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Abstract.

Let χ be a nontrivial multiplicative character of Fp2 . We obtain the following results.

1. Given ε > 0, there is δ > 0 such that if ω ∈ Fp2\Fp and I, J are intervals of size

p1/4+ε, (p sufficiently large), then��� X
x∈I
y∈J

χ(x + ωy)
��� < p−δ |I| |J |.

The statement is uniform in ω.

2. Given ε > 0, there is δ > 0 such that if x2+axy+by2 is not a perfect square (mod p),
and if I, J ⊂ [1, p− 1] are intervals of size

|I|, |J | > p
1
4+ε, (0.9)

then for p sufficiently large, we have��� X
x∈I,y∈J

χ(x2 + axy + by2))
��� < p−δ|I| |J |,

where δ = δ(ε) > 0 does not depend on the binary form.

§0. Introduction.

The paper contributes to two problems on incomplete character sums that go back
to the work of Burgess and Davenport-Lewis in the sixties. Incomplete character sums
are a challenge in analytic number theory. By incomplete, we mean that the summation
is only over an interval I. Typical applications include the problem of the smallest
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quadratic non-residue (mod p) and the distribution of primitive elements in a finite
field. Recall that Burgess’ bound [B1] on multiplicative character sums

∑
x∈I χ(x) in

a prime field Fp provides a nontrivial estimate for an interval I ⊂ [1, p − 1] of size
|I| > p1/4+ε, with any given ε > 0. Burgess’ result, which supercedes the Polya-
Vinogradov inequality, was a major breakthrough and remains unsurpassed. (It is
conjectured that such result should hold as soon as |I| > p ε.)

The aim of this paper is to obtain the full generalization of Burgess’ theorem in
Fp2 . Thus

Theorem 5. Given ε > 0, there is δ > 0 such that if ω ∈ Fp2\Fp and I, J are intervals
of size p1/4+ε, (p sufficiently large), then

∣∣∣
∑

x∈I
y∈J

χ(x + ωy)
∣∣∣ < p−δ |I| |J | (0.1)

for χ a nontrivial multiplicative character.

The importance of the statement is its uniformity in ω. Both Burgess [B2] and
Karacuba [K] obtained the above statement under the assumption that ω satisfies a
given quadratic equation

ω2 + aω + b = 0 (mod p) (0.2)

with a, b ∈ Q.

In the generality of Theorem 5, the best known result in Fp2 was due to Davenport
and Lewis [DL], under the assumption |I|, |J | > p1/3+ε. More generally, they consider
character sums in Fpn of the form

∑

x1∈I1,... ,xn∈In

χ(x1ω1 + · · ·+ xnωn), (0.3)

where I1, . . . , In ⊂ [1, p− 1] are intervals. It is shown in [DL] that

∑

x1∈I1,... ,xn∈In

χ(x1ω1 + · · ·+ xnωn) < p−δ(ε)|I1| · · · |In| (0.4)

provided for some ε > 0,

|Ii| > p ρ+ε with ρ = ρn =
n

2(n + 1)
. (0.5)
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In [C2], newly developed sum-product techniques in finite fields were used to estab-
lish (0.4) under the hypothesis

|Ii| > p
2
5+ε for some ε > 0 (0.6)

Hence [C2] improves upon (0.5) provided n ≥ 5 and Theorem 5 in this paper
provides the optimal result for n = 2.

We will briefly recall Burgess’ method in the next section. It involves several steps.
As in [C2], the novelty in our strategy pertains primarily to new bounds on multiplica-
tive energy in finite fields (see Section 1 for definition). The other aspects of Burgess
technique remain unchanged. We also did not try to optimize the inequality qualita-
tively, as our concern here was only to obtain a nontrivial estimate under the weakest
assumption possible. The new estimates on multiplicative energy are given in Lemma
2 and Lemma 3 in Section 1. Contrary to the arguments in [C2] that depend on
abstract sum-product theory in finite fields, the input in this paper is more classical.
Lemma 2 is based on uniform estimates for the divisor function of an extension of Q
of bounded degree. In Lemma 3, we use multiplicative characters to bound the energy

E(A, I) =
{
(x1, x2, t1, t2) ∈ A2 × I2 : x1t1 ≡ x2t2 mod p

}
, (0.7)

where A ⊂ Fpn is an arbitrary set and I ⊂ [1, p − 1] an interval. The underlying
principle is actually related to Plunnecke-Ruzsa sum-set theory [TV] (here in its mul-
tiplicative version), but in this particular case may be captured in a more classical
way.

Closely related to Theorem 5 is the problem of estimating character sums of binary
quadratic forms over Fp. ∑

x∈I,y∈J

χ(x2 + axy + by2), (0.8)

where x2 +axy+by2 ∈ Fp[x, y] is not a perfect square and χ a nontrivial multiplicative
character of Fp.

