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Summary. Assuming the weak polynomial Freiman-Ruzsa conjecture, we derive some
consequences on sum-product and the growth of subset of SL3(C).

Résumé. En Supposant la conjecture polynomiale faible de Freiman-Ruzsa, on en
déduit certaines conséquences sur les ensembles sommes-products ainsi que sur la crois-
sance de sous-ensembles de SL3(C).

Version française abrégée

Soit A un sous-ensemble fini d’un espace vectoriel V et désignons A + A = {x + y :
x, y ∈ A} l’ensemble somme (de même, nA = (n− 1) + A). Un lemme due a Freiman
affirme que si |A + A| < K|A| et |A| > cK2, l’espace 〈A〉 engendré par A est de
dimension inférieure à K.

La conjecture polynomiale faible de Freiman-Ruzsa (WPFRC) est l’énonçé suivant:
Si A satisfait |A + A| < K|A|, il existe un sous-ensemble A1 de A telle que |A1| >
K−c|A| et A1 ⊂ Zξ1 + · · ·+ Zξd, ξi ∈ V et d < c log K où c est une constante absolue.

Notons que WPFRC est une conséquence de la conjecture polynomiale de Freiman-
Ruzsa (voir [TV] pour la formulation de celle-ci). Dans sette note, nous précisons
quelques conséquence de la WPFRC et un théorème profond de Evertse-Schlickewei-
Schmidt [ESS] sur des relations linéaires dans un sous-groupe de C∗ de rang borné.
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Théorème 1. Supposons WPFRC. Etant donné n ∈ Z+ et ε > 0, il existe δ > 0 telle
que si A ⊂ C∗ est un ensemble fini et

|AA| < |A|1+δ

(en supposant |A| suffisanment grand), on a

|nA| > |A|n(1−ε).

On a également la propriété suivante pour la croissance d’ensembles finis dans un
groupe linéaire.

Théorème 2. Supposons WPFRC. Si A ⊂ SL3(C) satisfait

|AA| < K|A|

(|A| fini et suffisanment grand), il existe un sous-ensemble A′ de A telle que

|A′| > K−c|A|

et A′ contenu dans un coset d’un sous-groupe nilpotent (c une constante absolue).

D’autre part nous mentionnons certains résultats plus faibles et ne dépendent pas
de cette conjecture.

Notations.

The n-fold sum set and the n-fold product set of A are

nA = A + · · ·+ A = {a1 + · · ·+ an : a1, · · · , an ∈ A}

and
An = A · · ·A = {a1 · · · an : ai ∈ A}

respectively. The inverse set A−1 can be defined similarly. Let further

A[n] = ({1} ∪A ∪A−1)n.

The notation An is also used for the n-fold Cartesian product, when there is no am-
biguity.

§1. Freiman’s theorem and related conjectures.
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One way to formulate the Polynomial Freiman-Ruzsa Conjecture is as follows.

Let V be a Z-module and A ⊂ V a finite set satisfying

|A + A| < K|A|. (1.1)

Then there exist a positive integer d ∈ Z+, a subset A1 ⊂ A, a convex subset B ⊂ Rd

and a group homomorphism φ : Zd → V such that

d < c log K, (1.2)

|A1| > K−c|A|, (1.3)

φ(B ∩ Zd) ⊃ A1, (1.4)

|B ∩ Zd| < Kc|A|. (1.5)

Here c is an absolute constant.

Recall that if A satisfies (1.1) and cK2 < |A|, then A ⊂ φ(B ∩Zd) with d ≤ K and
B ⊂ Rd a box satisfying

|B| < exp(cK2 log3 K)|A|. (1.6)

(Quantitative version of Freiman’s theorem from [C1].)

More relevant in this note is the much simpler Freiman Lemma, stating that if (1.1)
holds and |A| > cK2/ε, then A ⊂ φ(Zd) with d ≤ [K − 1 + ε]

The Polynomial Freiman-Ruzsa Conjecture implies in particular the following weaker
conjecture, which is all we will use.

Weak Polynomial Freiman-Ruzsa Conjecture (WPFRC). If A ⊂ V satisfies
|A + A| < K|A|, then there exist a subset A1 ⊂ A with |A1| > K−c|A|, and elements
ξ1, . . . , ξd ∈ V with d < c log K, so that

A1 ⊂ Zξ1 + · · ·+ Zξd, (1.7)

where c is an absolute constant

Note that if A ⊂ R+ is finite satisfying

|AA| < K|A| (1.8)

and considering the set log A ⊂ R =: V , one would derive that there are elements
η1, . . . , ηd ∈ R∗ with d < c log K such that

|A ∩G| > K−c|A|, (1.9)
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where G < R∗ denotes the multiplicative group generated by η1, . . . , ηd.

