BURGESS INEQUALITY IN F,

MEI-CHU CHANG

ABSTRACT.

Let x be a nontrivial multiplicative character of F 2. We obtain the following results.

1. Given € > 0, there is § > 0 such that if w € F2 \Fp and I,J are intervals of size
pl/4te (p sufficiently large), then

| > x@+wy)| <p? 11119,

xzel
yeJ

The statement is uniform in w.

2. Givene > 0, there is § > 0 such that if £? +axy+by? is not a perfect square (mod p),
and if I, J C [1,p — 1] are intervals of size

11,17 > pi+e, (0.9)

then for p sufficiently large, we have

| > X asy+oy?)| <70l 1],
xzel,yeJ

where 6 = 6(e) > 0 does not depend on the binary form.

§0. Introduction.

The paper contributes to two problems on incomplete character sums that go back
to the work of Burgess and Davenport-Lewis in the sixties. Incomplete character sums
are a challenge in analytic number theory. By incomplete, we mean that the summation
is only over an interval I. Typical applications include the problem of the smallest
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quadratic non-residue (mod p) and the distribution of primitive elements in a finite
field. Recall that Burgess’ bound [B1] on multiplicative character sums > __; x(z) in
a prime field F,, provides a nontrivial estimate for an interval I C [1,p — 1] of size
|I| > p'/4*+e, with any given ¢ > 0. Burgess’ result, which supercedes the Polya-
Vinogradov inequality, was a major breakthrough and remains unsurpassed. (It is
conjectured that such result should hold as soon as |I| > p*©.)

The aim of this paper is to obtain the full generalization of Burgess’ theorem in
sz. Thus

Theorem 5. Givene > 0, there is § > 0 such that if w € F,2\F, and I, J are intervals

of size pt/*e . (p sufficiently large), then
S X wy)| <p7 11]1] (0.1)
zel
yeJ

for x a nontrivial multiplicative character.

The importance of the statement is its uniformity in w. Both Burgess [B2] and
Karacuba [K]| obtained the above statement under the assumption that w satisfies a
given quadratic equation

w?+aw+b=0 (mod p) (0.2)

with a,b € Q.

In the generality of Theorem 5, the best known result in Fj> was due to Davenport
and Lewis [DL], under the assumption |I|, |J| > p'/3+¢. More generally, they consider
character sums in Fj,» of the form

Yo x(@wwr e+ @wn), (0.3)
r1€11,... ,xn€l,
where I,...,I, C [1,p — 1] are intervals. It is shown in [DL] that
> X(z1w1 + -+ Tpwy) < p 0O - | L] (0.4)

$1€I17-~~ ,mneln

provided for some € > 0,

n
I Pte with p=p, = ———. 0.5
\I;| > p with p = p ST 1) (0.5)
)



In [C2], newly developed sum-product techniques in finite fields were used to estab-
lish (0.4) under the hypothesis

|I;| > piTe for some € > 0 (0.6)

Hence [C2] improves upon (0.5) provided n > 5 and Theorem 5 in this paper
provides the optimal result for n = 2.

We will briefly recall Burgess’ method in the next section. It involves several steps.
As in [C2], the novelty in our strategy pertains primarily to new bounds on multiplica-
tive energy in finite fields (see Section 1 for definition). The other aspects of Burgess
technique remain unchanged. We also did not try to optimize the inequality qualita-
tively, as our concern here was only to obtain a nontrivial estimate under the weakest
assumption possible. The new estimates on multiplicative energy are given in Lemma
2 and Lemma 3 in Section 1. Contrary to the arguments in [C2] that depend on
abstract sum-product theory in finite fields, the input in this paper is more classical.
Lemma 2 is based on uniform estimates for the divisor function of an extension of Q
of bounded degree. In Lemma 3, we use multiplicative characters to bound the energy

E(A,[) = {($1,$2,t1,t2) € A% x I?%: 1t = 2oty mod p}, (07)

where A C Fp» is an arbitrary set and I C [1,p — 1] an interval. The underlying
principle is actually related to Plunnecke-Ruzsa sum-set theory [TV] (here in its mul-
tiplicative version), but in this particular case may be captured in a more classical
way.

Closely related to Theorem 5 is the problem of estimating character sums of binary
quadratic forms over [F,,.

Z x(2? + azy + by?), (0.8)
zel,yeJ

where 2% +azy+by? € F,[z,y] is not a perfect square and x a nontrivial multiplicative
character of IF,.

