SOME CONSEQUENCES OF THE POLYNOMIAL FREIMAN-RUZSA CONJECTURE

Mei-Chu Chang

Summary. Assuming the weak polynomial Freiman-Ruzsa conjecture, we derive some consequences on sum-product and the growth of subset of $SL_3(\mathbb{C})$.

R´esum´e. En Supposant la conjecture polynomiale faible de Freiman-Ruzsa, on en déduit certaines conséquences sur les ensembles sommes-products ainsi que sur la croissance de sous-ensembles de $SL_3(\mathbb{C})$.

Version française abrégée

Soit A un sous-ensemble fini d'un espace vectoriel V et désignons $A + A = \{x + y :$ $x, y \in A$ l'ensemble somme (de même, $nA = (n-1) + A$). Un lemme due a Freiman affirme que si $|A + A| < K|A|$ et $|A| > cK^2$, l'espace $\langle A \rangle$ engendré par A est de dimension inférieure à K .

La conjecture polynomiale faible de Freiman-Ruzsa (WPFRC) est l'énonçé suivant: Si A satisfait $|A + A| < K|A|$, il existe un sous-ensemble A_1 de A telle que $|A_1| >$ $K^{-c}|A|$ et $A_1 \subset \mathbb{Z}\xi_1 + \cdots + \mathbb{Z}\xi_d, \xi_i \in V$ et $d < c \log K$ où c est une constante absolue.

Notons que WPFRC est une conséquence de la conjecture polynomiale de Freiman-Ruzsa (voir $[TV]$ pour la formulation de celle-ci). Dans sette note, nous précisons quelques conséquence de la WPFRC et un théorème profond de Evertse-Schlickewei-Schmidt [ESS] sur des relations linéaires dans un sous-groupe de \mathbb{C}^* de rang borné.

Typeset by $A\mathcal{M}S$ -TEX

Théorème 1. Supposons WPFRC. Etant donné $n \in \mathbb{Z}_+$ et $\varepsilon > 0$, il existe $\delta > 0$ telle que si $A \subset \mathbb{C}^*$ est un ensemble fini et

$$
|AA| < |A|^{1+\delta}
$$

 $(en\ supposant |A|\ suffixmathsf{softmax}\ graph$, on a

$$
|nA| > |A|^{n(1-\varepsilon)}.
$$

On a également la propriété suivante pour la croissance d'ensembles finis dans un groupe linéaire.

Théorème 2. Supposons WPFRC. Si $A \subset SL_3(\mathbb{C})$ satisfait

 $|AA| < K|A|$

 $(|A|$ fini et suffisanment grand), il existe un sous-ensemble A' de A telle que

 $|A'| > K^{-c} |A|$

 $et A'$ contenu dans un coset d'un sous-groupe nilpotent (c une constante absolue).

D'autre part nous mentionnons certains résultats plus faibles et ne dépendent pas de cette conjecture.

Notations.

The *n-fold sum set* and the *n-fold product set* of A are

$$
nA = A + \dots + A = \{a_1 + \dots + a_n : a_1, \dots, a_n \in A\}
$$

and

$$
A^n = A \cdots A = \{a_1 \cdots a_n : a_i \in A\}
$$

respectively. The *inverse set* A^{-1} can be defined similarly. Let further

$$
A^{[n]} = (\{1\} \cup A \cup A^{-1})^n.
$$

The notation A^n is also used for the *n*-fold Cartesian product, when there is no ambiguity.

§1. Freiman's theorem and related conjectures.

One way to formulate the Polynomial Freiman-Ruzsa Conjecture is as follows.

Let V be a \mathbb{Z} -module and $A \subset V$ a finite set satisfying

$$
|A + A| < K|A|.\tag{1.1}
$$

Then there exist a positive integer $d \in \mathbb{Z}_+$, a subset $A_1 \subset A$, a convex subset $B \subset \mathbb{R}^d$ and a group homomorphism $\phi : \mathbb{Z}^d \to V$ such that

$$
d < c \log K,\tag{1.2}
$$

$$
|A_1| > K^{-c}|A|,\t\t(1.3)
$$

$$
\phi(B \cap \mathbb{Z}^d) \supset A_1,\tag{1.4}
$$

$$
|B \cap \mathbb{Z}^d| < K^c|A|.\tag{1.5}
$$

Here c is an absolute constant.