Theorem 11. Given ε > 0, there is δ > 0 such that if x2 + axy + by2 is not a perfect
square (mod p), and if I, J ⊂ [1, p− 1] are intervals of size

|I|, |J | > p
1
4+ε, (0.9)

then for p sufficiently large, we have
∣∣∣

∑

x∈I,y∈J

χ(x2 + axy + by2))
∣∣∣ < p−δ|I| |J |, (0.10)
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where δ = δ(ε) > 0 does not depend on the binary form.

This is an improvement upon Burgess’ result [B3], requiring the assumption |I|, |J | >
p1/3+ε.

We will not discuss in this paper the various classical application of Theorem 1
(to primitive roots, quadratic residues, etc) as the argument involved are not different
from the ones in the literature.

§1. Preliminaries and Notations.

In what follows we will consider multiplications in R = Fpd and R = Fp × Fp.
Denote by R∗ the group of invertible elements of R. Let A,B be subsets of R. Denote

(1). AB := {ab : a ∈ A and b ∈ B}.
(2). aB := {a}B.

Intervals are intervals of integers.

(3). [a, b] := {n ∈ Z : a ≤ n ≤ b}

(4). The multiplicative energy of A1, . . . , An ⊂ R is defined as

E(A1, . . . , An) := |{(a1, . . . , an, a′1, . . . , a′n) : a1 · · · an = a′1 · · · a′n}|
with the understanding that all factors ai, a

′
i are in Ai ∩R∗.

Using multiplicative characters χ of R , one has

(5). E(A1, . . . , An) = 1
|R∗|

∑
χ

∏n
i=1

∣∣∣ ∑
ξi∈Ai

χ(ξi)
∣∣∣
2

.

Energy is always multiplicative energy in this paper.

(6). Burgess’ Method. In this paper we will apply Burgess’ method several times. We
outline the recipe here, considering intervals in Fp2 . For details, see Section 2 of [C2].

Suppose we want to bound
∣∣∣

∑

x∈I,y∈J

χ(x + ωy)
∣∣∣, (1.1)

where I, J are intervals. We translate (x, y) by (tu, tv) ∈ TM , where M = I ′ × J ′ is
a box in Fp2 , and T = [1, T ] such that T |I ′| < p−ε|I| and T |J ′| < p−ε|J | for some
small ε > 0. Therefore, it suffices to estimate the following sum

1
T |M |

∣∣∣
∑

t∈T
(u,v)∈M

∑

x∈I
y∈J

χ(x + tu + (y + tv)ω)
∣∣∣. (1.2)
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Let w(µ) = |{(x, y, u, v) ∈ I × J ×M : µ = x+ωy
u+ωv}|.

Then the double sum in (1.2) is bounded by

∑

µ∈Fp2

w(µ)
∣∣ ∑

t∈T
χ(t + µ)

∣∣ ≤
( ∑

µ∈Fp2.

w(µ)
2k

2k−1

)1− 1
2k

︸ ︷︷ ︸
α

( ∑

µ∈Fp2.

∣∣ ∑

t∈T
χ(µ + t)

∣∣2k
) 1

2k

︸ ︷︷ ︸
β

,

(1.3)
where k is a large integer to be chosen. By Hölder’s inequality and the definition of
w(µ),

α ≤
[ ∑

w(µ)
]1− 1

k
[ ∑

w(µ)2
] 1

2k

=
(|I| |J | |I ′| |J ′|)1− 1

k E
(
I + ωJ, I ′ + ωJ ′

) 1
2k .

A key idea in Burgess’ approach is then to estimate (1.3) using Weil’s theorem for
multiplicative characters in Fpn (here n = 2), leading to the bound.

β ≤ k T
1
2 p

n
2k + 2Tp

n
4k .

So the remaining problem to bound the character sum (1.1) is reduced to the bound-
ing of multiplicative energy E

(
I + ωJ, I ′ + ωJ ′

)
. We will describe a new strategy.

§2. Multiplicative energy of two intervals in Fp2 .

The first step in estimating the multiplicative energy is the following

Lemma 1. Let ω ∈ Fp2\Fp and

Q =
{

x + ωy : x, y ∈
[
1,

1
10

p1/4
]}

.

Then
max
ξ∈Fp2

|{(z1, z2) ∈ Q×Q : ξ = z1.z2}| < exp
(
c

log p

log log p

)
.

An essential point here is that the bound is uniform in ω. Also, the specific size of
Q is important. Note that for our purpose, any estimate of the type po(1) would do as
well.

Proof.
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For given ξ ∈ Fp2 , assume that ξ can be factored as products of two elements in Q
in at least two ways. We consider the set S of polynomials in Z[X]

(y1y2 − y′1y
′
2)X

2 + (x1y2 + x2y1 − x′1y
′
2 − x′2y

′
1)X + (x1x2 − x′1x

′
2), (2.1)

where xi + ωyi, x
′
i + ωy′i ∈ Q for i = 1, 2, and

(x1 + ωy1)(x2 + ωy2) = ξ = (x′1 + ωy′1)(x
′
2 + ωy′2) (2.2)

in Fp2 .

Let g(X) = X2 + aX + b ∈ Fp[X] be the minimal polynomial of ω. Then it is clear
that every f(X) in S, when considered as a polynomial in Fp[X], is a scalar multiple
of g(X).