Theorem 11. Given € > 0, there is § > 0 such that if x> + axy + by? is not a perfect
square (modp), and if I,J C [1,p — 1] are intervals of size

[1],]J] > pite, (0.9)

then for p sufficiently large, we have

> x(@® +azy +by?)| <p | | ], (0.10)
zel,yeJ
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where 6 = 6(¢) > 0 does not depend on the binary form.

This is an improvement upon Burgess’ result [B3], requiring the assumption |I|, |J| >
1/3+¢
D )

We will not discuss in this paper the various classical application of Theorem 1
(to primitive roots, quadratic residues, etc) as the argument involved are not different
from the ones in the literature.

¢1. Preliminaries and Notations.

In what follows we will consider multiplications in R = F,« and R = F, x F,,.
Denote by R* the group of invertible elements of R. Let A, B be subsets of R. Denote

(1). AB:={ab : a € Aand bec B}.
(2). aB :={a}B.

Intervals are intervals of integers.
(3). [a,b] :={n€Z:a<n<b}
(4). The multiplicative energy of Ay, ..., A, C R is defined as
E(Ay,...,A) ={(a1,... ,an,ay,...,a,) a1 --a, =a}---a,}|
with the understanding that all factors a;,a; are in A; N R*.

Using multiplicative characters x of R , one has
2

(5). B(Av,... ,Ay) = i S TT [ Seren, x(&)

Energy is always multiplicative energy in this paper.

(6). Burgess’ Method. In this paper we will apply Burgess’ method several times. We
outline the recipe here, considering intervals in F,. For details, see Section 2 of [C2].

Suppose we want to bound

> xlxtwy), (1.1)

zel,yeJ

where I, J are intervals. We translate (x,y) by (tu,tv) € TM, where M = I' x J' is
a box in Fj2, and 7 = [1,T] such that T |I'| < p~¢|I| and T'|J’| < p~¢|J| for some
small € > 0. Therefore, it suffices to estimate the following sum

ﬁ‘ Z ZX(:E—I—tu-l— (y + tv)w)]|. (1.2)

teT zel
(u,v)eM yeJ
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LetlUQO::|{<xay7uav)6.[X1J><A42[L::£igﬂ}L

Uu+wv

Then the double sum in (1.2) is bounded by

Z w(,u)|2x(t+u)‘§< Z w(u)glfﬁl)l_zlk ( Z ’ZX(MJFtH%);k,

HEF 2 teT KEF 2. peF o teT

N J/
g

(1.3)
where k is a large integer to be chosen. By Holder’s inequality and the definition of
w(p),

o< [ S [ uw?] ™ = (1111111 B+ w1 )

A key idea in Burgess’ approach is then to estimate (1.3) using Weil’s theorem for
multiplicative characters in F,» (here n = 2), leading to the bound.

o

p?ik' + 2T'par .

I

B<ET

So the remaining problem to bound the character sum (1.1) is reduced to the bound-
ing of multiplicative energy E (I +wJ,I’ + wJ’). We will describe a new strategy.

§2. Multiplicative energy of two intervals in [ ..

The first step in estimating the multiplicative energy is the following

Lemma 1. Letw € F2\F, and

o {m+wy2$,y€ [1,%;91/4}}.

Then

1
ggf;; [{(21,22) € Q X Q : & = z1.22}| < exp <C%>-

An essential point here is that the bound is uniform in w. Also, the specific size of
Q is important. Note that for our purpose, any estimate of the type p°*) would do as
well.

Proof.



For given { € IF)2, assume that £ can be factored as products of two elements in @
in at least two ways. We consider the set S of polynomials in Z[X]
(Y192 — Y192) X° + (21y2 + 2291 — 2hy5 — 25y1) X + (122 — 2ap),  (2.1)
where z; + wy;, z; + wy, € Q for i = 1,2, and
(1 +wyr) (@2 + wy2) = & = () + wyy) (25 + wys) (2.2)
in .
Let g(X) = X%+ aX + b € F,[X] be the minimal polynomial of w. Then it is clear

that every f(X) in S, when considered as a polynomial in [F,,[X], is a scalar multiple
of g(X).

