SOME CONSEQUENCES OF THE
POLYNOMIAL FREIMAN-RUZSA CONJECTURE

MEI-CHU CHANG

Summary. Assuming the weak polynomial Freiman-Ruzsa conjecture, we derive some
consequences on sum-product and the growth of subset of SL3(C).

Résumé. En Supposant la conjecture polynomiale faible de Freiman-Ruzsa, on en
déduit certaines conséquences sur les ensembles sommes-products ainsi que sur la crois-
sance de sous-ensembles de SL3(C).

Version francgaise abrégée

Soit A un sous-ensemble fini d’un espace vectoriel V et désignons A+ A = {x +y:
x,y € A} I'ensemble somme (de méme, nA = (n — 1) + A). Un lemme due a Freiman
affirme que si |[A + A| < K|A| et |A| > c¢K?, 'espace (A) engendré par A est de
dimension inférieure a K.

La conjecture polynomiale faible de Freiman-Ruzsa (WPFRC) est I’énongé suivant:
Si A satisfait |A + A| < K|A]|, il existe un sous-ensemble A; de A telle que |A;| >
KAl et Ay CZ& + -+ 72&q,& €V et d < clog K ou ¢ est une constante absolue.

Notons que WPFRC est une conséquence de la conjecture polynomiale de Freiman-
Ruzsa (voir [TV] pour la formulation de celle-ci). Dans sette note, nous précisons
quelques conséquence de la WPFRC et un théoreme profond de Evertse-Schlickewei-
Schmidt [ESS] sur des relations linéaires dans un sous-groupe de C* de rang borné.
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Théoréme 1. Supposons WPFRC. Etant donnén € Z, et e > 0, il existe 6 > 0 telle
que si A C C* est un ensemble fini et

AA] < |1+

(en supposant |A| suffisanment grand), on a
InA| > |Am(—2),
On a également la propriété suivante pour la croissance d’ensembles finis dans un

groupe linéaire.
Théoréme 2. Supposons WPFRC. Si A C SL3(C) satisfait

|AA| < K|A]|
(|A| fini et suffisanment grand), il existe un sous-ensemble A’ de A telle que

|A"| > K¢|A]
et A’ contenu dans un coset d’un sous-groupe nilpotent (c une constante absolue).

D’autre part nous mentionnons certains résultats plus faibles et ne dépendent pas
de cette conjecture.

Notations.

The n-fold sum set and the n-fold product set of A are
nA=A+---+A={a1+---+ay,:a1, - ,a, € A}

and
A"=A---A={a1---ay:q; € A}

respectively. The inverse set A~! can be defined similarly. Let further
Al = ({1yuAuA~Hn,
The notation A™ is also used for the n-fold Cartesian product, when there is no am-

biguity.

§1. Freiman’s theorem and related conjectures.
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One way to formulate the Polynomial Freiman-Ruzsa Conjecture is as follows.
Let V be a Z-module and A C'V a finite set satisfying
A+ A < KJ|A]. (1.1)

Then there exist a positive integer d € Z., a subset Ay C A, a convex subset B C R?
and a group homomorphism ¢ : Z¢ — V such that

d < clog K, (1.2)

| Ar| > K°|A], (1.3)

H(BNZY D Ay, (1.4)
|IBNZY < K°|A|. (1.5)

Here ¢ is an absolute constant.

Recall that if A satisfies (1.1) and c¢K? < |A|, then A C ¢(BNZ%) with d < K and
B c RY a box satisfying
|B| < exp(cK?log® K)|A. (1.6)

(Quantitative version of Freiman’s theorem from [C1].)

More relevant in this note is the much simpler Freiman Lemma, stating that if (1.1)
holds and |A| > cK?/e, then A C ¢(Z?) with d < [K — 1 + €]

The Polynomial Freiman-Ruzsa Conjecture implies in particular the following weaker
conjecture, which is all we will use.