Next, observe that, by definition of Q, the coefficients of (2.1) are integers bounded
by 1

25p
1
2 . Therefore, since the coefficients of two non-zero polynomials (2.1) are propor-

tional in Fp, they are also proportional in Q. Thus the polynomials (2.1) are multiples
of each other in Q[X] and therefore have a common root ω̃ ∈ C. Since

(x1 + ω̃y1)(x2 + ω̃y2) = (x′1 + ω̃y′1)(x
′
2 + ω̃y′2) (2.3)

in Q(ω̃) whenever (2.2) holds, it suffices to show that if we fix some ξ̃ ∈ Q(ω̃), then

{(z1, z2) ∈ Q̃× Q̃ : ξ̃ = z1z2}| < exp
(
c

log p

log log p

)
, (2.4)

where
Q̃ =

{
x + ω̃y : x, y ∈

[
1,

1
10

p1/4
]}

.

This is easily derived from a divisor estimate. Let uX2 + vX + w be a nonzero
polynomial in S, then

u(ω̃)2 + vω̃ + w = 0.

Note that η = uω̃ is an algebraic integer, since it satisfies

η2 + vη + uw = 0.

Thus
u2ξ̃ = (ux1 + ηy1)(ux2 + ηy2)

is a factorization of u2ξ̃ in the integers of Q(η). Since the height of these integers is
obviously bounded by p, (2.4) is implied by the usual divisor bound in a (quadratic)
number field (which is uniform for extensions of given degree).

This proves Lemma 1. ¤

As an immediate consequence of Lemma 1, we have the following.
6



Lemma 2. Let Q be as in Lemma 1. Then the multiplicative energy E(Q, Q) satisfies

E(Q,Q) < exp
(
c

log p

log log p

)
· |Q|2. (2.5)

and

Lemma 2′. Let Q be as in Lemma 1 and z1, z2 ∈ Fp2 . Then

E(z1 + Q, z2 + Q) < exp
(
c

log p

log log p

)
· |Q|2. (2.6)

Proof of Lemma 2′.

We have
E(z1 + Q, z2 + Q) ≤ |Q|2 + E(Q + Q, z2 + Q)

and by Cauchy-Schwarz. (See [TV] Corollary 2.10).

E(Q + Q, z + Q) ≤ E(Q + Q,Q + Q)
1
2 E(z + Q, z + Q)

1
2 .

Hence (2.6) follows from (2.5). ¤

§3. Further amplification.

The second ingredient is provided by

Lemma 3. Let Q be as in Lemma 1, and let I = [1, p1/k], where k ∈ Z+. Let
z1, z2 ∈ Fp2 . Then

E(I, z1 + Q, z2 + Q) < exp
(
c

log p

log log p

)
· p1+ 3

2k . (3.1)

Proof.

Denote χ the multiplicative characters of Fp2 . Thus

E(I, z1 + Q, z2 + Q)

=
1
p2

∑
χ

∣∣∣
∑

t∈I

χ(t)
∣∣∣
2

︸ ︷︷ ︸
A2

∣∣∣
∑

ξ∈Q

χ(ξ + z1)
∣∣∣
2

︸ ︷︷ ︸
B2

∣∣∣
∑

ξ∈Q

χ(ξ + z2)
∣∣∣
2

︸ ︷︷ ︸
C2

. (3.2)
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Here the sum over ξ ∈ Q is such that ξ + zi 6= 0, for i = 1, 2.

Hence by Hölder’s inequality,

E(I, z1 + Q, z2 + Q)

≤
{ 1

p2

∑
χ

[
A2(BC)

2
k

]k
} 1

k
{ 1

p2

∑
χ

[
(BC)2−

2
k

] k
k−1

}1− 1
k

=
{ 1

p2

∑
χ

A2kB2C2
} 1

k

︸ ︷︷ ︸
(3.3)

{ 1
p2

∑
χ

B2C2
}1− 1

k

.

Since the second factor is equal to E(z1+Q, z2+Q)1−
1
k , (2.6) applies and we obtain

the bound
(3.3) · exp

(
c

log p

log log p

)
· |Q|2(1− 1

k ). (3.4)

Estimate (3.3) as

(3.3) ≤ |Q| 2k
{ 1

p2

∑
χ

∣∣ ∑

t∈I

χ(t)
∣∣2k ∣∣ ∑

ξ∈Q

χ(ξ + z1)
∣∣2

} 1
k

< exp
(
c

log p

log log p

)
.|Q| 2k

{ 1
p2

∑
χ

∣∣ ∑

t∈Fp

χ(t)
∣∣2 ∣∣ ∑

ξ∈Q

χ(ξ + z1)
∣∣2

} 1
k

= exp
(
c

log p

log log p

)
· |Q| 2k E(Fp, Q + z1)

1
k . (3.5)

The second inequality is by definition of I and the divisor bound. Next, let z = a+ωb,
with a, b ∈ Fp and let Q = J + ωJ , with J = [1, p1/4]. Then

