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§0. Introduction.

In this paper, we are solely interested in the sum-product phenomenon in charac-
teristic 0.

Given a finite set A of real or complex numbers, the sum-set A+A (respectively, the
product-set AA) is defined by A+A = {x+y : x, y ∈ A} (resp. AA = {xy : x, y ∈ A}).
It was shown by Erdős and Szemerédi [ES] that for sets of real numbers, A + A and
AA cannot both be small. More precisely, there is some δ > 0 such that

|A + A|+ |AA| > |A|1+δ. (0.1)

We assume here and in the sequel the set A to be large. (A proof of (0.1) for sets of
complex numbers in the spirit of [ES] was given by Chang in [C1].) In their paper,
Erdős and Szemerédi put forward the conjecture that for finite subsets A ⊂ Z or
A ⊂ R, one has

|A + A|+ |AA| > cε|A|2−ε for all ε > 0. (0.2)

The strongest results towards (0.2) were obtained so far by J. Solymosi and the
current record is the validity of (0.1) for δ < 1/3, for A ⊂ R (see [So]).

In the same spirit, the following more restrictive problem was also considered in
[ES].

Assume |A + A| < K|A| for some fixed constant K. Is it true that |AA| > cε|A|2−ε

for all ε > 0? (0.3)

Is there a function ε(δ) such that ε(δ) → 0 as δ → 0 and if |A + A| < |A|1+δ, then
|AA| > cε|A|2−ε? (0.3’)

Same as (0.3) reversing the roles of addition and multiplication. (0.4)
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Same as (0.3′) reversing the roles of addition and multiplication. (0.4’)

Note that a typical example of sets A satisfying (0.3) are arithmetic progressions.
It was shown by Tenenbaum [T] that if A = {1, . . . , N}, then

N2

(log N)α+ε
< |AA| < N2

(log N)α−ε

with

α = 1− log(e log 2)
log 2

= 0.086.

There are two proofs of (0.3). One (assuming A ⊂ R) is due to Elekes [El] and is based
on incidence geometry (the Szemerédi-Trotter theorem). It also yields (0.3’). The other
approach to (0.3) was given in [C2] using factorization in algebraic number fields. The
method from [C2] gives (0.3) for subsets A ⊂ C as well and in fact establishes more
generally that if |A + A| < K|A|, then the `-fold product set A` = {a1 · · · a` : ai ∈ A}
satisfies

|A`| > c
`,ε
|A|`−ε for all ε > 0, (0.5)

where ` is any given positive integer.

It is interesting that the contributions to (0.4) and (0.4’) rely on quite different
ideas (there does not appear to be symmetry when reversing the roles of addition and
multiplication). Note that typical sets satisfying (0.4) are geometric progressions. Us-
ing the deep results from [ESS] on linear relations in multiplicative groups of bounded
rank (depending on the subspace theorem), it was shown in [C3] that (0.4) holds. In
fact, it is proven there that if |A + A| < K|A| with K fixed or even K = o(log |A|),
then the `-fold sum-set `A satisfies

|`A| > c
`
|A|`.

Validity of (0.4’) for sets A ⊂ Z was established in [BC]. Because the argument from
[BC] depends mainly on prime factorization, it is not clear how to extend it to subsets
A ⊂ R. (This question remains open.) In this paper we prove (0.4’) for subsets A ⊂ C
consisting of algebraic numbers of bounded degree. Note that we do not require A to
be contained in the same number field of bounded degree.

Theorem 11. Let A ⊂ OK , |A| = N be a finite set of algebraic integers of bounded
degree d. Assume

|A.A| < R|A|.

Then for any B ⊂ A and D ⊂ C
|B + D| ≥ R−C(d,ε)N−ε|B| |D|1−ε.
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In particular, the sum-sets A + A and more generally `A satisfy

|A + A| > R−C(d,s)N−ε|A|2
and

|`A| > R−C(d,`,ε)N−ε|A|`.

In fact, we will prove a stronger result on additive relations, which is derived from
the following proposition.

Proposition 10. Let A be as in Theorem 11. Given q ∈ Z+, τ > 0, there is a constant
Λ = Λ(d, q, τ) such that given any system

(
c(x)

)
x∈A

⊂ R+, we have the inequality
[ ∑

x1+···+xq=
y1+···+yq

c(x1) · · · c(xq)
]1/2q

≤ NτRΛ
[ ∑

x∈A

c(x)2
]1/2

.

Let us explain the meaning of the above inequality. Assuming A ⊂ Z, then the
left-hand side equals ( ∫ 1

0

∣∣∣
∑

x∈A

c(x)e2πixθ
∣∣∣
2q

dθ

) 1
2q

.

In other words, the “lambda-2q constant” of A is at most NτRΛ. Thus Proposition
8 is the generalization of [BC] to sets of algebraic numbers of bounded degrees.

It seems reasonable to expect statements such as Proposition 8 and Theorem 11 to
be true for arbitrary finite subsets A of C with |A.A| < R|A|. But at this point our
method does not allow to avoid the dependence on the degree d.

The first ingredient is closely related to a result of H. Stark [St]and provides a
criterion for multiplicative independence of algebraic integers.

Proposition 5. Fix a Galois extension K0 of Q. Let ξ1, . . . , ξr be algebraic integers
satisfying the following condition

[K0(ξs) : K0] = [K0(ξs, ξs′) : K0(ξs′)]

for all s 6= s′. Assume further that the ξs are not in the set K0.{roots of unity}. Then
ξ1, . . . , ξr are multiplicatively independent.

Stark proved this result in case ξ1, . . . , ξr are the fundamental units of distinct
quadratic fields and our argument is a direct adaptation of his.