Next, observe that, by definition of @, the coefficients of (2.1) are integers bounded
by 2—15 p%. Therefore, since the coefficients of two non-zero polynomials (2.1) are propor-
tional in F,,, they are also proportional in Q. Thus the polynomials (2.1) are multiples
of each other in Q[X] and therefore have a common root @ € C. Since

(21 4+ Oyn) (w2 + Oya) = (1 + Oy (3 + Dya) (2:3)
in Q(&) whenever (2.2) holds, it suffices to show that if we fix some £ € Q(@), then
-~ - lo
{(21,22) €EQ X Q : £ = 2120} < exp (cﬁ), (2.4)

where

Q= {x-l—&;y:x,ye [1,%1)1/4}}.

This is easily derived from a divisor estimate. Let uX? 4+ vX + w be a nonzero
polynomial in S, then
u(@)? 4+ v& 4+ w = 0.

Note that n = uw is an algebraic integer, since it satisfies

n2+vn+uw:0.

Thus ~
u?E = (uzq + ny1) (uzs + nys)

is a factorization of u2€ in the integers of Q(n). Since the height of these integers is
obviously bounded by p, (2.4) is implied by the usual divisor bound in a (quadratic)
number field (which is uniform for extensions of given degree).

This proves Lemma 1. [J

As an immediate consequence of Lemma 1, we have the following.
6



Lemma 2. Let Q be as in Lemma 1. Then the multiplicative energy E(Q, Q) satisfies

log p
E(Q,Q) < exp (Cw> QP (2.5)

and

Lemma 2'. Let Q be as in Lemma 1 and 21,29 € Fp2. Then

lo
B(z1+ Q2+ Q) < exp (e o) - QP (2:6)
loglog p

Proof of Lemma 2.

We have
E(z1+Q2+Q) <[QP+EQ+Q,2+Q)

and by Cauchy-Schwarz. (See [TV] Corollary 2.10).
BQ+Q2+Q <EQ+QQ+Q)* E:+Qz+Q):.
Hence (2.6) follows from (2.5). O

63. Further amplification.
The second ingredient is provided by

Lemma 3. Let Q be as in Lemma 1, and let I = [1,p'/*], where k € Z,. Let
21,22 € Fp2. Then

1
E(l,z1+Q,22+ Q) < exp (c o8P ) piter, (3.1)
log log p
Proof.

Denote x the multiplicative characters of Fj2. Thus
E(l,z1+Q, 22+ Q)

ZZ‘ZX ) ZX(€+21‘ Z £+zQ‘ . (3.2)
X te[ J\feQ eqQ .
A2 B2 P
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Here the sum over £ € @) is such that £ + z; # 0, for ¢ = 1, 2.
Hence by Holder’s inequality,

E(I,Zl+Q,ZQ+Q)

< (FE oo} (3T (morty

2
p X

_ {]% ZA%BZCQ}i {1% 23202}1_’1.
X

X

N J/

(3.3)

Since the second factor is equal to E(z1+Q, zo+Q)* %, (2.6) applies and we obtain
the bound

log p 2(1- 1)
3) - . . 4
(33) - exp (e 0 ) QPO (3.4)

Estimate (3.3) as

(33) < | |%{ S x@® Y xe+ )"

==

X tel £eQ
1
log p 2\ %
< o (e 1O {2 100 e+ 2}
oglogp & =
logp 1
- E(F 3.5
eXp<cloglogp> QIF B(Ey,Q + 2. (3.5)

The second inequality is by definition of I and the divisor bound. Next, let z = a+wb,
with a,b € F, and let Q = J + wJ, with J = [1,p'/4]. Then

E(F,, Q + 2)
= {(t1,t2,61,6) €Fa x Q% i t1(&1 + 2) = ta (&2 + 2) # 0}
= H(tl,tg,l’l,l’g,yl,yg) € IFIQ) x Jb:
t1((z1 +a) +wlyr +b) =t2((z2 + a) + w(y2 + b)) # O}| (3.6)

Equating coefficients in (3.6), we have

{tl(scl +a) = tay(xy + a)
tl(yl + b) = t2(y2 -+ b) )
8



Therefore,
x|+ a . To +a

y1+0b N Yo + b’

and the number of (x1, x2,y1,y2) satisfying (3.6) is bounded by E(a+ J,b+ J), which
is bounded by p/?log p, by [FI]. Hence,

E(F,,Q + z) S p*/?logp.

