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Abstract.
We establish character sum bounds of the form∣∣∣∣

∑
a≤x≤a+H

b≤y≤b+H

χ(x2 + ky2)

∣∣∣∣ < p−τH2,

where χ is a nontrivial character (mod p), p
1
4

+ε < H < p, and |a|, |b| <
p ε/2H.

As an application, we obtain that given k ∈ Z\{0}, x2 + k is a

quadratic non-residue (mod p) for some 1 ≤ x < p
1

2
√

e
+ε

.

Introduction.

Let k be a nonzero integer. Let p be a large prime and let H ≤ p. We
are interested in the character sum

∑
x,y χ(x2 +ky2), where χ (mod q)

is a nontrivial character, and x and y run over intervals of length H;
say a ≤ x ≤ a + H and b ≤ y ≤ b + H, and a and b are less than p εH.
The trivial bound for this character sum is H2, and we seek an upper
bound of the form H2p−δ for some δ > 0. Burgess [Bu3] considered
such character sums, and obtained the desired H2p−δ estimate provided
H ≥ p

1
3
+ε. Moreover, in the case that x2 + ky2 is irreducible (mod p)

(i.e., −k is a quadratic non-residue (mod p)), Burgess obtained such

cancelation in the wider range H ≥ p
1
4
+ε. In this paper we obtain a

corresponding result in the case that x2 + ky2 is reducible (mod p) (
i.e., −k is a quadratic residue (mod p)).

More precisely, we prove

Theorem. Given ε > 0, there is τ > 0 such that if p is a sufficiently
large prime and H is an integer satisfying

p
1
4

+ε < H < p, (0.1)

we have
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∣∣∣∣
∑

a≤x≤a+H

b≤y≤b+H

χ(x2 + ky2)

∣∣∣∣ < p−τH2 (0.2)

for any nontrivial character χ (mod p) and arbitrary |a|, |b| < p ε/2H.

Our argument is a variant of Burgess’ well-known method [Bu1].
Following [Bu2], this estimate for binary forms allows us to deduce

Corollary. Given k ∈ Z\{0}, we have
(

x2+k
p

)
= −1 for some 1 <

x < p
1

2
√

e
+ε

, for all ε > 0.

In [Bu2], Burgess established this statement for x < p
2

3
√

e
+ε

and for

x < p
1

2
√

e
+ε

provided x2 + k is assumed irreducible (mod p). Thus,
both the theorem and the corollary are only new if −k is a quadratic
residue (mod p). The other case was treated by Burgess based on the
following approach.

Recall that if −k is a quadratic non-residue (mod p), then χ(x2+ky2)
is a character (mod p) of x+ωy with ω =

√−k. Estimate (0.2) is then
equivalent to bounding a character sum

∑
z∈B

χ′(z) (0.3)

where B = {x + ωy : a ≤ x ≤ a + H, b ≤ y ≤ b + H} and χ′ is a
nontrivial multiplicative character of Fp2 . In [Bu5], Burgess established

the desired bound for (0.3) assuming H ≥ p
1
4
+ε. A more general result

along these lines was obtained by A. Karacuba [Ka], for boxes B ⊂ Fpn

of the form

B = {x0+x1ω+ · · ·+xn−1ω
n−1 : ri ≤ xi ≤ ri+H, for i = 0, . . . , n−1}.

Here ω is a root of a given polynomial of degree n, which is irreducible
(mod p) and assuming again H > p

1
4
+ε.

Notation.
• [a, b] := {i ∈ Z : a ≤ i ≤ b}.
• x ≡ y means x ≡ y (mod p).

§1. Estimate of the character sums.

Denote f(x, y) = x2 + ky2, k ∈ Z\{0} and assume

f(x, y) ≡ (x + λy)(x− λy), λ ∈ F∗p. (1.1)
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Recall also that by Weil’s theorem

max
a∈F∗p

∣∣∣
∑
x∈I

χ(x2 + a)
∣∣∣ < c

√
p log p (1.2)

for χ a nontrivial character (mod p) and I ⊂ [1, p) an interval. Hence
∣∣∣∣

∑
a≤x≤a+H

b≤y≤b+H

χ(f(x, y))

∣∣∣∣ < c
√

p (log p)H, (1.3)

and we may therefore assume H < p
3
4 .