Proposition 5 has the following implication on finite sets A of algebraic integers
with small multiplicative doubling

|A.A| < R.|A|.
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Proposition 6. Let A be a set of algebraic integers of bounded degree d. Assume

|A.A| < R.|A|.
Then there is an extension field K of Q such that [K : Q] < C(d) and |A ∩ K| >
(R. log |A|)−C(d)|A|.

The next ingredient is the finiteness result from [ESS] for solutions of linear equa-
tions in multiplicative groups of finite rank, already mentioned above. But here it will
just be applied in the unit group of an extension field of Q of bounded degree (which
is a more modest result than [ESS]).

Let us point out that if we assume A ⊂ K (an extension field of Q) is such that
distinct elements of A are not conjugate (i.e. the corresponding principal ideals are
different), then the argument from [BC] could be repeated verbatim. This argument is
rather combinatorially involved and will not be completely reproduced here. We will
only recall the main steps and statements in our more general setting. (See Lemmas
5, 7, 8, and Proposition 9.) The additional issue of the unit may then be taken care
of by the subspace theorem. This is roughly how the proof of Proposition 10 goes.

Using Proposition 5, we will also prove

Proposition 14’. Let A be a finite set of algebraic numbers of degree at most d and
such that the minimal polynomial of each element of A has coefficients bounded by M .
Then

|A.A| > exp
(
− C(d)

log M

log log M

)
.|A|2

and similar for multiple product sets.

The paper is concluded with an application of Proposition 8 to incidence geometry,
in the spirit of results obtained in [CS].

Remark. Returning to the problem of establishing (0.4’) for general finite sets A ⊂ R
or A ⊂ C, it was pointed out in [BC] that a proof of the Polynomial Freiman-Ruzsa
Conjecture in its full strength would allow us to proceed as in [C3] and proof the
assertion. The role of the Polynomial Freiman-Ruzsa Conjecture is to reduce the rank
(of the multiplicative group generated by a large subset of A) to logarithmic size, so
that [ESS] becomes applicable. (See [BC2] for details.)

§1. Proof of Proposition 5.

Let p be a prime and let K be an extension of Q with p-th primitive root of unity

ωp = e
2πi

p ∈ K.

Our arguments are closely related to some techniques in [St].
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Lemma 1. If α ∈ K and α1/p 6∈ K, then the polynomial xp−α is irreducible over K
and [K(α1/p) : K] = p.

Proof. Assume the contrary that f(x), the irreducible polynomial of α1/p is a nontriv-
ial factor of xp−α. Then the roots of f(x) form a proper subset of {α1/pωp, · · · , α1/pωp

p}.
Hence, taking their product gives αr/pωk

p ∈ K for some k ∈ Z with r < p. Therefore,
αr/p ∈ K implies α1/p ∈ K, since (r, p) = 1. ¤

Lemma 2. Assume α1/p ∈ K(ξ1/p
1 , . . . , ξ

1/p
r ), with α, ξ1, . . . , ξr ∈ K. Then there

exist m1, . . . , mr ∈ N and γ ∈ K such that

α1/p = ξ
m1/p
1 . . . ξmr/p

r γ. (2.0)

Proof. We may clearly assume

ξ
1/p
i 6∈ K

(
ξ
1/p
j : j 6= i

)
. (2.1)

Proceed by induction on r.

From assumption

α1/p =
p−1∑

k=m

bkξk/p
r with bk ∈ Kr−1 = K(ξ1/p

1 , . . . , ξ
1/p
r−1) and bm 6= 0.

Let

β1/p =
α1/p

ξ
m/p
r

= bm + bm+1ξ
1/p
r + · · ·+ bp−1ξ

p−1−m
p

r . (2.2)

If β1/p ∈ Kr−1, the induction hypothesis applies and β1/p has the form β1/p =

ξ
m1
p

1 · · · ξ
mr−1

p

r−1 γ for some γ ∈ K. Hence (2.0) holds. Otherwise, from Lemma 1, it
follows that xp−β is irreducible over Kr−1. Let Tr = TrKr/Kr−1 . Then Tr(β1/p) = 0
and by (2.2)

0 = bmTr(1) +
∑

p>k>m

bkTr(ξ
k−m

p
r ). (2.3)

Since ξ
1/p
r 6∈ Kr−1 by (2.1), also ξ

k−m
p

r 6∈ Kr−1 for 0 ≤ m < k < p. By Lemma 1,

xp − ξk−m
r is irreducible over Kr−1, hence Tr(ξ

k−m
p

r ) = 0. It follows from (2.3) that

0 = bmTr(1),

hence bm = 0, which is a contradiction. This proves Lemma 2. ¤
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Lemma 3. Let K be Galois over Q, and let α, ξ1, . . . , ξr ∈ K. For K0 < K, we
denote Kr = K0(ξ1, . . . , ξr). Assume that

d := [K0(α) : K0] = [Kr(α) : Kr] < p. (3.0)

Then if
α1/p ∈ K(ξ1/p

1 , . . . , ξ1/p
r ),

there is a ∈ K0 such that
(aα)1/p ∈ K.

Proof. By Lemma 2, there exists γ ∈ K such that

α = ξm1
1 · · · ξmr

r γp. (3.1)

Since the minimal polynomial of α over K0 is irreducible over Kr, the conjugates
α = α1, α2, . . . , αd of α over K0 are also conjugates over Kr. Let L = Kr(α1, . . . , αd)
be the splitting field of α over Kr. Since K is Galois over over Q (hence over Kr) and
α ∈ K, we have L ⊂ K. Hence there are automorphisms

σi ∈ AutKrL,

such that
σi(α) = αi.

Hence each σi has an extension σ̃i ∈ AutKrK.

By (3.1)
d∏

i=1

αi = (ξm1
1 · · · ξmr

r )d
d∏

i=1

σ̃i(γ)p. (3.2)

Let

a =
d∏

i=1

αi ∈ K0.