Weak Polynomial Freiman-Ruzsa Conjecture (WPFRC). If A C V satisfies
|A + A| < K|A|, then there exist a subset Ay C A with |A1| > K~°|A|, and elements
&1,...,&6q €V withd < clog K, so that

Ay CZ& + -+ + Z&q, (1.7)
where ¢ s an absolute constant
Note that if A C Ry is finite satisfying
|AA| < K|A]| (1.8)

and considering the set log A C R =: V, one would derive that there are elements
M,--.,Nq € R* with d < clog K such that

IANG| > K~¢|A|, (1.9)
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where G < R* denotes the multiplicative group generated by n1,... ,nq4.

The analogous statement would hold equally well for a finite subset A C C* satis-
fying (1.8).

§2. Sets with small product sets.

We recall the deep theorem of Evertse-Schlickewei-Schmidt ([ESS], Theorem 1.1)
on linear equations in multiplicative groups.

Theorem ESS. Let I' be a subgroup of the multiplicative group (C*)™ of rank r and
let ay,...,a, € C*. Then the equation

a1x1+...+anxn:1 with (:L‘l,... 7.Tn)EF (21)

has at most
exp ((6n)*"(r + 1)) (2.2)

non-degenerate solutions, meaning that no proper subsum of a1x1+- - -+an,x, vanishes.

The precise bound (2.2) is very important for our purpose.

Let G < C* be a group generated by d elements 7q,...,nq with d < clog K,
and let ' = G™. Since I' is generated by the elements (1,...,7;,...,1), we have
r :=rank I' < nd. Therefore, given ay,... ,a, € C*, the equation

air1+ - +apr, =1 withzy,...,2,€G (2.3)
has at most

exp ((6n)*"(nd + 1)) < exp (cn(6n)*" log K) = K™ (2.4)

non-degenerate solutions, where C'(n) is a constant depending on n.

For Sq,... .5, C C, we denote the additive energy of S1,...,S, by
E(Sy,...,S) = {(x1, 91, s Tnyyn) €ESEX - xS+t =11+ yn )

Recall the following lower bound on the size of the sum-set Sy +---+ S,.

[S1] - 1S
> )
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Corollary 1. Let G < C* be a group generated by d elements with d < clog K and
let A1 C G be finite. Then

2n)!
E(Aq,... Ar) SKO(H)\Aﬂn_l‘F@ | A", (2.6)
————— n!

where C(n) is a constant depending on n.
Proof. Consider the equation
X1+ Ty —Tpp1 — - — T2y =0, x; € Ay (2.7)

We decompose (2.7) in minimal vanishing subsums. Each decomposition corresponds
to a partition

3
{1,....2n} = | Ea. (2.8)

Since |E,| > 2, we have § < n. The case § = n clearly contributes to the last term
n (2.6). If |E,| > 3, we rewrite the equation

> da; =0 (2.9)

i€F,,
as
D i = 1. (2.10)
i€Ba\{r1} "

(Specify some element m € E,.) Since no subsum of (2.9), (2.10) is assumed to vanish,
the estimate (2.4) in Theorem ESS applies for the number of non-degenerate solutions

of
Y o+ =1 withzeG. (2.11)
Zry
i€Ea\{r1}
Therefore (2.9) has at most
KCUED| Ay (2.12)

non-degenerate solutions. It follows that the number of solutions of (2.7) corresponding
to the partition (2.8) is bounded by

B
A P T &COED, (2.13)

a=1
where § < n — 1. Summing over all possible partitions, we prove (2.6). 0
The next corollary is conditional to the Weak Polynomial Freiman-Ruzsa Conjec-

ture.
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Corollary 2. Assume WPFRC. Given n € Z, and € > 0, there is § > 0 such that if
A C C* is finite with |A| large and

|AA| < |A]*T°, (2.14)
then the n-fold sumset nA satisfies

InA| > |A"32), (2.15)

Proof. Take K = |A|° in (1.8). WPFRC, Corollary 1 (letting A; = ANG in (1.9)),
and (2.5) imply

|A1|2n
KCm)| A1 + (2n)! | Ay |

n!