Recall that if A satisfies (1.1) and $cK^2 < |A|$, then $A \subset \phi(B \cap \mathbb{Z}^d)$ with $d \leq K$ and $B \subset \mathbb{R}^d$ a box satisfying

$$
|B| < \exp(cK^2 \log^3 K)|A|.\tag{1.6}
$$

(Quantitative version of Freiman's theorem from [C1].)

More relevant in this note is the much simpler Freiman Lemma, stating that if (1.1) holds and $|A| > cK^2/\varepsilon$, then $A \subset \phi(\mathbb{Z}^d)$ with $d \leq [K - 1 + \varepsilon]$

The Polynomial Freiman-Ruzsa Conjecture implies in particular the following weaker conjecture, which is all we will use.

Weak Polynomial Freiman-Ruzsa Conjecture (WPFRC). If $A \subset V$ satisfies $|A + A| < K|A|$, then there exist a subset $A_1 \subset A$ with $|A_1| > K^{-c}|A|$, and elements $\xi_1, \ldots, \xi_d \in V$ with $d < c \log K$, so that

$$
A_1 \subset \mathbb{Z}\xi_1 + \dots + \mathbb{Z}\xi_d,\tag{1.7}
$$

where c is an absolute constant

Note that if $A \subset \mathbb{R}_+$ is finite satisfying

$$
|AA| < K|A| \tag{1.8}
$$

and considering the set $log A \subset \mathbb{R} =: V$, one would derive that there are elements $\eta_1, \ldots, \eta_d \in \mathbb{R}^*$ with $d < c \log K$ such that

$$
|A \cap G| > K^{-c}|A|,
$$
\n
$$
3 \tag{1.9}
$$

where $G \lt \mathbb{R}^*$ denotes the multiplicative group generated by η_1, \ldots, η_d .

The analogous statement would hold equally well for a finite subset $A \subset \mathbb{C}^*$ satisfying (1.8) .

§2. Sets with small product sets.

We recall the deep theorem of Evertse-Schlickewei-Schmidt ([ESS], Theorem 1.1) on linear equations in multiplicative groups.

Theorem ESS. Let Γ be a subgroup of the multiplicative group $(\mathbb{C}^*)^n$ of rank r and let $a_1, \ldots, a_n \in \mathbb{C}^*$. Then the equation

$$
a_1x_1 + \dots + a_nx_n = 1 \quad \text{with } (x_1, \dots, x_n) \in \Gamma \tag{2.1}
$$

has at most

$$
\exp\left((6n)^{3n}(r+1)\right) \tag{2.2}
$$

non-degenerate solutions, meaning that no proper subsum of $a_1x_1+\cdots+a_nx_n$ vanishes.

The precise bound (2.2) is very important for our purpose.

Let $G < \mathbb{C}^*$ be a group generated by d elements η_1, \ldots, η_d with $d < c \log K$, and let $\Gamma = G^n$. Since Γ is generated by the elements $(1, \ldots, \eta_i, \ldots, 1)$, we have $r := \text{rank } \Gamma \leq nd$. Therefore, given $a_1, \ldots, a_n \in \mathbb{C}^*$, the equation

$$
a_1 x_1 + \dots + a_n x_n = 1 \quad \text{with } x_1, \dots, x_n \in G \tag{2.3}
$$

has at most

$$
\exp((6n)^{3n}(nd+1)) < \exp(cn(6n)^{3n}\log K) = K^{C(n)}
$$
\n(2.4)

non-degenerate solutions, where $C(n)$ is a constant depending on n.