The analogous statement would hold equally well for a finite subset A ⊂ C∗ satis-
fying (1.8).

§2. Sets with small product sets.

We recall the deep theorem of Evertse-Schlickewei-Schmidt ([ESS], Theorem 1.1)
on linear equations in multiplicative groups.

Theorem ESS. Let Γ be a subgroup of the multiplicative group (C∗)n of rank r and
let a1, . . . , an ∈ C∗. Then the equation

a1x1 + · · ·+ anxn = 1 with (x1, . . . , xn) ∈ Γ (2.1)

has at most
exp

(
(6n)3n(r + 1)

)
(2.2)

non-degenerate solutions, meaning that no proper subsum of a1x1+· · ·+anxn vanishes.

The precise bound (2.2) is very important for our purpose.

Let G < C∗ be a group generated by d elements η1, . . . , ηd with d < c log K,
and let Γ = Gn. Since Γ is generated by the elements (1, . . . , ηi, . . . , 1), we have
r := rank Γ ≤ nd. Therefore, given a1, . . . , an ∈ C∗, the equation

a1x1 + · · ·+ anxn = 1 with x1, . . . , xn ∈ G (2.3)

has at most

exp
(
(6n)3n(nd + 1)

)
< exp

(
cn(6n)3n log K

)
= KC(n) (2.4)

non-degenerate solutions, where C(n) is a constant depending on n.

For S1, . . . , Sn ⊂ C, we denote the additive energy of S1, . . . , Sn by

E(S1, . . . , Sn) = |{(x1, y1, . . . , xn, yn) ∈ S2
1 × · · · ×S2

n : x1 + · · ·+ xn = y1 + · · ·+ yn}|

Recall the following lower bound on the size of the sum-set S1 + · · ·+ Sn.

|S1 + · · ·+ Sn| ≥ |S1|2 · · · |Sn|2
E(S1, · · · , Sn)

. (2.5)
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Corollary 1. Let G < C∗ be a group generated by d elements with d < c log K and
let A1 ⊂ G be finite. Then

E(A1, . . . , A1︸ ︷︷ ︸
n

) ≤ KC(n)|A1|n−1 +
(2n)!
n!

|A1|n, (2.6)

where C(n) is a constant depending on n.

Proof. Consider the equation

x1 + · · ·+ xn − xn+1 − · · · − x2n = 0, xi ∈ A1. (2.7)

We decompose (2.7) in minimal vanishing subsums. Each decomposition corresponds
to a partition

{1, . . . , 2n} =
β⋃

α=1

Eα. (2.8)

Since |Eα| ≥ 2, we have β ≤ n. The case β = n clearly contributes to the last term
in (2.6). If |Eα| ≥ 3, we rewrite the equation

∑

i∈Eα

±xi = 0 (2.9)

as ∑

i∈Eα\{r1}
± xi

xr1

= 1. (2.10)

(Specify some element r1 ∈ Eα.) Since no subsum of (2.9), (2.10) is assumed to vanish,
the estimate (2.4) in Theorem ESS applies for the number of non-degenerate solutions
of ∑

i∈Eα\{r1}
± zi

zr1

= 1 with zi ∈ G. (2.11)

Therefore (2.9) has at most
KC(|Eα|)|A1| (2.12)

non-degenerate solutions. It follows that the number of solutions of (2.7) corresponding
to the partition (2.8) is bounded by

|A1| β

β∏
α=1

KC(|Eα|), (2.13)

where β ≤ n− 1. Summing over all possible partitions, we prove (2.6). ¤

The next corollary is conditional to the Weak Polynomial Freiman-Ruzsa Conjec-
ture.
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Corollary 2. Assume WPFRC. Given n ∈ Z+ and ε > 0, there is δ > 0 such that if
A ⊂ C∗ is finite with |A| large and

|AA| < |A|1+δ, (2.14)

then the n-fold sumset nA satisfies

|nA| > |A|n(1−ε). (2.15)

Proof. Take K = |A|δ in (1.8). WPFRC, Corollary 1
(
letting A1 = A ∩ G in (1.9)

)
,

and (2.5) imply

|nA| ≥ |nA1| ≥ |A1|2n

KC(n)|A1|n−1 + (2n)!
n! |A1|n

>min
( n!

(2n)!
|A1|n, K−C(n)|A1|n+1

)
(2.16)

>min
( n!