Proof of the theorem.
We let a = b = 0. The modification needed in the argument below

to treat the situation |a|, |b| < p ε/2H are straightforward and left to
the reader.

As mentioned earlier, the basic technique is Burgess’.
Let

δ =
ε

4
. (1.4)

We introduce parameters

M = [pδ] (1.5)

and

D = p
1
3 H− 1

3 < p−2δH. (1.6)

Here the inequality is because of (0.1).
Thus for all 0 ≤ u, v ≤ D, 0 ≤ t ≤ M

S :=
∑

0≤x,y≤H

χ(f(x, y)) =
∑

0≤x,y≤H

χ(f(x + ut, y + vt)) + O(p−δH2).

(1.7)
Taking some subset D ⊂ [0, D]2, it follows that

|S| ≤ 1

|D|M
∑

0≤x,y≤H

(u,v)∈D

∣∣∣
M∑
t=1

χ(f(x + ut, y + vt))
∣∣∣ + O(p−δH2). (1.8)

Assume u + λv, u−λv 6≡ 0 for (u, v) ∈ D. By (1.2), the first term in
(1.8) equals
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1

|D|M
∑

0≤x,y≤H

(u,v)∈D

∣∣∣
M∑
t=1

χ
((x + λy

u + λv
+ t

)(x− λy

u− λv
+ t

))∣∣∣

=
1

|D|M
∑

ξ,ζ∈Fp

wξ,ζ

∣∣∣
M∑
t=1

χ((ξ + t)(ζ + t))
∣∣∣,

(1.9)

where

wξ,ζ =
∣∣∣
{
(x, y, u, v) ∈ [0, H]2 ×D :

x + λy

u + λv
= ξ and

x− λy

u− λv
= ζ

}∣∣∣.
Let

r =
[10

ε

]
. (1.10)

To estimate (1.9), we follow the usual approach of applying Hölder’s
inequality with suitable exponent 2r ∈ Z+ and Weil’s theorem later.

Thus, (1.9) is bounded by

1

|D|M
( ∑

ξ,ζ

(wξ,ζ)
2r

2r−1

)1− 1
2r

( ∑

ξ,ζ

∣∣
M∑
t=1

χ((ξ + t)(ζ + t))
∣∣2r

) 1
2r

,

which is bounded by

1

|D|M
( ∑

wξ,ζ

)1− 1
r
( ∑

w2
ξ,ζ

) 1
2r

( ∑
ti

( ∑

ξ

χ
(ξ + t1) . . . (ξ + tr)

(ξ + tr+1) . . . (ξ + t2r)

)2
) 1

2r

Here i = 1, . . . , 2r, ti ∈ [1, M ] and ξ ∈ Fp such that ξ + tr+1, . . . , ξ + t2r

are nonzero.
Now by Weil’s theorem, (1.9) is bounded by

1

|D|M (H2|D|)1− 1
r

( ∑
w2

ξ,ζ

) 1
2r

(
r2rM rp2 + M2r(2rp

1
2 )2

) 1
2r . (1.11)

(From the definition of wξ,ζ , we have |∑ wξ,ζ | = H2 |D|.)
By (1.4), (1.5) and (1.10), if

p >
(10

ε

) 40
3ε

, (1.12)

then p > r2rM−rp2. Therefore, by (1.8) and (1.11) (after canceling
M), we have

|S| < H2(H2|D|)− 1
r

( ∑
w2

ξ,ζ

) 1
2r p

1
2r + O(p−δH2). (1.13)

Our next aim is to estimate
∑

w2
ξ,ζ , which is the number of solutions

of the following system of equations in Fp.
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x1 + λy1

u1 + λv1

≡ x2 + λy2

u2 + λv2

x1 − λy1

u1 − λv1

≡ x2 − λy2

u2 − λv2

,

when xi, yi ∈ [0, H] and (ui, vi) ∈ D for i = 1, 2.
Define

D =
{
(u, v) ∈

[D

2
, D

]2

: (u, v) = (u, k) = (v, k) = 1, u± λv 6≡ 0
}
.