From (3.1) and (3.2),

αd = (ξm1
1 · · · ξmr

r )dγdp = a
( d∏

i=1

γ

σ̃i(γ)

)p

=: aγp
1 , (3.3)

where γ1 ∈ K. Write 1 = ud + vp for some u, v ∈ Z, since (d, p) = 1. From (3.3),
α = au(γu

1 αv)p and hence (a−uα)1/p ∈ K. This proves Lemma 3. ¤
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Lemma 3′. Let K be Galois over Q and let K0 < K. Suppose C = {ξ1, . . . , ξr} ⊂ K
is a set of conjugates over K0 with r < p. Let α ∈ K, satisfying

[K0(α) : K0] = [K0(α, ξ1) : K0(ξ1)]. (3.4)

Then if
α1/p ∈ K(ξ1/p

1 , . . . , ξ1/p
r ),

there is a ∈ K0 such that
(aα)1/p ∈ K.

Proof. By Lemma 2, there is γ ∈ K such that

α = ξm1
1 · · · ξmr

r γp. (3.5)

Assumption (3.4) is equivalent to

[K0(ξ1) : K0] = [K0(α, ξ1) : K0(α)]

and since ξ1, . . . , ξr are conjugates over K0, also

[K0(ξs) : K0] = [K0(α, ξs) : K0(α)], for 1 ≤ s ≤ r.

For all s, the map
ϕ : K0(α)(ξ1) → K0(α)(ξs)

which is identity on K0(α) and sends ξ1 to ξs is an isomorphism. Denote G =
AutK0(α)K0(α, ξ1, . . . , ξr). Let ϕ̃ ∈ G be the extension of ϕ to K0(α, ξ1, . . . , ξr).

Hence G acts transitively on {ξ1, . . . , ξr}. For τ ∈ G let τ̃ be its extension in
AutK0(α)K.

Returning to (3.5)

α|G| =
∏

τ∈G

τ(ξ1)m1 · · ·
∏

τ∈G

τ(ξr)mr

( ∏

τ∈G

τ̃(γ)
)p

. (3.6)

Since G acts transitively on {ξ1, . . . , ξr}, we have
∏

τ∈G

τ(ξ1) = · · · =
∏

τ∈G

τ(ξr)

∏

τ∈G

τ(ξ1)r =
∏

τ∈G

τ(ξ1 . . . ξr) = NK0(ξ1)/K0(ξ1)|G| ∈ K0.

Therefore
αr|G| = aγp

1 with a ∈ K0, γ1 ∈ K.

Since |G| divides r! and p > r, the conclusion follows as in Lemma 3. ¤
Notation. For a set S, S1/n := {s1/n : s ∈ S}.

For an extension K of Q, we denote the ring of algebraic integers of K by OK .
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Lemma 4. Let K0 be Galois over Q. Let C1, C2, . . . , Cr be systems of conjugate alge-
braic integers over OK0 such that for ξ, ξ′ from different systems

[K0(ξ′) : K0] = [K0(ξ, ξ′) : K0(ξ)]. (4.0)

Then, taking p a sufficiently large prime and defining

K(s) = K0

(
ωp,

⋃

i≤s

C1/p
i ,

⋃

i>s

Ci

)
(4.1)

we have
ξ1/p 6∈ K(s), for ξ ∈ Ci, i > s (4.2)

unless
ξ ∈ K0 {roots of unity}. (4.3)

Proof. We proceed by reduction on s.

Thus first, we need to show that if ξ ∈ ⋃
1≤s≤r Cs and (4.3) fails then

ξ1/p 6∈ K(0) = K0

(
ωp,

⋃

1≤s≤r

Cs

)
. (4.4)

Assume ξ1/p ∈ K(0). Then

ξ = γp for some γ ∈ K(0). (4.5)

Claim. ξ = λp, for some algebraic integer λ ∈ OK0(ξ).

Proof of Claim.

Since ξ is an algebraic integer, by (4.5), γ is an algebraic integer over OK0(ξ). Again,
by (4.5),

ξ[K(0):K0(ξ)] = NK(0)/K0(ξ)(ξ) =
(
NK(0)/K0(ξ)(γ)

)p
, (4.6)

where
[K(0) : K0(ξ)]

∣∣∣ [K(0) : K0] = [K(0) : K0(ωp] [K0(ωp) : K0]. (4.7)

By (4.4), K(0) is obtained from K0(ωp) by a sequence of extensions, where elements
of

⋃ Cs are added consecutively. Hence certainly

[K(0) : K0(ωp)] ≤ (d !)r (4.8)
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where d = maxξ∈∪Cs
[Q(ξ) : Q] < p for p chosen large enough.

Also [K0(ωp) : K0] ≤ [Q(ωp) : Q] = p− 1. By (4.7) and (4.8), we see that

([K(0) : K0(ξ)], p) = 1. (4.9)

The Claim follows from (4.6), (4.9) and that NK(0)/K0(ξ)(γ) ∈ OK0(ξ).

Therefore
NK0(ξ)/Q(ξ) = [NK0(ξ)/Q(λ)]p.

Since both NK0(ξ)/Q(ξ) and NK0(ξ)/Q(λ) are integers, choosing p large enough, this
may happen only if NK0(ξ)/Q(ξ) = ±1. Hence ξ and λ are units. Since ξ is not a root
of unity, representation of ξ and λ in the unit group of K0(ξ) as product of a root of
unity and fundamental units, shows that (4.5) cannot hold if p is taken large enough.

Next we perform the inductive step s− 1 implying s.

Clearly we may take i = s + 1. Thus assume that

ξ ∈ Cs+1 and ξ1/p ∈ K(s) = K(s−1)(C1/p
s ).