E(Fp, Q + z)

= |{(t1, t2, ξ1, ξ2) ∈ F2
p ×Q2 : t1(ξ1 + z) = t2(ξ2 + z) 6= 0}|

=
∣∣{(t1, t2, x1, x2, y1, y2) ∈ F2

p × J4 :

t1
(
(x1 + a) + ω(y1 + b)

)
= t2

(
(x2 + a) + ω(y2 + b)

) 6= 0}
∣∣. (3.6)

Equating coefficients in (3.6), we have

{
t1(x1 + a) = t2(x2 + a)
t1(y1 + b) = t2(y2 + b) .
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Therefore,
x1 + a

y1 + b
=

x2 + a

y2 + b
.

and the number of (x1, x2, y1, y2) satisfying (3.6) is bounded by E(a+J, b+J), which
is bounded by p1/2 log p, by [FI]. Hence,

E(Fp, Q + z) . p3/2 log p.

By (3.5) and (3.4),

(3.3) ≤ exp
(
c

log p

log log p

)
· |Q| 2k p

3
2k ,

and
E(I, z1 + Q, z2 + Q) ≤ exp

(
c

log p

log log p

)
· |Q|2 p

3
2k .

This proves Lemma 3. ¤

Lemma 4. Let Ij = [aj , bj ], where bj − aj ≥ p
1
4 for j = 1, . . . , 4. Denote

R = I1 + ωI2, and S = I3 + ωI4.

Let I = [1, p
1
k ] with k ∈ Z+.

Then
E(I, R, S) < exp

(
c

log p

log log p

)
· p 3

2k−1 |R|2 |S|2. (3.7)

Proof.

Subdivide R and S in translates of Q and apply Lemma 3. Thus the left side of
(3.1) needs to be multiplied with

( |R|
|Q|

)2( |S|
|Q|

)2 which gives (3.7). ¤

§4. Proof of Theorem 5.

We now establish the analogue of Burgess for progressions in Fp2 .

Theorem 5. Given ρ > 1
4 , there is δ > 0 such that if ω ∈ Fp2\Fp and I, J are

intervals of size pρ, then
∣∣∣
∑

x∈I
y∈J

χ(x + ωy)
∣∣∣ < p−δ |I| |J | (4.1)
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for χ a nontrivial multiplicative character. This estimate is uniform in ω.

Proof.

Denote I0 = [1, p
1
4 ] and K = [1, p κ], where κ is the reciprocal of a positive integer

and
ρ >

1
4

+ 2κ. (4.2)

We translate I+ωJ by KK(I0+ωI0) and estimate (following the procedure sketched
in §1)

1
|K|2 |I0|2

∑

x1,y1∈I0
s∈K

x∈I,y∈J

∣∣∣
∑

t∈K

χ
(
x + ωy + st(x1 + ωy1)

)∣∣∣

=
1

|K|2 |I0|2
∑

x∈I,y∈J
x1,y1∈I0

s∈K

∣∣∣
∑

t∈K

χ
(
t +

x + ωy

s(x1 + ωy1)

)∣∣∣. (4.3)

With the notations from §1, we have

α ≤(|I0|2 |K| |I| |J |
)1− 1

k E
(
K, I0 + ωI0, I + ωJ

) 1
2k

≤ exp
(
c

log p

log log p

)
· (|I0|2 |K| |I| |J |

)1− 1
k

( |K| 32 |I0|4|I|2|J |2
p

) 1
2k

= exp
(
c

log p

log log p

)
· |I0|2 |I| |J | |K|1− 1

4k p−
1
2k ,

by Lemma 4, and
β . |K| 12 p

1
k + |K| p 1

2k .

Hence, taking κ = 1
k , (4.3) is bounded by |I| |J | p−

1
4k2 and the theorem is proved

with any δ < 1
4k2 (taking p large enough). ¤

Remark 5.1. In [DL], the result (4.1) was obtained under the assumption that ρ > 1
3 .

In general, it was shown in [DL] that if ω1, . . . , ωd is a basis in Fpd then

∣∣∣
∑

xi∈Ii

χ(x1ω1 + · · ·+ xdωd)
∣∣∣ < p−δ|I1| · · · |Id|, (4.6)
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provided I1, . . . , Id are intervals in Fp of size at least pρ with

ρ >
d

2(d + 1)
. (4.7)

For d ≥ 5, there is a better (uniform) result in [C2], namely

ρ >
2
5

+ ε. (4.8)

As a consequence of Theorem 5, we have

Corollary 6. Assume −k ∈ Fp is not a quadratic residue. Then∣∣∣
∑

x∈I
y∈J

χ(x2 + ky2)
∣∣∣ < p−δ |I| |J | (4.9)

for χ nontrivial and I, J intervals of size at least p
1
4+ε. Here δ = δ(ε) > 0 is uniform

in k.

Proof.

Let ω =
√−k. Since x2 + ky2 is irreducible modulo p, χ(x2 + ky2) is a character

(mod p) of x + ωy in the quadratic extension Q(ω). ¤

§5. Extension to Fpd

There is the following generalization of Lemma 1.