(2n)!
K−c1n|A|n, K−C(n)|A|n+1

)
. ¤

Note that one has the following stronger conclusion.

Corollary 3. Assume WPFRC. Given n ∈ Z+ and ε > 0, there is δ > 0 such that if
A ⊂ C∗ is a sufficiently large finite set satisfying (2.14) and B ⊂ A is any subset such
that

|B| > |A|ε, (2.17)

then
|nB| > |B|n(1−ε). (2.18)

Proof. As in the proof of Corollary 2, we start from A1 = A ∩G satisfying (1.9). Let
z1, . . . , zs be a maximal subset of A such that ziA1 ∩ zjA1 = ∅ for any i 6= j. Hence

s ≤ |AA1|
|A1| ≤ Kc |AA|

|A| < Kc+1 (2.19)

and by construction, if z ∈ A, then zA1 ∩ ziA1 6= ∅ for some 1 ≤ i ≤ s. Therefore,

A ⊂
s⋃

i=1

ziA1A
−1
1 (2.20)

6



and

B ⊂
s⋃

i=1

(
B ∩ ziA1A

−1
1

)
.

Hence there is 1 ≤ i ≤ s such that

∣∣B1 := B ∩ ziA1A
−1
1

∣∣ ≥ |B|
s

. (2.21)

Note that since A1A
−1
1 ⊂ G, Corollary 1 remains valid for z−1

i B1 ⊂ A1A
−1
1 . In

(2.16) A,A1 are replaced by B, B1. (Note also that |z−1
i B1| = |B1|, etc.) ¤

There are various weaker forms of Corollary 2 and Corollary 3 that hold uncondi-
tionally. The following is a version of Corollary 2.

Proposition 4. Given m > 1, there is δ > 0 and n ∈ Z+ such that if A ⊂ C∗ is a
sufficiently large finite set satisfying

|AA| < |A|1+δ, (2.22)

then
|nA| > |A|m. (2.23)

Using the terminology in [TV], a set A satisfying (2.22) is called an approximate
multiplicative group. It was shown in [B] (See also [TV], Theorem 2.60.) that given
H 6= ∅ in Fp with |HH| ≤ K|H|, and m > 1, ε > 0, there is an integer n = n(m, ε) ∈
Z+ such that

|nH| > c(m, ε)K−C(m,ε) min
(|H|m, p1−ε

)
. (2.24)

For A ⊂ C∗, the same argument allows to show that

|nA| > c(m, ε)K−C(m,ε)|A|m (2.25)

and hence the proposition holds.

Regarding Corollary 3, there is the result from [BC1] for finite subsets A ⊂ Z and
generalized in [BC2] for sets A of algebraic numbers of bounded degree.
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Proposition 5. Given d, n ∈ Z+ and ε > 0, there is δ > 0 such that the following
holds. Let A ⊂ C∗ be a sufficiently large finite set of algebraic numbers of degree at
most d. Assume

|AA| < |A|1+δ. (2.26)

Then, for any nonempty subset B ⊂ A,

|nB| > |A|−ε|B|n. (2.27)

Note that in Proposition we do not require all elements of A to be contained in the
same extension of Q of bounded degree. This bounded degree hypothesis is removed
because of WPFRC.

§3. Finite subsets of linear groups.

We recall the following theorem from [C2], [C3].

For all ε > 0, there is δ > 0 such that if A ⊂ SL3(Z) is a finite set, then one of the
following alternatives holds.

(i) A intersects a coset of a nilpotent subgroup in a set of size at least |A|1−ε.

(ii) |A2| > |A|1+δ.

The proof makes essential use of Theorem ESS, applied with Γ the unit group of
the extension of a cubic polynomial over Q. This is the only significant place where
a generalization to subset A ⊂ SL3(C) is problematic. Here we will discuss in some
greater detail how the WPFRC allows us to recover the theorem in its full strength
for subsets A ⊂ SL3(C).

Theorem 6. Assume WPFRC. Given a finite subset A ⊂ SL3(C) satisfying

|AA| < K|A|, (4.1)

then there is a subset A′ ⊂ A such that

|A′| > K−c|A| (4.2)

and A′ is contained in a coset of a nilpotent group.

Proof. An initial key step in [C2] (borrowed from Helfgott’s work [H]) is to construct
a set D ⊂ A−1A of commuting elements, where

|D| > K−C |A|θ (4.3)
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with C, θ absolute constants. This step is completely general and applies equally
well to subsets A ⊂ SLd(C) with θ = θ(d). Change of bases permits simultaneous
diagonalization of the elements of D. They form the key ingredient in the amplification.