Notice that by construction K(s−1) is a Galois extension of Q. Apply Lemma 3′ with
K = K(s−1) and α = ξ. Thus there exists a ∈ K0

(aξ)1/p ∈ K(s−1). (4.10)

Replace Cs+1 by a.Cs+1 (the other Ci remain). The fields K(i) remain the same for
i ≤ s. From the induction hypothesis at stage s− 1 and (4.10), we get that

aξ ∈ K0 {root of unity}.

Hence (4.3) holds. This proves Lemma 4. ¤

Proposition 5. Let K0 be Galois over Q and let ξ1, ξ2, . . . , ξr be algebraic integers
not of the form K0 {roots of unity} satisfying

[K0(ξs) : K0] = [K0(ξs, ξs′) : K0(ξs′)],

for all 1 ≤ s 6= s′ ≤ r. Then ξ1, . . . , ξr are multiplicatively independent.

Proof. Let Cs be the set of conjugates of ξs over K0. Condition (4.0) clearly holds.
Apply Lemma 4 with suitable p.
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Since ξ
1/p
s+1 6∈ K(s), it follows from (4.1) that

ξ
1/p
s+1 6= ξ

m1/p
1 · · · ξms/p

s ξ
m′

s+1
s+1 ;

i.e.,

ξm1
1 · · · ξms

s ξ
p m′

s+1−1

s+1 6= 1 (5.1)

for any m1, . . . , m′
s+1 ∈ Z, p large enough. If ξ1, . . . , ξr are multiplicatively dependent,

there are ν1, . . . , νs and ν1+1 ∈ Z, νs+1 6= 0 such that

ξν1
1 · · · ξνs

s ξ
νs+1
s+1 = 1. (5.2)

Take p > νs+1 and q ∈ Z such that

qνs+1 ≡ −1 (mod p).

Putting
m1 = ν1q, . . . , ms = νsq, m

′
s+1p− 1 = qνs+1, (5.3)

we get a contradiction. ¤

§2. Consequences.

We first establish the following proposition.

Proposition 6. Let A be a set of algebraic integers of degree bounded by d. Assume

|AA| < R |A|. (6.1)

Then there is an extension K > Q satisfying

[K : Q] < C(d) (6.2)

and
|A ∩K| > (R log |A|)−C(d)|A|. (6.3)

Proof.

In Lemma 4, take K0 = Q and denote for ξ ∈ A by C(ξ) the set of conjugates of
ξ. Let ξ1, . . . , ξr ∈ A \ Q {roots of unity} be a maximal set of elements such that
C1 = C(ξ1), . . . , Cr = C(ξr) satisfy (4.0).
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Note that by the degree assumption

A ∩Q{roots of unity} ⊂ Q(
ωq, q ≤ C(d)

)
=: L

where, denoting by C(d) various constants depending on d

[L : Q] < C(d).

We may therefore assume that |A\L| > 1
2 |A|, since otherwise (6.3) holds with K = L.

It follows from the maximality that if ξ ∈ A\L, then for some s = 1, . . . , r we have

[Q(Cs, ξ) : Q(Cs)] ≤[Q(ξs, ξ) : Q(ξs)]

≤[Q(ξ) : Q]− 1 ≤ d− 1. (6.4)

We establish a bound on r using the property that ξ1, . . . , ξr are multiplicatively
independent together with (6.1). Denoting A1 = {ξ1, . . . , ξr}, it follows from the
Plunnecke-Ruzsa inequality that for arbitrary ` ∈ Z+

(
r
`

)
< |A1 . . . A1︸ ︷︷ ︸

`

| = |A`
1| ≤ |A`| ≤ R`+1|A|. (6.5)

Hence, for ` < r
2 , we find

r < 2`R1+ 1
` |A| 1` (6.6)

implying for ` = [log |A|]
r < 2e2R log |A|. (6.7)

From the preceding, we may specify some s1 = 1, . . . , r and a subset A(1) ⊂ A\L
satisfying

|A(1)| > 1
r

|A|
2

(6.8)

and for ξ ∈ A(1)

[Q(Cs1)(ξ) : Q(Cs1)] ≤ d− 1. (6.9)

Take now K0 = Q(Cs1). Then
[K0 : Q] ≤ C(d) (6.10)

and
[K0(ξ) : K0] ≤ d− 1 for any ξ ∈ A(1). (6.11)

Repeat the preceding considering now the system {C(ξ) : ξ ∈ A(1)} and C(ξ) the
conjugates of ξ over K0, Clearly, by (6.10), again

A1 ∩K0{roots of unity} ⊂ K0(ωq, q ≤ C(d)) =: L1

11



where
[L1 : Q] < C(d).

By (6.7) and (6.8),

|A(1)| > C
|A|

R log |A| . (6.12)

We may assume

|A(1)\L1| > 1
2
|A(1)|,

since otherwise (6.3) holds with K = L1.

The same bound (6.7) on r holds. This gives A(2) ⊂ A(1)\L1 such that for some s2

|A(2)| > 1
2r
|A(1)|,

and for ξ ∈ A(2)

[K0(Cs2)(ξ) : K0(Cs2)] ≤[K0(ξ) : K0]− 1

≤d− 2. (6.13)

Redefine K0 as K0(Cs2) and start over again.

Since the process has to terminate after at most d iterations, the conclusion is clear.
This proves Proposition 6. ¤

We now focus on Proposition 10. First, we need a preliminary result. (Lemma 7
below.)

Fix a prime ideal P of OK .

Notation. For x ∈ OK , denote m(x) = max{m ∈ N : x ∈ Pm}.
Note that x ∈ Pm is equivalent to Pm|(x).

The following is an analogue of Proposition 6 in [C].