Lemma 7. Let ω ∈ Fpd be a generator over Fp. Given 0 < σ < 1
2 and let

Q =
{

x0 + x1ω + · · ·+ xd−1ω
d−1 : xi ∈

[
1, pσ

]}

Q1 =
{

y0 + y1ω : yi ∈
[
1, p

1
2−σ

]}
.

Then
max
ξ∈F

pd

|{(z, z1) ∈ Q×Q1 : ξ = zz1}| < exp
(
cd

log p

log log p

)
. (5.1)

Proof.

The proof is similar to that of Lemma 1. It uses the fact that if
(x0 + x1ω + · · ·+ xd−1ω

d−1)(y0 + y1ω) = ξ = (x′0 + · · ·+ x′d−1ω
d−1)(y′0 + y′1ω)

then the polynomial
(x0 + x1X + · · ·+ xd−1X

d−1)(y0 + y1X)− (x′0 + x′1X + · · ·+ x′d−1X
d−1)(y′0 + y′1X)

is irreducible in Fp[X], or vanishes. ¤

Hence the analogues of Lemmas 2, 2′ hold. Thus
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Lemma 8. Let Q,Q1 be as in Lemma 7 and let z ∈ Fpd . Then

E(z + Q, Q1) < exp
(
cd

log p

log log p

)
· |Q| |Q1|+ |Q1|2. (5.2)

We need the analogue of Lemma 3, but in a slightly more general setting.

Lemma 9. Let Q, Q1 be as in Lemma 7 with |Q1| ≤ |Q| and let Is = [1, p
1

ks ] for
s = 1, . . . , r, with ks ∈ Z+ and 1

k1
+ · · ·+ 1

kr
< 1. Then

E(I1, . . . , Ir, z + Q,Q1) < exp
(
cd

log p

log log p

)
p1+(d−2)σ+2(1−σ)

Pr
s=1

1
ks

= exp
(
cd

log p

log log p

)
· |Q| |Q1|

∏
s

|Is|2(1−σ).
(5.3)

Proof.

The left of (5.3) equals

1
pd

∑
χ

r∏
s=1

∣∣ ∑

t∈Is

χ(t)
∣∣2 ∣∣ ∑

ξ∈Q

χ(z + ξ)
∣∣2 ∣∣ ∑

ξ∈Q1

χ(ξ)
∣∣2

which we estimate by Hölder’s inequality as
r∏

s=1

{ 1
pd

∑
χ

∣∣∣
∑

t∈Is

χ
∣∣∣
2ks

∣∣∣
∑

ξ∈Q

χ
∣∣∣
2 ∣∣∣

∑

ξ∈Q1

χ
∣∣∣
2} 1

ks

︸ ︷︷ ︸
A

1
ks
s

{ 1
pd

∑
χ

∣∣∣
∑

ξ∈Q

χ
∣∣∣
2 ∣∣∣

∑

ξ∈Q1

χ
∣∣∣
2}1−P 1

ks

︸ ︷︷ ︸
B

1−
P 1

ks

.

(5.4)
Here we denote

∑
t∈Is

χ =
∑

t∈Is
χ(t),

∑
ξ∈Q χ =

∑
ξ∈Q χ(z + ξ) etc.

By Lemma 8

B = E(z + Q,Q1) < exp
(
c

log p

log log p

)
|Q| |Q1|. (5.5)

It is clear from the definition of multiplicative energy that

As ≤ |Q1|2E(Is, . . . , Is︸ ︷︷ ︸
ks

, z + Q)

≤|Q1|2 exp
(
cks

log p

log log p

)
· E(Fp, z + Q).
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To bound E(Fp, z + Q), we write z = a0 + a1ω + · · ·+ ad−1ω
d−1. Hence

E(Fp, z + Q) =
d−1∑

i=0

Θi, (5.6)

where

Θ0 =
∣∣∣∣
{

(t, t′, x0, . . . , xd−1, x
′
0, . . . , x′d−1) ∈ F2

p × [1, pσ]2(d−1) :

t
(
1 +

x1 + a1

x0 + a0
ω + · · ·+ xd−1 + ad−1

x0 + a0
ωd−1

)
(5.7)

= t′
(
1 +

x′1 + a1

x′0 + a0
ω + · · ·+ x′d−1 + ad−1

x′0 + a0
ωd−1

)}∣∣∣∣ (5.8)

and the other Θi’s are denoted similarly.