By (3.5) and (3.4),

3.3) < ( ) £ pik,
33 < o (e L) Q)
and
B(L 21+ Q.2+ Q) < exp (o) Q2 pit.
log log p
This proves Lemma 3. [
Lemma 4. Let I; = [a;,b;], where b; —a; > pt for j=1,...,4. Denote

R = Il —{—wIQ, and S = Ig —f—UJI4.

Let I =[1,p*] with k € Z, .
Then
=1 RSP (3.7)

Proof.

Subdivide R and S in translates of ) and apply Lemma 3. Thus the left side of

(3.1) needs to be multiplied with (%)2(%)2 which gives (3.7). O

§4. Proof of Theorem 5.

We now establish the analogue of Burgess for progressions in F,

Theorem 5. Given p > i, there is & > 0 such that if w € Fp2\F, and I,J are

intervals of size p?, then

Y xa+wy)| <p 1111 (4.1)

xzel
yeJ
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for x a nontrivial multiplicative character. This estimate is uniform in w.

Proof.
Denote Iy = [l,pi] and K = [1,p "], where r is the reciprocal of a positive integer
and .
> — 4 2K.
P 1 + 2K

(4.2)

We translate I+w.J by K K (Ip+wlj) and estimate (following the procedure sketched

in §1)

1

KELP Z ) Zx(x+wy+st(x1 —l—wyl))’

z1,y1 €L tEK
seK
zel,yeJ

:|K|21|10\2 2 ’ZX(HS(Z?:ZI))"

zel,yeJ teK
z1,91€ 1o
seK

With the notations from §1, we have

o <(ITof? K] |1 1) FE(K I+ wlp, T +wJ)™

lo 1 (K3 T4 T12.7|2
Sexp<ci>.(|jo|2 K| |1 |J|> k(| |2 [Lo|*[Z]7]J]

log log p
log p
log log p

p

—exp (o )< ol 1] 7] | K |*= 3 p~ %,

by Lemma 4, and
B <IK|E p* + |K| por.

1

X

(4.3)

Hence, taking £ = 1, (4.3) is bounded by || |J| p_ﬁ and the theorem is proved

with any § < ﬁ (taking p large enough). [

Remark 5.1. In [DL], the result (4.1) was obtained under the assumption that p > 3.
In general, it was shown in [DL] that if wy,... ,wq is a basis in Fpa then

} Z X(ziwr + -+ + zqwq) <p‘5111!---\fd\,
x;, €1;

10

(4.6)



provided Iy,... ,Iq are intervals in I, of size at least p” with

.4
P = 9@+ 1)

For d > 5, there is a better (uniform) result in [C2], namely

(4.7)

2
p > E—FE. (48)

As a consequence of Theorem 5, we have

Corollary 6. Assume —k € F), is not a quadratic residue. Then

| 7X@+ k)| <p0 11 1] (4.9)

zel
yeJ

for x nontrivial and I,J intervals of size at least p%“. Here 6 = 6(g) > 0 is uniform
n k.

Proof.

Let w = v/—k. Since 22 + ky? is irreducible modulo p, x(2? + ky?) is a character
(mod p) of x + wy in the quadratic extension Q(w). O

§5. Extension to F

There is the following generalization of Lemma 1.
Lemma 7. Let w € F,a be a generator over Fy,. Given 0 < o < % and let
Q=

{900 +rw At rgwiT i € [Lpa]}
1—0’
Q1= {yo+y1WIyi S [Lpf ”

Then

e log p
ax [{(202) € Q x Qu i€ = 21} < exp (cdloglogp). (5.1)

Proof.

The proof is similar to that of Lemma 1. It uses the fact that if

(@0 + 1w + -+ za 10" (Yo + y1w) = € = (2f + -+ + 2g_ 10" ) (W) + yiw)
then the polynomial
(w0 + 21X + -+ 291X (yo + y1.X) — (2 + 21 X + -+ 2 X (yo + 1X)

is irreducible in F,[X], or vanishes. [

Hence the analogues of Lemmas 2, 2’ hold. Thus
11



Lemma 8. Let Q,Q1 be as in Lemma 7 and let z € Fpa. Then

1
Bz +@QQ0) <oxp (ca o b ) - 1Q1 1@+ [@al (5.2)

We need the analogue of Lemma 3, but in a slightly more general setting.