[nAl = [nAy| >

: n' n —C(n n
> min <W A", K=C™)|4,] +1) (2.16)

n!
(2n)!

>min (o KA, KO0 A O

Note that one has the following stronger conclusion.

Corollary 3. Assume WPFRC. Givenn € Z4 and € > 0, there is § > 0 such that if
A C C* is a sufficiently large finite set satisfying (2.14) and B C A is any subset such
that

|B| > |A5, (2.17)

then
InB| > |B|"179), (2.18)

Proof. As in the proof of Corollary 2, we start from A; = AN G satisfying (1.9). Let

21,...,%s be a maximal subset of A such that z;4; N z; Ay = 0 for any i # j. Hence
|AA, | [AA| |
s < <Ko < K°F (2.19)
| Ay Al

and by construction, if z € A, then 247 N z;A; # 0 for some 1 <4 < s. Therefore,

Ac|JzdAr! (2.20)
=1
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and

B C U (BﬂzlAlAl_l)

i=1
Hence there is 1 <4 < s such that

B
|B1 := BNz A1ATY| > 18], (2.21)
S

Note that since AlAl_1 C G, Corollary 1 remains valid for zi_lBl C A1A1_1. In
(2.16) A, Ay are replaced by B, B;. (Note also that |z; ' B;| = | By, etc.) O

There are various weaker forms of Corollary 2 and Corollary 3 that hold uncondi-

tionally. The following is a version of Corollary 2.

Proposition 4. Given m > 1, there is 6 > 0 and n € Zy such that if A C C* is a
sufficiently large finite set satisfying

|AA| < |A]*T° (2.22)

then
InA| > |A|™. (2.23)

Using the terminology in [TV], a set A satisfying (2.22) is called an approzimate
multiplicative group. It was shown in [B] (See also [TV], Theorem 2.60.) that given
H # 0 inF, with |HH| < K|H|, and m > 1,e > 0, there is an integer n = n(m,¢) €
Z such that

InH| > c(m, ) K~ min (|H|™, p'~¢). (2.24)
For A C C*, the same argument allows to show that
InA| > c(m,e) K~ Am (2.25)

and hence the proposition holds.

Regarding Corollary 3, there is the result from [BC1] for finite subsets A C Z and
generalized in [BC2] for sets A of algebraic numbers of bounded degree.
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Proposition 5. Given d,n € Zy and € > 0, there is § > 0 such that the following
holds. Let A C C* be a sufficiently large finite set of algebraic numbers of degree at

most d. Assume
|AA| < |A]*T0. (2.26)

Then, for any nonempty subset B C A,

nB| > |A|"°|B|". (2.27)

Note that in Proposition we do not require all elements of A to be contained in the
same extension of Q of bounded degree. This bounded degree hypothesis is removed
because of WPFRC.

§3. Finite subsets of linear groups.
We recall the following theorem from [C2], [C3].

For all € > 0, there is § > 0 such that if A C SL3(Z) is a finite set, then one of the
following alternatives holds.

(i) A intersects a coset of a nilpotent subgroup in a set of size at least |A|17¢.

(i) A% > |A[*+°.

The proof makes essential use of Theorem ESS, applied with I' the unit group of
the extension of a cubic polynomial over Q. This is the only significant place where
a generalization to subset A C SL3(C) is problematic. Here we will discuss in some
greater detail how the WPFRC allows us to recover the theorem in its full strength
for subsets A C SL3(C).

Theorem 6. Assume WPFRC. Given a finite subset A C SL3(C) satisfying

|AA| < KA, (4.1)
then there is a subset A" C A such that

|A"| > K¢|A] (4.2)
and A’ is contained in a coset of a nilpotent group.

Proof. An initial key step in [C2] (borrowed from Helfgott’s work [H]) is to construct
aset D C A71A of commuting elements, where

|ID| > K=C|A° (4.3)
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with C, 0 absolute constants. This step is completely general and applies equally
well to subsets A C SL4(C) with = 6(d). Change of bases permits simultaneous
diagonalization of the elements of D. They form the key ingredient in the amplification.