For $S_1, \ldots, S_n \subset \mathbb{C}$, we denote the additive energy of S_1, \ldots, S_n by

$$
E(S_1, \ldots, S_n) = |\{(x_1, y_1, \ldots, x_n, y_n) \in S_1^2 \times \cdots \times S_n^2 : x_1 + \cdots + x_n = y_1 + \cdots + y_n\}|
$$

Recall the following lower bound on the size of the sum-set $S_1 + \cdots + S_n$.

$$
|S_1 + \dots + S_n| \ge \frac{|S_1|^2 \cdots |S_n|^2}{E(S_1, \dots, S_n)}.
$$
\n(2.5)

Corollary 1. Let $G < \mathbb{C}^*$ be a group generated by d elements with $d < c \log K$ and let $A_1 \subset G$ be finite. Then

$$
E(\underbrace{A_1, \dots, A_1}_{n}) \le K^{C(n)} |A_1|^{n-1} + \frac{(2n)!}{n!} |A_1|^n, \tag{2.6}
$$

where $C(n)$ is a constant depending on n.

Proof. Consider the equation

$$
x_1 + \dots + x_n - x_{n+1} - \dots - x_{2n} = 0, \quad x_i \in A_1. \tag{2.7}
$$

We decompose (2.7) in minimal vanishing subsums. Each decomposition corresponds to a partition

$$
\{1,\ldots,2n\} = \bigcup_{\alpha=1}^{\beta} E_{\alpha}.
$$
\n(2.8)

Since $|E_{\alpha}| \geq 2$, we have $\beta \leq n$. The case $\beta = n$ clearly contributes to the last term in (2.6). If $|E_{\alpha}| \geq 3$, we rewrite the equation

$$
\sum_{i \in E_{\alpha}} \pm x_i = 0 \tag{2.9}
$$

as

$$
\sum_{i \in E_{\alpha} \setminus \{r_1\}} \pm \frac{x_i}{x_{r_1}} = 1. \tag{2.10}
$$

(Specify some element $r_1 \in E_\alpha$.) Since no subsum of (2.9), (2.10) is assumed to vanish, the estimate (2.4) in Theorem ESS applies for the number of non-degenerate solutions of $\overline{}$

$$
\sum_{i \in E_{\alpha} \setminus \{r_1\}} \pm \frac{z_i}{z_{r_1}} = 1 \quad \text{ with } z_i \in G. \tag{2.11}
$$

Therefore (2.9) has at most

$$
K^{C(|E_{\alpha}|)}|A_1|\tag{2.12}
$$

non-degenerate solutions. It follows that the number of solutions of (2.7) corresponding to the partition (2.8) is bounded by

$$
|A_1| \overset{\beta}{\sim} \prod_{\alpha=1}^{\beta} K^{C(|E_{\alpha}|)}, \tag{2.13}
$$

where $\beta \leq n-1$. Summing over all possible partitions, we prove (2.6). \Box

The next corollary is conditional to the Weak Polynomial Freiman-Ruzsa Conjecture.

Corollary 2. Assume WPFRC. Given $n \in \mathbb{Z}_+$ and $\varepsilon > 0$, there is $\delta > 0$ such that if $A \subset \mathbb{C}^*$ is finite with |A| large and

$$
|AA| < |A|^{1+\delta},\tag{2.14}
$$

then the n-fold sumset nA satisfies

$$
|nA| > |A|^{n(1-\varepsilon)}.\tag{2.15}
$$

Proof. Take $K = |A|^{\delta}$ in (1.8). WPFRC, Corollary 1 (letting $A_1 = A \cap G$ in (1.9)), and (2.5) imply

$$
|nA| \ge |nA_1| \ge \frac{|A_1|^{2n}}{K^{C(n)}|A_1|^{n-1} + \frac{(2n)!}{n!} |A_1|^n}
$$

> min $\left(\frac{n!}{(2n)!} |A_1|^n, K^{-C(n)}|A_1|^{n+1}\right)$ (2.16)
> min $\left(\frac{n!}{(2n)!} K^{-c_1 n} |A|^n, K^{-C(n)} |A|^{n+1}\right)$.

Note that one has the following stronger conclusion.