Lemma 7. For q = 2k ∈ Z+ and c : OK → R+, we have

[ ∑
x1+···+xq=y1+···+yq

c(x1) · · · c(xq)c(y1) · · · c(yq)
]1/2q

≤c(q)
{ ∞∑

m=0

[ ∑

x1+···+xq=y1+···+yq

m(x1)=···=m(yq)=m

c(x1) · · · c(xq)c(y1) · · · c(yq)
]1/q}1/2

.
(7.1)
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Proof. Here we only treat the case q = 2, since the general case is similar.

If x1 + x2 = y1 + y2 and m = mini{m(xi), m(yi)}, then clearly m has to appear
at least twice. Indeed, if m = m(x1) < m′ = min{m(x2),m(y1),m(y2)}, then Pm′

divides (y1 + y2 − x2) but not (x1), a contradiction.

Therefore
∑

x1+x1=y1+y2

c(x1)c(x2)c(y1)c(y2) (7.2)

.
∑

z∈OK

[ ∑

m(x1)=m(x2)
x1+x2=z

c(x1)c(x2)
][ ∑

y1+y2=z

c(y1)c(y2)
]

(7.3)

+
∑

z∈OK

[ ∑

m(x1)=m(y1)
x1−y1=z

c(x1)c(y1)
][ ∑

y2−x2=z

c(x2)c(y2)
]

(7.4)

Estimate (7.3) (similarly for (7.4)) by Cauchy-Schwarz. We obtain

(7.3) ≤
{ ∑

z∈OK

[ ∑

m(x1)=m(x2)
x1+x2=z

c(x1)c(x2)
]2}1/2

· (7.2)1/2

and

(7.4) ≤
{ ∑

z∈OK

[ ∑

m(x1)=m(y1)
x1−y1=z

c(x1)c(y1)
]2}1/2

· (7.2)1/2.

The triangle inequality gives

∑

z∈OK

[ ∑

m(x1)=m(x2)
x1+x2=z

c(x1)c(x2)
]2

≤
{ ∞∑

m=0

( ∑

z∈OK

[ ∑

m(x1)=m(x2)=m
x1+x2=z

c(x1)c(x2)
]2)1/2}2

=
{ ∞∑

m=0

[ ∑

x1+x2=y1+y2
m(x1)=···=m(y2)=m

c(x1)c(x2)c(y1)c(y2)
]1/2}2

= (7.1)4. (7.5)

Hence
(7.2) . (7.3) + (7.4) . (7.1)2 · (7.2)1/2
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and we prove the case of q = 2. ¤
Using Lemma 7 as basic ingredient, one may then establish the analogue of Propo-

sition 3 in [BC], relying on a similar multiscale argument. The only difference from
[BC] is that here we invoke factorization in prime ideals rather than rational primes.
If in particular we take in [BC], Proposition 3, A1 = A2,G = A1 × A2, we conclude
the following:

Proposition 8. Let A be a finite set of ideals in OK , |A| = N , such that

|A.A| < K|A|. (8.1)

Let q ∈ Z+, τ > 0 be fixed. There is a subset A′ ⊂ A satisfying

(i). |A′| > N−τ |A|
(ii). Let B ⊂ OK and assume that B is union

B =
⋃

I∈A′
BI ,

where

BI = {x ∈ B : (x) = I.J where J is relative prime with all ideals in A′}.

Let c(x) ∈ R+ for x ∈ B.

Then

[ ∑

x1+···+xq=
y1+···+yq

c(x1) · · · c(xq)c(y1) · · · c(yq)
]1/2q

≤NτKΛ
{ ∑

I∈A′

[ ∑

x1+···+xq=y1+···+yq

x1,... ,yq∈BI

c(x1) · · · c(xq)c(y1) · · · c(yq)
]1/q}1/2

,
(8.2)

where Λ = Λ(q, τ).

We may then establish

Proposition 9. Let A ⊂ OK be a finite set, |A| = N and

|A.A| < K.|A|. (9.1)
14



Given q ∈ Z+, τ > 0, there is a constant Λ = Λ(q, τ) such that if c(x) ∈ R+ for x ∈ A,
we have

[ ∑

x1+···+xq

=y1+···+yq

c(x1) · · · c(yq)
]1/2q

≤ NτKΛ
{ ∑

I principal

[ ∑

x1+···+xq=y1+···+yq

(x1)=···=(yq)=I

c(x1) · · · c(yq)
]1/q}1/2

. (9.2)

Proof.

Define
A = {(x) : x ∈ A}.

Let
M = max

I∈A
|{x ∈ A : (x) = I}|

and let
M = |{x ∈ A : (x) = (x0)}|

for some x0 ∈ A.

Hence
|A| ≤ M.|A|

and also from (9.1)

K3.|A| ≥ |A.A.A|
≥ |A.A.{x ∈ A : (x) = (x0)}|
≥ |A.A|.M.

Hence
|A.A| < K3|A|. (9.3)

Denote
A1 =

{
I ∈ A : |{x ∈ A : (x) = I}| > m

10K

}
.

Hence
|A| ≤ |A1|.M + |A\A1| M

10K
< |A1|.M + |A| M

10K
,

while also
K.|A| ≥ |A.A| > M.|A|

15



and therefore

|A1| > |A|
2K

. (9.4)

Apply Proposition 8 to the set A1 (for τ > 0 specified). This gives A′1 ⊂ A1 with

|A′1| > N−τ |A1| > |A|
2KNτ

.

Take

B = {x ∈ A : (x) ∈ A′1}.