Going back to (4.1), one applies first Tao’s non-commutative version of the Balog-
Szemerédi-Gowers Lemma (see [TV]) and replaces A by a subset A1 ⊂ A satisfying
that

|A1| > K−c|A| (4.4)

and A1 is an approximate group, i.e. there is a subset X ⊂ SL3(C) such that

|X| < Kc and A1A1 ⊂ XA1 ∩A1X, (4.5)

where c is an absolute constant.

Identifying A and A1a nd using (4.5), one can control the size of all product sets
∣∣A[s]

∣∣ < Kcs|A| (4.6)

for given s ∈ Z∗.
Let D ⊂ A−1A ⊂ A[2] be the diagonal set obtained above, satisfying (4.3). The

next aim is to ensure that D has small multiplicative doubling.

Denote the set of diagonal matrices over C by D and let Ds = D ∩ A[s] for s ≥ 2.
Hence Ds ⊃ D2 ⊃ D satisfies (4.3). Consider a minimal subset B ⊂ A[2] satisfying

A[2] ⊂ BD. (4.7)

It follows that
gD ∩ g′D = ∅, ∀g 6= g′ ∈ B (4.8)

and also
A[2] ⊂ B D4. (4.9)

Therefore, |A| ≤ |A[2]| ≤ |B| |D4|. Also, D4 D4 ⊂ D8 and by (4.8) and (4.6)

|D8| |B| = |D8B| ≤ |A[10]| < K10c|A|. (4.9)

Consequently

|D4D4| ≤ |D8| ≤ K10c |A|
|B| ≤ K10c|D4|. (4.10)

Replacing D by D4, we obtain a subset of diagonal matrices in A[4] satisfying (4.3)
and

|DD| < Kc|D|. (4.11)
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To use Theorem ESS, we need a large subset of D whose entries lie in a subgroup
of C of small rank. Let D′ be the projection of D on the (1, 1) entry

π : D → D′, (gi,j) 7→ g1,1.

By the lemma below, there are subsets E′ ⊂ D′ and E := π−1(E′) ⊂ D such that for
some h

|π−1(x)| ∼ h, ∀x ∈ E′

and
|E| > 1

log K
|D|. (4.12)

We note that
|E| ∼ h|E′| and |EE| > h|E′E′|.

Thus, |EE| < |DD| < K(log |K|)|E| implies

|E′E′| < K(log |K|)|E′|.

Next, we apply WPFRC to get a subset F ′ ⊂ E′ such that |F ′| > K−c|E′| and F ′ is
contained in a subgroup Γ1 < C with rank(Γ1) < c log K. Let

F = π−1F ′ ⊂ E.

Hence
|F | > 1

KC
|E|.

Replace D by F and start over with the projection on the (2, 2) entry etc. Eventually
one gets a subset F of D that is large and each (i, i)-projection sits in a group Γi of
small rank. Therefore the multiplicative group Γ spanned {Γi}3i=1 has rank bounded
by c log K and one can apply Theorem ESS on Γ. ¤

Lemma 7. Let A ⊂ A′ × R be finite and let π : A → A′ be the projection to the first
coordinate. Assume

|2A| = |A + A| < K|A|. (4.13)

Then there exist C ⊂ A such that |C| > 1
2 log K |A| and for every x ∈ C, |π−1(π(x))| ∼

h for some h.

Proof. Let m = max{|π−1(x)| : x ∈ A′}. Then

|2A| ≥ |A′| m (4.14)
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and
|3A| ≥ |2A′| m. (4.15)

Obviously
|A| ≤ |A′| m. (4.16)

Plünneck’s inequality and (4.13) imply

|3A| < K3|A|. (4.17)

Hence (4.15), (4.17) and (4.16) imply

|2A′| < K3|A′|. (4.18)

Also, since by (4.13) and (4.14),

|A| > |A′| m

K
,

there is clearly a subset B ⊂ A such that |B| > 1
2 |A| and ∀x ∈ B, |π−1(π(x))| > m

2K .
On the other hand, |π−1(π(x))| ≤ m is obvious. Hence, proceeding with B instead
of A, there is a further subset C ⊂ B with fibers of comparable size and so that
|C| > 1

log K |B|. ¤

Remarks.

1. We expect that generalization of the theorem to subsets A ⊂ SLd(Z), with d
arbitrary, is only a technical matter.

2. It may be possible to reach the conclusion of Theorem 6 unconditionally by following
the approach in [H].

3. Statements of this type have been suggested by B. Green.
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