Corollary 3. Assume WPFRC. Given $n \in \mathbb{Z}_+$ and $\varepsilon > 0$, there is $\delta > 0$ such that if $A \subset \mathbb{C}^*$ is a sufficiently large finite set satisfying (2.14) and $B \subset A$ is any subset such that

$$
|B| > |A|^{\varepsilon},\tag{2.17}
$$

then

$$
|n| > |B|^{n(1-\varepsilon)}.\tag{2.18}
$$

Proof. As in the proof of Corollary 2, we start from $A_1 = A \cap G$ satisfying (1.9). Let z_1, \ldots, z_s be a maximal subset of A such that $z_iA_1 \cap z_jA_1 = \emptyset$ for any $i \neq j$. Hence

$$
s \le \frac{|AA_1|}{|A_1|} \le K^c \frac{|AA|}{|A|} < K^{c+1} \tag{2.19}
$$

and by construction, if $z \in A$, then $zA_1 \cap z_iA_1 \neq \emptyset$ for some $1 \leq i \leq s$. Therefore,

$$
A \subset \bigcup_{i=1}^{s} z_i A_1 A_1^{-1}
$$
\n
$$
(2.20)
$$

and

$$
B\subset \bigcup_{i=1}^s (B\cap z_iA_1A_1^{-1}).
$$

Hence there is $1 \leq i \leq s$ such that

$$
|B_1 := B \cap z_i A_1 A_1^{-1}| \ge \frac{|B|}{s}.\tag{2.21}
$$

Note that since $A_1A_1^{-1} \subset G$, Corollary 1 remains valid for $z_i^{-1}B_1 \subset A_1A_1^{-1}$ $_{1}^{-1}$. In (2.16) A, A_1 are replaced by B, B_1 . (Note also that $|z_i^{-1}B_1| = |B_1|$, etc.) \Box

There are various weaker forms of Corollary 2 and Corollary 3 that hold unconditionally. The following is a version of Corollary 2.

Proposition 4. Given $m > 1$, there is $\delta > 0$ and $n \in \mathbb{Z}_+$ such that if $A \subset \mathbb{C}^*$ is a sufficiently large finite set satisfying

$$
|AA| < |A|^{1+\delta},\tag{2.22}
$$

then

$$
|nA| > |A|^m. \tag{2.23}
$$

Using the terminology in [TV], a set A satisfying (2.22) is called an *approximate* multiplicative group. It was shown in [B] (See also [TV], Theorem 2.60.) that given $H \neq \emptyset$ in \mathbb{F}_p with $|HH| \leq K|H|$, and $m > 1, \varepsilon > 0$, there is an integer $n = n(m, \varepsilon) \in$ \mathbb{Z}_+ such that

$$
|nH| > c(m,\varepsilon)K^{-C(m,\varepsilon)}\min\left(|H|^m, p^{1-\varepsilon}\right).
$$
 (2.24)

For $A \subset \mathbb{C}^*$, the same argument allows to show that

$$
|nA| > c(m,\varepsilon)K^{-C(m,\varepsilon)}|A|^m \tag{2.25}
$$

and hence the proposition holds.

Regarding Corollary 3, there is the result from [BC1] for finite subsets $A \subset \mathbb{Z}$ and generalized in [BC2] for sets A of algebraic numbers of bounded degree.

Proposition 5. Given $d, n \in \mathbb{Z}_+$ and $\varepsilon > 0$, there is $\delta > 0$ such that the following holds. Let $A \subset \mathbb{C}^*$ be a sufficiently large finite set of algebraic numbers of degree at most d. Assume

$$
|AA| < |A|^{1+\delta}.\tag{2.26}
$$

Then, for any nonempty subset $B \subset A$,

$$
|nB| > |A|^{-\varepsilon}|B|^n. \tag{2.27}
$$

Note that in Proposition we do not require all elements of A to be contained in the same extension of Q of bounded degree. This bounded degree hypothesis is removed because of WPFRC.

§3. Finite subsets of linear groups.

We recall the following theorem from [C2], [C3].

For all $\varepsilon > 0$, there is $\delta > 0$ such that if $A \subset SL_3(\mathbb{Z})$ is a finite set, then one of the following alternatives holds.

- (i) A intersects a coset of a nilpotent subgroup in a set of size at least $|A|^{1-\epsilon}$.
- (ii) $|A^2| > |A|^{1+\delta}$.

