that (2.4) will hold provided H 7>

1
p%“ for some € > (0. Therefore H < p2ve. Hence the corollary is
proved.
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