Equating the coefficients of (5.7) and (5.8), we have

t = t′,

xi + ai

x0 + a0
=

x′i + ai

x′0 + a0
, for i = 1, . . . , d. (5.9)

For i = 1, the number of solutions (x0, x
′
0, x1, x

′
1) in (5.9) is bounded by E([1, pσ] +

a0, [1, pσ] + a1), which is bounded by p2σ log p. The choices of t and x2, . . . , xd−1 is
bounded by p pσ(d−2). Therefore,

E(Fp, z + Q) ≤ dp1+σd log p,

and
As ≤ |Q1|2 exp

(
cks

log p

log log p

)
· p1+σd. (5.10)

Note that |Q| = pdσ and |Q1| = p1−2σ. Putting (5.4), (5.5) and (5.10) together, we
have

E(I1, . . . , Ir, z + Q, Q1)

≤ exp
(
cd

log p

log log p

)
· |Q1|2

P 1
ks p(1+σd)

P 1
ks

(|Q| |Q1|
)1−P 1

ks

=exp
(
cd

log p

log log p

)
· |Q1|1+

P 1
ks |Q|1−

P 1
ks p(1+σd)

P 1
ks

=exp
(
cd

log p

log log p

)
· p(1+

P 1
ks

)(1−2σ)+(1−P 1
ks

)dσ+(1+σd)
P 1

ks ,

which is (5.3). ¤

We now estimate a character sum over Fpd .
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Theorem 10. Let ω ∈ Fpd be a generator over Fp, and let J0, . . . , Jd−1 be intervals
of size at least pρd+ε, where

ρd =
√

d2 + 2d− 7 + 3− d

8
. (5.11)

Denote

Q =
{

x0 + x1ω + · · ·+ xd−1ω
d−1 : xi ∈ Ji, for i = 0, . . . , d− 1

}

Then ∑

q∈Q

χ(q) < p−δ|J0| · · · |Jd−1|, (5.12)

where δ = δ(ε) > 0 is independent of ω.

Proof. First we denote ρd by ρ. Note that, by (5.11)

1
4
≤ ρ ≤ 1

2
. (5.13)

Let
Q0 =

{
y0 + y1ω : yi ∈

[
1, cd p

1
2−ρ

]}
.

Let further k1, . . . , kr ∈ Z+ satisfy

2ρ− 1
2
− 2ε <

1
k1

+ · · ·+ 1
kr

< 2ρ− 1
2
− ε, (5.14)

where ε > 0 will be taken sufficiently small and r < r(ε).

Let
I = [1, p

ε
2 ], and Is = [1, p

1
ks ]

for s = 1, . . . , r. We then translate Q by

I ·
r∏

s=1

Is ·Q0

and carry out Burgess’ argument as outlined in Section 1.

The estimate of the left-hand side of (5.12) is
∑

q∈Q

χ(q) ≤ p−( ε
2+
P 1

ks
+1−2ρ)αβ, (5.15)

14



where

α ≤
(
|Q| |Q0| p

P 1
ks

)1− 1
k

E(Q, Q0, I1, . . . , Ir)
1
2k

≤
(
|Q| |Q0| p

P 1
ks

)1− 1
k · exp

(
cd

log p

log log p

)
·
(
|Q| |Q0| p2(1−ρ)

P 1
ks

) 1
2k

,
(5.16)

β ≤ k |I| 12 p
d
2k + 2|I| p d

4k < p
ε
4+ d

2k + p
ε
2+ d

4k , (5.17)

and k ∈ Z+ to be chosen.

Claim.

|Q| |Q0| p2(1−ρ)
P 1

ks < |Q|2 |Q0|2 p2
P 1

ks
− d

2−τ , for some τ > 0. (5.18)

Proof of Claim.

We will show

dρ + (1− 2ρ) + 2(1− ρ)
∑ 1

ks
< 2dρ + 2(1− 2ρ) + 2

∑ 1
ks
− d

2
. (5.19)

This is equivalent to

dρ + (1− 2ρ) + 2ρ
∑ 1

ks
− d

2
> 0.

From (5.14), the choice of k1, . . . , kr, and taking ε small enough, it suffices to show
that

dρ + (1− 2ρ) + 2ρ(2ρ− 1
2
)− d

2
> 0,

namely,

4ρ2 + (d− 3)ρ− d− 2
2

> 0,

which is our assumption (5.11). ¤
Putting (5.15)-(5.18) together, we have

∑

q∈Q

χ(q)

≤p−( ε
2+
P 1

ks
+1−2ρ)

(
|Q| |Q0| p

P 1
ks

)1− 1
k
(
|Q|2 |Q0|2 p2

P 1
ks
− d

2−τ
) 1

2k
(
p

ε
4+ d

2k + p
ε
2+ d

4k

)

=|Q|
(
p−

ε
4+ 1

2k ( d
2−τ) + p−

τ
2k

)
.
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Theorem 10 is proved, if we chose k > d/ε. ¤

Remark 10.1. Returning to Remark 1.1,
(
see (4.7)

)
, we note that

ρd <
d

2(d + 1)

with ρ2 = 1
4 , ρ3 = 1√

8
, ρ4 =

√
17−1
8 , and ρ5 =

√
7−1
4 .

§6. Character Sums of Binary Quadratic Forms.

Following a similar approach, we show the following:

Theorem 11. Given ε > 0, there is δ > 0 such that the following holds. Let p be a
large prime and f(x, y) = x2 + axy + by2 which is not a perfect square (mod p). Let
I, J ⊂ [1, p− 1] be intervals of size

|I|, |J | > p
1
4+ε. (6.1)

Then ∣∣∣
∑

x∈I,y∈J

χ
(
f(x, y)

)∣∣∣ < p−δ|I| |J | (6.2)

for χ a nontrivial multiplicative character (mod p). This estimate is uniform in f .