Hence B satisfies

|B| > |A′1|.
M

10K
>

|A|
20K2Nτ

(9.5)

and (7.7). Thus

[ ∑

x1+···+xq=y1+···+yq

x1,... ,yq∈B

c(x1) · · · c(yq)
]1/2q

≤NτKΛ
{ ∑

I

[ ∑

x1+···+xq=y1+···+yq

x1,... ,yq∈B
(x1)=···=(yq)=I

c(x1) · · · c(yq)
]1/q}1/2

. (9.6)

Next, write

XA ≤ 1
|B|

∑

z∈B−1A

XBz,

where X denoting the indicator function. For x ∈ A,

c(x) ≤ 1
|B|

∑

z∈B−1A

c(x)XBz(x). (9.7)

16



Estimate
[ ∑

x1+···+xq=
y1+···+yq

c(x1) · · · c(yq)
]1/2q

≤ 1
|B|

∑

z∈B−1A

[ ∑

x1+···+xq=y1+···yq

x1,... ,yq∈Bz

c(x1) · · · c(yq)
]1/2q

<
|B−1A|
|B| NτKΛ

{ ∑

I

[ ∑

x1+···+xq=y1+···+yq

(x1)=···=(yq)=I

c(x1) · · · c(yq)
]1/q}1/2

≤|A
−1A|
|A| N2τK2+Λ

{ ∑

I principal

[ ∑

x1+···+xq=y1+···+yq

(x1)=···=(yq)=I

c(x1) · · · c(yq)
]1/q}1/2

.
(9.8)

In the first inequality in (9.8), we use that the left side is subconvex as a function of
{c(x)}. The second inequality uses (9.6) which remains valid replacing B by Bz.

This proves (9.2) and Proposition 9.

Proposition 10. Let A ⊂ OK , |A| = N be a finite set of algebraic integers of bounded
degree d. Assume

|A.A| < K|A|. (10.1)

For q ∈ Z+, τ > 0, there is a constant Λ = Λ(d, q, τ) such that if c(x) ∈ R+ for x ∈ A,
we have

[ ∑

x1+···+xq=
y1+···+yq

c(x1) · · · c(yq)
]1/2q

≤NτKΛ

[∑

x∈A

c(x)2
]1/2

. (10.2)

Proof.

Decomposing A =
⋃

I AI with AI = {x ∈ A|(x) = I}, it suffices by (9.2) to establish
(10.2) for each set AI separately. Since the elements of AI are conjugate, this amounts
to establish (10.2) with A replaced by a set S of units satisfying:

(10.3) The elements of S are of degree at most d.
17



(10.4) S is contained in a set A satisfying (10.1).

We proceed as follows:

Let S1 be a maximal subset of S satisfying

[Q(ξ) : Q] = [Q(ξ, ξ′) : Q(ξ′)],

if ξ 6= ξ′ in S1.

It follows then from Proposition 5 that the elements of S′1 are multiplicatively
independent, where

S′1 = S1\{roots of unity}.
On the other hand, in view of (10.4) and the Plunnecke-Ruzsa inequality( |S′1|

`

)
≤ |(S′1)`| ≤ |A`| < K`N

considering `-fold product sets.

Therefore
|S′1| . K log N

and also
R1 = |S1| . K log N. (10.5)

Decompose next
S =

⋃

1≤α≤R1

S(α), (10.6)

where for each α there is an element ξα ∈ S1 with for all ξ ∈ S(α)

[Kα(ξ) : Kα] ≤ [Q(ξ) : Q]− 1 ≤ d− 1 (10.7)

denoting Kα = Q(ξα).

Introducing in (10.2) a factor K. log N , we replace S by S(α) and repeat the process.
After d steps at most, we further reduced the problem to the situation where

S ⊂ F , and F is an extension of Q satisfying [F : Q] < C(d).

The unit group U of F is of rank r + s− 1 < C(d) with r (resp. 2s) the number of
real (resp. complex) places of F . In this situation, the theorem of Evertse, Schlickewei,
Schmidt [ESS] applies and implies that for c(x), x ∈ U

[ ∑

x1+...+xq=
y1+···+yq

c(x1) · · · c(yq)
]1/2q

≤C(d, q)
[ ∑

c(x)2
]1/2

. (10.8)

This completes the proof of Proposition 10.

Obviously the following holds.
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Proposition 10′. Proposition 10 holds for A a set of algebraic numbers (instead of
algebraic integers) of bounded degree,

Theorem 11. Let A be a finite set of algebraic numbers of bounded degree ≤ d and
|A| = N . Assume

|A.A| < K|A|.
Then given any subset B ⊂ A and finite set D ⊂ C, we have for arbitrary ε > 0 that

|{(x1, x2, y1, y2) ∈ B2 ×D2 : x1 + x2 = y1 + y2}| < KC(d,ε)Nε|B| |D|1+ε. (11.1)

In particular
|B + D| > K−C(d,ε)N−ε|B| |D|1−ε. (11.2)

Proof of Theorem 11.

Rewrite (11.1) as
∑

t∈D

|{(x1, x2, y) ∈ B2 ×D : x1 + x2 − y = t}|

and using Cauchy-Schwarz, it is bounded by

|D|1/2|{(x1, x2, x3, x4, y1, y2) ∈ B4 ×D2 : x1 + x2 − y1 = x3 + x4 − y2}|1/2. (11.3)

The second factor in expression (11.3) equals
∑

t∈D

|{(x1, x1, x3, x4, y) ∈ B4 ×D : x1 + x2 − x3 − x4 − y = t}|

≤ |D|1/2|{(x1, . . . , x8, y1, y2) ∈ B8 ×D2 : x1 + x2 − x3 − x4 − y1 = x5 · · · − x8 − y2}|1/2

Iteration shows that for any specified s ∈ Z+ the left side of (11.1) is at most

|D|1/2+1/4+···+2−s

∣∣{(x1, . . . , x2s+1 , y1, y2) ∈ B2s+1 ×D2 : x1 + . . . + x2s − x2s+1 − · · · − x2s+1 = y1 − y2}
∣∣2−s

≤ |D|1−2−s |D|2−s+1 |{(x1, . . . , x2s+1) ∈ B2s+1
: x1 + · · ·+ x2s = x2s+1 + · · ·+ x2s+1}|2−s

.
(11.4)

Apply Proposition 10 (and 8′) with q = 2s and letting

c(x) =
{

1 if x ∈ B

0 otherwise.
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We obtain (10.2)

|{(x1, . . . , x2s+1) ∈ B2s+1
: x1 + · · ·+ x2s = x2s+1 + · · ·+ x2s+1}|2−s ≤ N2τK2Λ|B|,

(11.5)
where Λ = Λ(d, s, τ).