Lemma 9. Let Q,Q1 be as in Lemma 7 with |Q1] < |Q| and let I, = [1,pé] for
s=1,...,r, with ks € Z andk—llﬁ----—l—k% < 1. Then

1 P
E(l,...,I,,24+Q,Q1) < exp (Cd &>pl+(d—2)0+2(1—0) pIMINE -

log log p
log p e
= exp (ca )-1@l I T 1L,
loglog p S (5.3)

Proof.
The left of (5.3) equals

dZ 1@ e+ |3 x@f

s=1 tel, £eq £e@r

which we estimate by Holder’s inequality as

UGS IS G 2

J

ASI%S B s
(5.4)
Here we denote > ,c; x =D ;. X() Doecq X = Deeq X(2 +§) ete.
By Lemma 8
B=F .
(= +Q.Q) <exp (e )l @l (5.5)

It is clear from the definition of multiplicative energy that

Ay < |QUPE(, ... 1,2+ Q)
N——
ks

lo
<|Q1|* exp <Ck: P

* loglog p
12

) E(F,, 2 + Q).



To bound E(F,, z + Q), we write 2 = ag + ajw + - - - + ag_1w?~!. Hence

E(F,, z+Q) = Z@Z, (5.6)
where
©o ZH(t,t/,xO, A1, Ty e Ty q) € Ff) X [1,p“]2(d_1) :

t(l—i— 1 +a1w+...+ Ld-1 7 Gd—1 +ad_1wd_1) (5.7)

To + ag To + ag

! x4+ ag—

:t’(1+$,1+a1w+---+d_,l—dlwd_1> (5.8)

Ty + ag Ty + ag

and the other ©,;’s are denoted similarly.

Equating the coefficients of (5.7) and (5.8), we have
t="t,

T +a; T +a

ro+ag T+ ag

,fori=1,...,d. (5.9)

For i = 1, the number of solutions (z¢, z(, z1,2}) in (5.9) is bounded by E([1,p?] +
aog, [1,p°] + a1), which is bounded by p?° logp. The choices of t and ws,... ,24_1 is
bounded by p p?(4=2). Therefore,

E(F,, 2z + Q) < dp'™?log p,

and

lo
A < |Q1|2exp (Cks &p ) -pH"d. (5.10)
log log p

Note that |Q| = p?° and |Q1| = p'~2°. Putting (5.4), (5.5) and (5.10) together, we
have

E(Il,... ,IT,Z+Q,Q1)

lo 1 o 1 -3 &
<exp <Cd 2 ) JQUPE T pIHT DT (1] |Qu)) =
log log p

—oxp (s B ) QT QT 0 T
log log p

— exp (Cd logp ) .p(1+§; =)(1-20)+(1-3 & )do+(1+0d) 3 &
loglog p ’

which is (5.3). O

We now estimate a character sum over ]de.

13



Theorem 10. Let w € Fpa be a generator over F,,, and let Jo, ... ,Jg—1 be intervals
of size at least pPiT¢, where

VB F2d-T+3-d

pa < (5.11)
Denote
Q= {x0+x1w—|—---+xd_1wd_l cx; € J;, fori=0,... ,d—l}
Then
> x(q) <p~°Jol -+ | Jaal, (5.12)
qeQ
where 0 = 6(¢) > 0 is independent of w.
Proof. First we denote p; by p. Note that, by (5.11)
1 1
—<p< =, 5.13
1SP<3 (5.13)
Let
1_
Qo = {yo +yw iy € [LCd p? "’] }
Let further kq,... k. € Z satisfy
1 1 1 1
WPp—=—2< — 4t —<2—=— 5.14
where ¢ > 0 will be taken sufficiently small and r < r(g).
Let )
I=[1,p?], and I, =[1,p%:]
for s =1,... ,7. We then translate ) by
I-T]1:- Qo
s=1
and carry out Burgess’ argument as outlined in Section 1.
The estimate of the left-hand side of (5.12) is
S x(g) < p BT R0, (5.15)

q€eQ
14



where

L

L\ 1%
(0} S (‘Ql |Q0|pZK> E(Q,Q07117"' 7I7”)2k

lo _ 1\ R
exp (ea == - (1Q1 Qo] p0 0= 7 ) T

=

< (1l Qo p= %)’

loglog p (5.16)
Bk |I|5p% + 21| ptk < pitar 4 pitik, (5.17)
and k € Z to be chosen.
Claim.
Q| |Qo| p* =72 R < Q1% |Qol? p**= %7277 for some 7 > 0. (5.18)