The proof makes essential use of Theorem ESS, applied with Γ the unit group of the extension of a cubic polynomial over Q. This is the only significant place where a generalization to subset $A \subset SL_3(\mathbb{C})$ is problematic. Here we will discuss in some greater detail how the WPFRC allows us to recover the theorem in its full strength for subsets $A \subset SL_3(\mathbb{C})$.

Theorem 6. Assume WPFRC. Given a finite subset $A \subset SL_3(\mathbb{C})$ satisfying

$$
|AA| < K|A|,\tag{4.1}
$$

then there is a subset $A' \subset A$ such that

$$
|A'| > K^{-c}|A| \tag{4.2}
$$

and A' is contained in a coset of a nilpotent group.

Proof. An initial key step in [C2] (borrowed from Helfgott's work [H]) is to construct a set $D \subset A^{-1}A$ of commuting elements, where

$$
|D| > K^{-C} |A|^{\theta} \tag{4.3}
$$

with C, θ absolute constants. This step is completely general and applies equally well to subsets $A \subset SL_d(\mathbb{C})$ with $\theta = \theta(d)$. Change of bases permits simultaneous diagonalization of the elements of D . They form the key ingredient in the amplification.

Going back to (4.1) , one applies first Tao's non-commutative version of the Balog-Szemerédi-Gowers Lemma (see [TV]) and replaces A by a subset $A_1 \subset A$ satisfying that

$$
|A_1| > K^{-c}|A| \tag{4.4}
$$

and A_1 is an approximate group, i.e. there is a subset $X \subset SL_3(\mathbb{C})$ such that

$$
|X| < K^c \quad \text{and} \quad A_1 A_1 \subset X A_1 \cap A_1 X,\tag{4.5}
$$

where c is an absolute constant.

Identifying A and A_1 a nd using (4.5), one can control the size of all product sets

$$
\left| A^{[s]} \right| < K^{cs} |A| \tag{4.6}
$$

for given $s \in \mathbb{Z}^*$.

Let $D \subset A^{-1}A \subset A^{[2]}$ be the diagonal set obtained above, satisfying (4.3). The next aim is to ensure that D has small multiplicative doubling.

Denote the set of diagonal matrices over $\mathbb C$ by $\mathcal D$ and let $D_s = \mathcal D \cap A^{[s]}$ for $s \geq 2$. Hence $D_s \supset D_2 \supset D$ satisfies (4.3). Consider a minimal subset $B \subset A^{[2]}$ satisfying

$$
A^{[2]} \subset B\mathcal{D}.\tag{4.7}
$$

It follows that

$$
g\mathcal{D} \cap g'\mathcal{D} = \emptyset, \qquad \forall g \neq g' \in B \tag{4.8}
$$

and also

$$
A^{[2]} \subset B D_4. \tag{4.9}
$$

Therefore, $|A| \leq |A^{[2]}| \leq |B| |D_4|$. Also, $D_4 D_4 \subset D_8$ and by (4.8) and (4.6)

$$
|D_8| |B| = |D_8 B| \le |A^{[10]}| < K^{10c} |A|.\tag{4.9}
$$

Consequently

$$
|D_4 D_4| \le |D_8| \le K^{10c} \frac{|A|}{|B|} \le K^{10c} |D_4|.
$$
 (4.10)

Replacing D by D_4 , we obtain a subset of diagonal matrices in $A^{[4]}$ satisfying (4.3) and

$$
|DD| < K^c|D|. \tag{4.11}
$$

To use Theorem ESS, we need a large subset of D whose entries lie in a subgroup of $\mathbb C$ of small rank. Let D' be the projection of D on the $(1, 1)$ entry

$$
\pi: D \to D', \qquad (g_{i,j}) \mapsto g_{1,1}.
$$

By the lemma below, there are subsets $E' \subset D'$ and $E := \pi^{-1}(E') \subset D$ such that for some h

$$
|\pi^{-1}(x)| \sim h, \qquad \forall x \in E'
$$

and

$$
|E| > \frac{1}{\log K} |D|.
$$
 (4.12)