(Here (u, v) denotes gcd(u, v).)
Hence

|D| ∼ D2.

Multiplying and adding the equations in the above system, we get
by (1.2)

(x2
1 + ky2

1)(u
2
2 + kv2

2) ≡ (x2
2 + ky2

2)(u
2
1 + kv2

1) (1.14)

(x1u1 + ky1v1)(u
2
2 + kv2

2) ≡ (x2u2 + ky2v2)(u
2
1 + kv2

1). (1.15)

We impose on H,D the condition

HD3 <
p

8k2
. (1.16)

Hence (1.15) holds in Z and we have

(x1u1 + ky1v1)(u
2
2 + kv2

2) = (x2u2 + ky2v2)(u
2
1 + kv2

1). (1.17)

Fix u1, u2, v1, v2 and let ∆ = gcd(u2
1 + kv2

1, u
2
2 + kv2

2).
Hence

{
u2

1 + kv2
1 = ∆w1

u2
2 + kv2

2 = ∆w2

, (1.18)

where (w1, w2) = 1.
Since a rational integer a has at most log a

log log a
log D factorizations of

the form x + yλ in Q(λ) with x, y ∈ [0, D], the equation

u2 + kv2 = a

has at most exp
(

c log(D+|a|)
log log(D+|a|)

)
solutions (u, v) ∈ [0, D]2. Therefore,

given w1, w2, ∆, the system (1.18) has < pε1 solutions (u1, v1, u2, v2). It
follows from (1.17) that
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{
x1u1 + ky1v1 = tw1

x2u2 + ky2v2 = tw2

(1.19)

for some t ∈ Z, satisfying

|t| ≤ HD

|w1|+ |w2| . (1.20)

Let x′1, y
′
1, x

′
2, y

′
2 be some solution (other than x1, y1, x2, y2) of (1.19)

and (1.14) with specified u1, v1, u2, v2 and t. Then

{
(x1 − x′1)u1 = k(y′1 − y1)v1

(x2 − x′2)u2 = k(y′2 − y2)v2

. (1.21)

Since (u1, kv1) = 1 = (u2, kv2), we get





x1 − x′1 = s1kv1

y′1 − y1 = s1u1

x2 − x′2 = s2kv2

y′2 − y2 = s2u2

. (1.22)

for some s1, s2 ∈ Z satisfying

|si| ≤ H

D
for i = 1, 2. (1.23)

Substituting (1.22) in (1.14) and (1.18) yield the following equation
in s1, s2

w2

(
(x′1 + s1kv1)

2 + k(y′1− s1u1)
2
) ≡ w1

(
(x′2 + s2kv2)

2 + k(y′2− s2u2)
2
)
.

Hence

∆w1w2(s
2
1− s2

2)+ 2w2(x
′
1v1− y′1u1)s1− 2w1(x

′
2v2− y′2u2)s2 ≡ 0 (1.24)

and there are obviously at most cH
D

solutions in (s1, s2) satisfying (1.23)
and (1.24). Summarizing, we showed that for given ∆, w1, w2, the
system of equations (1.14) and (1.15) has at most

p ε1
HD

|w1|+ |w2|
H

D
(1.25)

solutions in x1, y1, x2, y2. Notice that by (1.18), ∆(|w1|+ |w2|) ≤ D2.
Summing (1.25) over ∆, w1, w2 we obtain
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pε1H2
∑

1≤∆≤D2

∑

|w1|+|w2|≤D2

∆

1

|w1|+ |w2| < pε1H2
∑

1≤∆≤D2

D2

∆

< pε1H2D2.