Proof of Claim.
We will show

1 1 d
d 1-2 2(1 — — <2dp+2(1-2 2 — == 1
p+(1—2p) +2( p)zks< p+2(1—2p) + Zk 5 (5.19)
This is equivalent to
1 d
d 1—-2 2 ——=—>0.
p+(1—2p)+2p) 3
From (5.14), the choice of kq,... , k., and taking € small enough, it suffices to show
that
1 d
dp+(1=2p) +2p(2p = 5) = 5 >0,
namely,
d—2
4p* 4+ (d—3)p — — >0,
which is our assumption (5.11). O
Putting (5.15)-(5.18) together, we have
> x(a)
€Q
<pm G0 (1] 1ol pT ) (1Q1 1Qul? P E ) (pitk 4 pit)

15



Theorem 10 is proved, if we chose k > d/e. O

Remark 10.1. Returning to Remark 1.1, (see (4.7)), we note that

d

P= 5+ 1)

§6. Character Sums of Binary Quadratic Forms.

Following a similar approach, we show the following:

Theorem 11. Given € > 0, there is 6 > 0 such that the following holds. Let p be a
large prime and f(z,y) = % + axy + by? which is not a perfect square (modp). Let
I,J C [1,p—1] be intervals of size

1],]J| > pie. (6.1)

Then
> x(flay)| <pill 1 (6:2)

zel,yeJ

for x a nontrivial multiplicative character (mod p). This estimate is uniform in f.

Result was shown by Burgess assuming ||, ]J| > p3*¢ instead of (6.1).
Proof.

There are two cases.

Case 1. f is irreducible (modp). Then x(f(z,y)) is a character (modp) of z + wy,
with w = %a + %\/ a? — 4b, in the quadratic extension Q(w) and the result then follows
from Corollary 6 above.

Case 2. f(z,y) is reducible in F, [z, y].

flz,y) = (x = My)(x — A2y) A1 # A2 (modp).

We will estimate

S (@ A)(e — Aa)).

zel,yeJ

The basis strategy is as in the Fj2-case (cf. Theorem 5), but replacing F,> by F, x IF,,

(with coordinate-wise multiplication).
16



Let Io = [1, 5p¥] and K = [1,p"], where 1 = .
We translate (x,y) by (stxy, styy) with z1,y;1 € Ip and s,t € K and estimate

w2 1o ) )l 6

zel,yeJ teK
$1,y1€IO
seK

For (z1,22) € F, x IF,, denote

w(z1,22) = H(m,y,xl,yl,s) el xJxIyxIyx K :

zZ1 =

r— ANy vy = T — Aay1 H
s(xy — A\y)’ s(xy — Aayr) ) I

Hence

1
(63) = |10|2Z zl,@‘z ((t+ 21)(t+ 22)) |, (6.4)

teK
P

zQE]F

which we estimate the usual way using Holder’s inequality and Weil’s theorem. The
required property is a bound

> wlzn, 2)? < [IPITPIKPpT (6.5)

21,22

for some 7 > 0 (cf. (4.4)).
We may assume |I|, |J| < p. Let

R={(z - y,z—Ny):z€l,ye J}

T ={(x1 — My1,x1 — A1) : 21,41 € Ip}

S={(s,s):s€ K}, (6.6)
considered as subsets of IF; X IF;.

Hence (6.5) is equivalent to
BE(R,T,S) <p THP|JPIKP. (6.7)

To establish (6.7), we prove the analogues of Lemmas 1-4.

We first estimate E(R,T).
17



Lemma 12. Let R and T be defined as in (6.6). Then

logp
E(R,T) < exp <c o 1ogp> |RJ%. (6.8)

Writing R as a union of translates of T’

we have

E(R,T) < il max E(T+¢E,T).

Thus it will suffice to show that

log p
E(T+¢,T ( —)T2. 6.9
el (T+¢T+E) <exp © Toglogp |T| (6.9)

Using the same argument as in the proof of Lemma 2, it suffices to prove (6.9) for

(=¢=0.

Lemma 13. Let T be defined as in (6.6). Then

1
E(T,T) < exp (cﬂ> T2, (6.10)

There is a stronger statement which is the analogue of Lemma 1.