We note that

$$
|E| \sim h|E'| \quad \text{and } |EE| > h|E'E'|.
$$

Thus, $|EE| < |DD| < K(\log |K|)|E|$ implies

$$
|E'E'| < K(\log|K|)|E'|.
$$

Next, we apply WPFRC to get a subset $F' \subset E'$ such that $|F'| > K^{-c}|E'|$ and F' is contained in a subgroup $\Gamma_1 < \mathbb{C}$ with rank $(\Gamma_1) < c \log K$. Let

$$
F = \pi^{-1} F' \subset E.
$$

Hence

$$
|F|>\frac{1}{K^C}|E|.
$$

Replace D by F and start over with the projection on the $(2, 2)$ entry etc. Eventually one gets a subset F of D that is large and each (i, i) -projection sits in a group Γ_i of small rank. Therefore the multiplicative group Γ spanned $\{\Gamma_i\}_{i=1}^3$ has rank bounded by $c \log K$ and one can apply Theorem ESS on Γ. \Box

Lemma 7. Let $A \subset A' \times R$ be finite and let $\pi : A \to A'$ be the projection to the first coordinate. Assume

$$
|2A| = |A + A| < K|A|.\tag{4.13}
$$

Then there exist $C \subset A$ such that $|C| > \frac{1}{2 \log a}$ $\frac{1}{2\log K}$ |A| and for every $x \in C$, $|\pi^{-1}(\pi(x))| \sim$ h for some h.

Proof. Let $m = \max\{|\pi^{-1}(x)| : x \in A'\}$. Then

$$
|2A| \ge |A'| \; m \tag{4.14}
$$

and

$$
|3A| \ge |2A'| \ m. \tag{4.15}
$$

Obviously

$$
|A| \le |A'| \ m. \tag{4.16}
$$

Plünneck's inequality and (4.13) imply

$$
|3A| < K^3|A|. \tag{4.17}
$$

Hence (4.15), (4.17) and (4.16) imply

$$
|2A'| < K^3|A'|.\tag{4.18}
$$

Also, since by (4.13) and (4.14),

$$
|A| > |A'| \; \frac{m}{K},
$$

there is clearly a subset $B \subset A$ such that $|B| > \frac{1}{2}$ $\frac{1}{2}|A|$ and $\forall x \in B, |\pi^{-1}(\pi(x))| > \frac{m}{2K}$ $\frac{m}{2K}$. On the other hand, $|\pi^{-1}(\pi(x))| \leq m$ is obvious. Hence, proceeding with B instead of A, there is a further subset $C \subset B$ with fibers of comparable size and so that $|C| > \frac{1}{\log n}$ $\frac{1}{\log K}|B|$. \Box

Remarks.

1. We expect that generalization of the theorem to subsets $A \subset SL_d(\mathbb{Z})$, with d arbitrary, is only a technical matter.

2. It may be possible to reach the conclusion of Theorem 6 unconditionally by following the approach in [H].

3. Statements of this type have been suggested by B. Green.

REFERENCES

- [BC1]. J. Bourgain, M.-C. Chang, On the size of k-fold sum and product sets of integers, JAMS 17(2) (2004), 473-497.
- [BC2]. , Sum-product theorems in algebraic number fields, Journal d'Analyse Mathematique.
- [C1]. M-C. Chang, A polynomial bound in Freiman's Theorem,, Duke Math. J. 113, No 3, (2002), 399-419.
- [C2]. $_____\$, Product theorems in SL2 and SL3, J. Math. Jussieu, 7(1), 1-25, (2008).
- [C3]. \ldots , On Product sets in SL_2 and SL_3 , preprint.
- [ESS]. J.-H. Evertse, H. Schlickewei, W. Schmidt, Linear equations in variables which lie in a multiplicative group, Annals Math 155, (2002), 807-836.
	- [H]. H. Helfgott, *Growth and generation in* $SL_3(\mathbb{Z}/\mathbb{Z}_p)$, preprint (2008).
- [TV]. T. Tao, V. Vu, Additive Combinatorics,, Cambridge University Press, 2006.

Department of Mathematics, University of California, Riverside CA 92521 USA E-mail address: mcc@math.ucr.edu