Going back to (4.1), one applies first Tao’s non-commutative version of the Balog-
Szemerédi-Gowers Lemma (see [TV]) and replaces A by a subset 4; C A satisfying
that

4] > K=°|4] (4.4)

and A; is an approximate group, i.e. there is a subset X C SL3(C) such that
|X| < K¢ and A;A; C XA N AlX, (45)

where c is an absolute constant.

Identifying A and A;a nd using (4.5), one can control the size of all product sets
| Al < K| A (4.6)

for given s € Z*.

Let D ¢ A7'A C APl be the diagonal set obtained above, satisfying (4.3). The
next aim is to ensure that D has small multiplicative doubling.

Denote the set of diagonal matrices over C by D and let Dy = DN Al for s > 2.
Hence D, D Dy D D satisfies (4.3). Consider a minimal subset B C Al satisfying

Al ¢ BD. (4.7)
It follows that
gDNg'D =0, Vg#¢ €B (4.8)
and also
APl c BD,. (4.9)

Therefore, |A| < |A?!| < |B||D4|. Also, D4y Dy C Dg and by (4.8) and (4.6)

|Ds| |B| = |DsB| < |AM] < K10¢| 4], (4.9)
Consequently
A
|DyDy| < |Dg| < KW% < K% Dy. (4.10)

Replacing D by Dy, we obtain a subset of diagonal matrices in A satisfying (4.3)
and
|DD| < K€|D|. (4.11)
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To use Theorem ESS, we need a large subset of D whose entries lie in a subgroup
of C of small rank. Let D’ be the projection of D on the (1, 1) entry

7:D — D, (Gi) — g1,1-

By the lemma below, there are subsets £/ C D’ and E := 7~ }(E’) C D such that for
some h
|7~ ()| ~ h, Vz € E'

and

1
|m>ﬂggmy (4.12)

We note that
|E| ~ h|E’| and |EE| > h|E'E'|.

Thus, |[EE| < |DD| < K(log|K|)|E| implies
B'E'| < K (log | )| ]

Next, we apply WPFRC to get a subset I/ C E’ such that |[F'| > K~¢|E’| and F’ is
contained in a subgroup I'y < C with rank(I';) < clog K. Let

F=xn'F CcE.

Hence ]
|F'| > F|E|'

Replace D by F and start over with the projection on the (2,2) entry etc. Eventually
one gets a subset F' of D that is large and each (i,7)-projection sits in a group I'; of
small rank. Therefore the multiplicative group I' spanned {I';}3_; has rank bounded
by clog K and one can apply Theorem ESS on T 0

Lemma 7. Let A C A’ X R be finite and let m : A — A’ be the projection to the first
coordinate. Assume
|2A] = |[A+ A| < K|A|. (4.13)

Then there exist C C A such that |C| > ﬁ |A| and for every x € C, |71 (n(z))| ~
h for some h.

Proof. Let m = max{|r~!(z)| : x € A’}. Then

24| > |A'| m (4.14)
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and
IBA| > [2A"| m. (4.15)

Obviously
|A| < |A'| m. (4.16)

Pliinneck’s inequality and (4.13) imply
34| < K3 A|. (4.17)
Hence (4.15), (4.17) and (4.16) imply

124" < K3|A'|. (4.18)
Also, since by (4.13) and (4.14),
Al > a2

there is clearly a subset B C A such that |B| > 1|A| and Vz € B, |7~ (n(z))] > 2.
On the other hand, |7=1(7(z))| < m is obvious. Hence, proceeding with B instead
of A, there is a further subset C' C B with fibers of comparable size and so that

Ol > g !Bl O

Remarks.

1. We expect that generalization of the theorem to subsets A C SL4(Z), with d
arbitrary, is only a technical matter.

2. It may be possible to reach the conclusion of Theorem 6 unconditionally by following
the approach in [H].

3. Statements of this type have been suggested by B. Green.
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