Lemma 14. Let T be defined as in (6.6). Then

1
{(z1,22) €T xXT :p=2z122} < exp <Clogoizp>' (6.11)

max
pEFS T}

Proof. Writing 21 = (21 —A\1y1, T1—A2y1), 22 = (T2—A1Y2, T2—A2y2) With x1, 22, y1, 2 €
Iy, we want to estimate the number of solutions in x1, x2,y1,ys € Iy of

{ (1 — Miy1)(z2 — A1y2) = p1 (modp)

(1 — Aay1) (22 —1§\2y2) = p2 (modp)

(6.12)



Let F be the set of quadruples (z1,72,y1,y2) € I§ such that (6.12) holds. If
(x1,22,Y1,Y2), (), 25,91, y5) € F, then A\, Ao are the (distinct) roots (modp) of the
polynomial

(yiy1 — yiys) X2 + (2 yh + yiah — 1y2 — y122) X + (2122 — 2)2h) = 0 (6.13)

By the definition of Iy, the coefficients in (6.13) are integers bounded by % p2. Since all
non-vanishing polynomials (6.13) are proportlonal in IF,,[X], they are also proportional

in Z[X]. Hence they have common roots A1, X2 and there are conjugate pi, p2 € Q()\l)
such that

{ (1 — 5\1y1)($2 - ;\1y2) =1 (6.14)

(21 — Xoy1) (T2 — Nay2) = o

for all (z1,22,y1,y2) € F.

As in Lemma 1, We use a divisor estimate in the integers of (@()\1) to show that there
are at most exp ( log p ) solutions of (6.14) in 21 —)\1y1, 56'2—)\13/2, 1 —)\gyl, :cg—)\gyg

log logp
Since A # Ao, these four elements of Q()\l) determine x1,y1,x2,y2. Therefore, |F| <
exp (clog’ﬁ)g p). This proves Lemma 14. O

Returning to (6.7), we proceed as in Lemma 3. Let x = % in the definition of K.
Thus

E(R,T,S)
2 2 2
— Y |Exe| [ x| |3 )
p X=X Xy 2€ES Z1ER z9€T
2% 2 21% [ 1 2 271 %
< | e |2 ” [_ > ”
(6.15)% E(R,;)P%
<(6.15)% - e p(clolgol%> |R|20-1) (6.16)
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(the last inequality is by Lemma 12), where

(6.15) 22‘2){ ‘E‘ZX(zl)r’ZX(ZZ)r

z€S zZ1ER zo€T

’T' DR CIDIE I

X z€S Z1ER
lo T
<eXP<Ck: P ) | | Z‘ZM X2 ‘ ‘ZXI $—>\1y XQ(ZU—)\QZ/)
lOglng X1Xo tEF, xel
yeJ
log p 9
= T E(R, A 6.17
exp (e o) < ITF B(RA), (6.17)

where A = {(¢,t) : t € F,}. The multiplicative energy E(R,A) in (6.17) equals the
number of solutions in (x,2’,y,y’,t,t') € I* x J* x (F})? of

{ tz - y) =t'(z' = \y')  (modp) (6.18)
Mo — doy) = (&' — hay’) (modp) |
(with the restriction that all factors are nonvanishing).
Rewriting (6.18) as
tr —t'e' = M\ (ty —t'y') = Ma(ty —t'y')  (modp)

and since \; # A2 (mod p)

tr =t'z"  (modp)

ty =t'y’ (modp).
Hence

ry =2’y (modp) (6.19)
and the number of solutions of (6.19) is bounded by

E(I,J) < (logp) - 1] |J] (6.20)

(since |I|, || < p).
Once z,2',y,y’ is specified, the number of solutions of (6.18) in (¢,¢') is at most
p— 1.
20



Hence (6.18) has at most
p(logp) - [1] |J]
solutions and substitution in (6.17) gives the estimate
1
(6.15) < exp (c ﬂ) p|R| |T*
log log p
Substituting of (6.21) in (6.16) gives
1 1 1 2
E(R,TS) < exp (c ﬂ) . pF|R|ZF|S|E.
log log p
Recalling the definition of S, we have |S| = |Io|2 = pz.
Also k = 1, and | K| — pt. Hence

_ logp \ 2 24
(622) = exp (e B0 ) - pE (11 1)

B log p . 9 2—k
= o (e ) IKP (1] 1)

and (6.7) certainly holds.
This proves Theorem 11. O

(6.21)

(6.22)

(6.23)
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