Therefore

∑

ξ,ζ

w2
ξ,ζ < pε1H2D2, (1.26)

provided H, D satisfy (1.16).
Substitute (1.26) in (1.13). By (0.1) and (1.6), we have

|S| < H2p−ε2/15. ¤

With some small modification of the proof of the theorem, we can
also obtain the following more general statement.

Theorem’. Given ε > 0, there is τ > 0 such that if p is a sufficiently
large prime and H is an integer satisfying

p
1
4

+ε < H < p,

we have

∣∣∣∣
∑

a≤x≤a+H

b≤y≤b+H

χ(x2 + ky2)

∣∣∣∣ < p−τH2

for any nontrivial character χ(mod p) and arbitrary |a|, |b| < pε/2H.

§2. An application to quadratic non-residues.

In this section we will prove the corollary.
Let φ(x) = x2 + k, with k ∈ Z\{0} and let p be a large prime.

Assume (φ(x)

p

)
= 1 for 1 ≤ x ≤ H. (2.1)

The problem of estimating H = H(p) was considered in Burgess’
paper [Bu2]. (See also [Bu4].)

We distinguish the following two cases.

Case 1. k = −`2, ` ∈ Z.

Hence φ(x) = (x + `)(x − `). In this case H < p
1

4
√

e
+ε

. Indeed, if(
x+`
p

)
=

(
x−`
p

)
for 1 ≤ x ≤ H, taking x = `, 3`, 5` . . . , gives that(

2` y
p

)
= constant for 1 ≤ y < H

2`
. Hence

(
y
p

)
= 1, which contradicts



8

Burgess theorem [Bu1] on the existence of quadratic non-residues in

short intervals [1, p
1

4
√

e
+ε

] .

Case 2. −k is not a square.
We will follow the argument in [Bu2] with some adjustment. We

may assume k > 0, since the case k < 0 is similar. (See [Bu2].) For
readers’ convenience we state below the lemmas we use from [Bu2].
(See Lemmas 1, 3 in [Bu2].)

1. For x, y ∈ Z, there exists a representation of n = x2 + ky2

n = u2

r∏
i=1

(v2
i + k)αi , (2.2)

for some r ∈ N, positive integers u, v1, . . . , vr all ≤ n and αi = ±1.

2. Given 1 < β <
√

e, there is a constant M = M(β) > 0 such that if
(x2 + ky2

p

)
= 1 for x2 + ky2 ≤ H,

then for H sufficiently large and any prime p > Hβ we have
∑

x2+ky2≤Hβ

(x2 + ky2

p

)
> MHβ,

where the sum is over all pairs x, y (not necessarily integers) for which
x + y

√−k is an integer of Q(
√−k).

Since for −k ≡ 3 (mod 4), x + y
√−k is an algebraic integer of

Q(
√−k) if and only if x, y ∈ Z, the sum is over all x, y ∈ Z with

x2 + ky2 ≤ Hβ. For −k ≡ 1 (mod 4) the ring of algebraic integers is

generated by 1+
√−k
2

. Burgess showed that the inequality holds when

the sum is over all x, y ∈ Z such that x2 + 4ky2 ≤ Hβ. In both cases,
the proofs of the theorem are identical, so we give only the former here.

It follows from our assumption (2.1) and (2.2) that
(x2 + ky2

p

)
= 1 if x2 + ky2 ≤ H. (2.3)

Hence we may apply Burgess’ second lemma and get a contradiction,
if we show that

∑

x2+ky2≤Hβ

(x2 + ky2

p

)
= O(p−δHβ). (2.4)

We divide the region enclosed by the ellipse x2 + ky2 = Hβ into
squares of length h with h > p1/4+ε. For those squares completely
lying in the ellipse, we use Theorem’ to estimate the character sum.
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For the others, we count the number of lattice points and use the trivial
bound.

According to Theorem’, it follows that (2.4) will hold provided H
β
2 >

p
1
4
+ε for some ε > 0. Therefore H < p

1
2
√

e . Hence the corollary is
proved.
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