Substitution of (11.5) in (11.4) gives as bound in (11.1)

N2τK2Λ|B| |D|1+2−s

. (11.6)

Take ε = 2τ = 2−s.

Inequality (11.2) follows from (11.1) and

|B + D| > |B|2|D|2
(11.1)

.

This proves Theorem 11.

The following result generalizes [BC] to algebraic numbers of bounded degree.

Corollary 12. For given d ∈ Z+,m ∈ Z+, there is ` ∈ Z+ such that the following
holds. Let A, |A| = N be a set of algebraic numbers of degree at most d. Then either

|A`| = |A · · ·A︸ ︷︷ ︸
`-fold

| > Nm (12.1)

or
|`A| = |A + · · ·+ A︸ ︷︷ ︸

`−fold

| > Nm. (12.2)

Proof.

We first reduce the problem to the case where A is contained in an extension K of
Q, [K : Q] < C(d). Assume (12.1) fails.

We proceed as in earlier arguments.

Let B1 ⊂ A be a maximal set such that

[Q(ξ) : Q] = [Q(ξ, ξ′) : Q(ξ′)]

for all ξ 6= ξ′ in B.
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Since the elements of B are multiplicatively independent (after removal of the roots
of unity), it follows that

Nm ≥ |A`| ≥ |B`| >
( |B|

`

)
>

( |B|
2`

)`

.

Hence
|B| . `Nm/`.

Therefore there is ξ1 ∈ B and A1 ⊂ A satisfying

|A1| & 1
`
N−m/`|A|

and denoting F1 = Q(ξ1), for all ξ ∈ A1

[F1(ξ) : F1] ≤ [Q(ξ) : Q] ≤ d− 1.

Repeat the process with A replaced by A1.

After d steps, we obtain a subset A′ ⊂ A and en extension field F of Q, [F : Q] <
C(d) < dd such that A′ ⊂ F and

|A′| & 1
`d

N1− dm
` > N

1
2 (12.3)

provided ` is taken large enough.

Replace A by A′.

Next, assume ` of the form ` = 2t with t ∈ Z+ large enough. Write

N2m

> |A`| = |A2t |
|A2t−1 | ·

|A2t−1 |
|A2t−2 | · · ·

|A2|
|A| .

Clearly there is some 1 ≤ s < t and A1 = A2s ⊂ F satisfying

|A1.A1| < N
2m

t .|A1|.

Take K = N
2m

t and apply Theorem 11 to the set A1,

|A1| ≤ |A`| < N2m.

Take some x ∈ A2s−1 and let B = xA ⊂ A1.
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It follows from (11.2) that for any finite D ⊂ C and given ε > 0

|A + D| > N− 2m
t C(d,ε)N−mε|A| |D|1−ε. (12.4)

Iterating

|A + A + D| > N− 2m
t C(d,ε)N−mε|A| |A + D|1−ε

> N− 4m
t C(d,ε)N−2mε|A|2−ε|D|1−2ε

and after L steps

|LA| > N−2L m
t C(d,ε)N−Lmε|A|L−L

(L−1)
2 ε. (12.5)

It remains to specify the parameters.

Take L = m + 1, ε = 1
10L2 , t = 2 log ` > 10C(d, ε)m2.

It follows that
|`A| > |LA| > |A|m.

This proves Corollary 12.

§3. Product sets of algebraic numbers of bounded degree and small height.

We will show the following.

Proposition 13. Let A be a finite set of algebraic integers of degree at most d and
such that for all x ∈ A

(∗) the minimal polynomial of x over Q has coefficients bounded by M .

Then for (cx)x∈A in R+ and any fixed q ∈ Z+, we have

[ ∑

x1···xq=
y1···yq

cx1 · · · cxqcy1 · · · cyq

]1/2q

≤
(

exp C(d, q)
log M

log log M

)√∑
c2
x . (13.1)
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Corollary 14. Let A be as in Proposition 13. Then or any given `

|A · · ·A︸ ︷︷ ︸
`-fold

| ≥ 1
expC(d, `) log M

log log M

|A|`. (13.2)

Application with ` = 2 yields Proposition 14’ stated in the introduction.

Proof of Proposition 13.

In order to setup an inductive argument, we make the following assumptions:

Let K be an extension of Q, [K : Q] = d1 and let A be as above such that

[K(x) : K] ≤ d2 for all x ∈ A. (13.3)

We establish (13.1) by induction on d2.

If d1 = 1, then A ⊂ K. Use the division theory in OK . Thus factoring principal
ideals in prime ideals, we have for t ∈ OK , t not a unit

|{I : I ideal in OK dividing (t)}|

< exp C(d1)
log NK/Q(t)

log log NK/Q(t)
. (13.4)

Hence, for given t ∈ OK obtained as a product of q elements from A, we obtain

|{(x1, . . . , xq) ∈ A : x1 · · ·xq = t}|
≤|{I : I ⊂ OK ideal dividing (t)}|q( max

x∈A
|{x′ ∈ A : (x) = (x′)}| )q

.(exp C(d1)q log Mq/ log log M)(log M)d1q. (13.5)

We used here (13.4) and an estimate on the number of units in OK which minimal
polynomial has coefficients bounded by MC(d1).