Result was shown by Burgess assuming |I|, |J | > p
1
3+ε instead of (6.1).

Proof.

There are two cases.

Case 1. f is irreducible (mod p). Then χ
(
f(x, y)

)
is a character (mod p) of x + ωy,

with ω = 1
2a+ 1

2

√
a2 − 4b, in the quadratic extension Q(ω) and the result then follows

from Corollary 6 above.

Case 2. f(x, y) is reducible in Fp[x, y].

f(x, y) = (x− λ1y)(x− λ2y) λ1 6= λ2 (mod p).

We will estimate ∑

x∈I,y∈J

χ
(
(x− λ1y)(x− λ2y)

)
.

The basis strategy is as in the Fp2 -case (cf. Theorem 5), but replacing Fp2 by Fp × Fp

(with coordinate-wise multiplication).
16



Let I0 = [1, 1
10p

1
4 ] and K = [1, pκ], where κ = ε

4 .

We translate (x, y) by (stx1, sty1) with x1, y1 ∈ I0 and s, t ∈ K and estimate

1
|K|2|I0|2

∑

x∈I,y∈J
x1,y1∈I0

s∈K

∣∣∣
∑

t∈K

χ
((

t +
x− λ1y

s(x1 − λ1y1)

)(
t +

x− λ2y

s(x1 − λ2y1)

))∣∣∣. (6.3)

For (z1, z2) ∈ Fp × Fp, denote

ω(z1, z2) =
∣∣∣
{

(x, y, x1, y1, s) ∈ I × J × I0 × I0 ×K :

z1 =
x− λ1y

s(x1 − λ1y)
, z2 =

x− λ2y1

s(x1 − λ2y1)

}∣∣∣.

Hence
(6.3) =

1
|K|2|I0|2

∑

z1∈Fp

z2∈Fp

ω(z1, z2)
∣∣∣
∑

t∈K

χ
(
(t + z1)(t + z2)

)∣∣∣, (6.4)

which we estimate the usual way using Holder’s inequality and Weil’s theorem. The
required property is a bound

∑
z1,z2

ω(z1, z2)2 < |I|2|J |2|K|2p−τ (6.5)

for some τ > 0
(
cf. (4.4)

)
.

We may assume |I|, |J | < p. Let

R = {(x− λ1y, x− λ2y) : x ∈ I, y ∈ J}
T = {(x1 − λ1y1, x1 − λ2y1) : x1, y1 ∈ I0}
S = {(s, s) : s ∈ K}, (6.6)

considered as subsets of F∗p × F∗p.
Hence (6.5) is equivalent to

E(R, T, S) < p−τ |I|2|J |2|K|2. (6.7)

To establish (6.7), we prove the analogues of Lemmas 1-4.

We first estimate E(R, T ).
17



Lemma 12. Let R and T be defined as in (6.6). Then

E(R, T ) < exp
(
c

log p

log log p

)
· |R|2. (6.8)

Writing R as a union of translates of T

R =
⋃

α. |R|
|T |

(T + ξα)

we have

E(R, T ) ≤ |R|2
|T |2 max

ξ∈Fp×Fp

E(T + ξ, T ).

Thus it will suffice to show that

max
ζ,ξ∈Fp×Fp

E(T + ζ, T + ξ) < exp
(
c

log p

log log p

)
|T |2. (6.9)

Using the same argument as in the proof of Lemma 2′, it suffices to prove (6.9) for
ζ = ξ = 0.

Lemma 13. Let T be defined as in (6.6). Then

E(T, T ) < exp
(
c

log p

log log p

)
|T |2. (6.10)

There is a stronger statement which is the analogue of Lemma 1.

Lemma 14. Let T be defined as in (6.6). Then

max
ρ∈F∗p×F∗p

|{(z1, z2) ∈ T × T : ρ = z1z2}| < exp
(
c

log p

log log p

)
. (6.11)

Proof. Writing z1 = (x1−λ1y1, x1−λ2y1), z2 = (x2−λ1y2, x2−λ2y2) with x1, x2, y1, y2 ∈
I0, we want to estimate the number of solutions in x1, x2, y1, y2 ∈ I0 of

{
(x1 − λ1y1)(x2 − λ1y2) = ρ1 (mod p)
(x1 − λ2y1)(x2 − λ2y2) = ρ2 (mod p)

(6.12)

18



Let F be the set of quadruples (x1, x2, y1, y2) ∈ I4
0 such that (6.12) holds. If

(x1, x2, y1, y2), (x′1, x
′
2, y

′
1, y

′
2) ∈ F , then λ1, λ2 are the (distinct) roots (mod p) of the

polynomial

(y1y1 − y′1y
′
2)X

2 + (x′1y
′
2 + y′1x

′
2 − x1y2 − y1x2)X + (x1x2 − x′1x

′
2) = 0 (6.13)

By the definition of I0, the coefficients in (6.13) are integers bounded by 1
25p

1
2 . Since all

non-vanishing polynomials (6.13) are proportional in Fp[X], they are also proportional
in Z[X]. Hence they have common roots λ̃1, λ̃2 and there are conjugate ρ̃1, ρ̃2 ∈ Q(λ̃1)
such that

{
(x1 − λ̃1y1)(x2 − λ̃1y2) = ρ̃1

(x1 − λ̃2y1)(x2 − λ̃2y2) = ρ̃2

(6.14)

for all (x1, x2, y1, y2) ∈ F .