Hence
∑

x1···xq=
y1···yq

cx1 · · · cxqcy1 · · · cyq

=
∑

t

( ∑
x1···xq=t

cx1 · · · cxq

)2

≤(13.5)
( ∑

c2
x

)q

(13.6)
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and (13.1).

Next we show how to perform the inductive step.

Let
A′ = A ∩ (K.{roots of unity}).

Since the roots of unity that may occur from A form a set of size at most C(d), (13.1)
holds for the subset A′ (as a consequence of the d2 = 1 case).

We may therefore assume that A ∩K.{roots of unity}=φ.

Assume
[K(ξ) : K] = d2 for all ξ ∈ A. (13.7)

Take q = 2 for simplicity (the general case is similar).

We will apply Proposition 5.

Let x1, x2, y1, y2 be distinct elements in A and suppose we have a relation x1x2 =
y1y2. Hence S = {x1, x2, y1, y2} do not form a multiplicatively independent set and
by Proposition 5, there are ξ 6= ξ′ in S such that

[K(ξ) : K] > [K(ξ′, ξ) : K(ξ′)]. (13.8)

From (13.8), there is a nontrivial polynomial Xr+
∑r−1

s=0 Ps(ξ′)Xs ∈ K(ξ′)[X] of degree
r ≤ d2 − 1 such that

ξr +
∑

0≤s<r

Ps(ξ′)ξs = 0. (13.9)

Let ξ1, . . . , ξd2 be the conjugates of ξ over K and denote Fξ = K(ξ1, . . . , ξd2) the
splitting field of ξ over K. Similar for ξ′.

Since Xr+
∑r−1

s=0 Ps(ξ′)Xs divides the minimal polynomial of ξ over K, its (distinct)
roots are contained in {ξ1, . . . , ξd2}. This clearly implies that

{Ps(ξ′) : 0 ≤ s ≤ r − 1} ⊂ Fξ

and therefore, by (13.9)

[(Fξ ∩ Fξ′)(ξ) : Fξ ∩ Fξ′ ] ≤ r ≤ d2 − 1. (13.10)

Since (13.8) is symmetric in ξ, ξ′, also

[(Fξ ∩ Fξ′)(ξ′) : Fξ ∩ Fξ′ ] ≤ d2 − 1. (13.11)

We introduce the following definition.
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Given an extension field L of K with [L : K] ≤ d2! denote

AL = {x ∈ A : K ⊂ L ⊂ Fx and [L(x) : L] ≤ d2 − 1}. (13.12)

The preceding shows that if x1, x2, y1, y2 ∈ A satisfy x1x2 = y1y2, then there is a pair
of elements ξ 6= ξ′ in {x1, x2, y1, y2} and an extension L of K such that ξ, ξ′ ∈ AL.
Next, write

(13.13) =
∑

x1x2=y1y2

cx1cx2cy1cy2

=
∑

L

∑

x1,x2∈AL
x1x2=y1y2

cx1cx2cy1cy2 (13.14)

+
∑

L

∑

x1,y1∈AL
x1x2=y1y2

cx1cx2cy1cy2 (13.15)

+ $,

where $ refers to the other sums corresponding to x1, y2 ∈ AL; x2, y1 ∈ AL; x2, y2 ∈
AL and y1, y2 ∈ AL.

We estimate (13.15) for instance. By Cauchy-Schwartz

(13.15) =
∑

t

[∑

L

∑

x1,y1∈AL,
x1
y1

= t

cx1cy1

][ ∑

x2,y2∈AL,
y2
x2

= t

cx2cy2

]

≤
( ∑

t

[ ∑

L

∑

x1,y1∈AL,
x1
y1

= t

cx1cy1

]2)1/2( ∑
t

[ ∑

x2,y2∈AL,
y2
x2

= t

cx2cy2

]2)1/2

= (13.16).(13.17),

where
(13.17) =

√
(13.13)

and

(13.16) ≤
∑

L

{ ∑
t

[ ∑

x1,y1∈AL
x1
y1

=t

cx1cy1

]2}1/2

. (13.18)

For fixed L, it follows from the induction hypothesis that
∑

t

[ ∑

x1,y1∈AL

x1/y1=t

cx1cy1

]2

=
∑

x1,x2,y1,y2∈AL
x1x2=y1y2

cx1cx2cy1yy2

<
(

exp C(d))
log M

log log M

)( ∑

x∈AL

c2
x

)2

.
(13.19)
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Substituting (13.19) in (13.18) and collecting estimates we get

√
(13.13) .

(
expC(d)

log M

log log M

)( ∑

L

∑

x∈AL

c2
x

)
. (13.20)

To conclude the argument, it remains to observe that

|{L : x ∈ AL}| ≤|{L : K ⊂ L ⊂ Fx}|
=|{subgroups of AutKFx}|
≤|{subgroups of Sym(d)}| < C(d).

This proves Proposition 13.

§4. An application to incidence geometry.

Using Proposition 8 (instead of [BC]) and the argument from [CS], we obtain the
following geometric statement, generalizing Theorem 6.1 in [CS].

We denote by Pd the set of points in C×C with algebraic coordinates of degree at
most d.

Theorem 15. Given d ∈ Z+ and ε > 0, there is δ > 0 such that for any P1, P2, P3

noncollinear, and Q1, · · · , Qn ∈ Pd, if

|{L(Pi, Qj) : 1 ≤ i ≤ 3, 1 ≤ j ≤ n}| ≤ n1/2+ε, (15.1)

then for any P ∈ C× Cr {P1, P2, P3}, we have

|{L(P,Qj) : 1 ≤ j ≤ n}| > n1−δ. (15.2)

The proof is identical to that of Theorem 6.1 in [CS] and we will not repeat it here.
The only difference is that Q×Q is replaced by Pd and we use Proposition 8 instead
of [BC].
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des nombres, 17 no. 2 (1975-1976)Exp. No. G14, 5 p.

27