As in Lemma 1, we use a divisor estimate in the integers of Q(λ̃1) to show that there
are at most exp

(
c log p

log log p

)
solutions of (6.14) in x1−λ̃1y1, x2−λ̃1y2, x1−λ̃2y1, x2−λ̃2y2.

Since λ̃1 6= λ̃2, these four elements of Q(λ̃1) determine x1, y1, x2, y2. Therefore, |F| <
exp

(
c log p

log log p

)
. This proves Lemma 14. ¤

Returning to (6.7), we proceed as in Lemma 3. Let κ = 1
k in the definition of K.

Thus

E(R, T, S)

=
1
p2

∑
χ=χ1χ2

∣∣∣
∑

z∈S

χ(z)
∣∣∣
2 ∣∣∣

∑

z1∈R

χ(z1)
∣∣∣
2 ∣∣∣

∑

z2∈T

χ(z2)
∣∣∣
2

≤
[

1
p2

∑
χ

∣∣∣
∑

z∈S

χ(z)
∣∣∣
2k ∣∣∣

∑

R

· · ·
∣∣∣
2 ∣∣∣

∑

T

· · ·
∣∣∣
2
] 1

k

︸ ︷︷ ︸
(6.15)

1
k

[
1
p2

∑
χ

∣∣∣
∑

R

· · ·
∣∣∣
2 ∣∣∣

∑

T

· · ·
∣∣∣
2
]1− 1

k

︸ ︷︷ ︸
E(R,T )1−

1
k

<(6.15)
1
k · exp

(
c

log p

log log p

)
· |R|2(1− 1

k ) (6.16)
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(the last inequality is by Lemma 12), where

(6.15) =
1
p2

∑
χ

∣∣∣
∑

z∈S

χ(z)
∣∣∣
2k ∣∣∣

∑

z1∈R

χ(z1)
∣∣∣
2 ∣∣∣

∑

z2∈T

χ(z2)
∣∣∣
2

≤|T |
2

p2

∑
χ

∣∣∣
∑

z∈S

χ(z)
∣∣∣
2k ∣∣∣

∑

z1∈R

χ(z1)
∣∣∣
2

< exp
(
ck

log p

log log p

)
· |T |

2

p2

∑
χ1χ2

∣∣∣
∑

t∈Fp

χ1(t)χ2(t)
∣∣∣
2∣∣∣

∑

x∈I
y∈J

χ1(x− λ1y)χ2(x− λ2y)
∣∣∣
2

=exp
(
c

log p

log log p

)
· |T |2 E(R, ∆), (6.17)

where ∆ = {(t, t) : t ∈ Fp}. The multiplicative energy E(R, ∆) in (6.17) equals the
number of solutions in (x, x′, y, y′, t, t′) ∈ I2 × J2 × (F∗p)2 of

{
t(x− λ1y) ≡ t′(x′ − λ1y

′) (mod p)
t(x− λ2y) ≡ t′(x′ − λ2y

′) (mod p)
(6.18)

(with the restriction that all factors are nonvanishing).

Rewriting (6.18) as

tx− t′x′ ≡ λ1(ty − t′y′) ≡ λ2(ty − t′y′) (mod p)

and since λ1 6= λ2 (mod p)

tx ≡ t′x′ (mod p)

ty = t′y′ (mod p).

Hence
xy′ ≡ x′y (mod p) (6.19)

and the number of solutions of (6.19) is bounded by

E(I, J) . (log p) · |I| |J | (6.20)

(since |I|, |J | < p).

Once x, x′, y, y′ is specified, the number of solutions of (6.18) in (t, t′) is at most
p− 1.
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Hence (6.18) has at most
p(log p) · |I| |J |

solutions and substitution in (6.17) gives the estimate

(6.15) < exp
(
c

log p

log log p

)
· p |R| |T |2. (6.21)

Substituting of (6.21) in (6.16) gives

E(R, TS) < exp
(
c

log p

log log p

)
· p 1

k |R|2− 1
k |S| 2k . (6.22)

Recalling the definition of S, we have |S| = |I0|2 = p
1
2 .

Also κ = 1
k , and |K| = p

1
k . Hence

(6.22) = exp
(
c

log p

log log p

)
· p 2

k

(|I| |J |)2− 1
k

= exp
(
c

log p

log log p

)
· |K|2(|I| |J |)2−κ (6.23)

and (6.7) certainly holds.

This proves Theorem 11. ¤
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