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In this note we consider incomplete mixed character sums over a
finite field Fpn of the form

∑
x∈BH

ψ
(
f(x)

)
χ(x), where ψ is an addi-

tive character, f(x) ∈ Fpn a polynomial, χ a non-trivial multiplicative
character and BH a ’box‘ of the form BH = {∑n

j=1 xjωj : xj ∈ [1, H]}.
(Here {ωi}n

i=1 is an arbitrary basis of Fpn over Fp.)

If f(x) = 0 and n = 1, Burgess’ well-known theorem provides a non-
trivial estimate under the assumption H > p1/4+ε. A generalization to
arbitrary finite fields was obtained in [C1], [C2] and very recently [K],
eventually providing a statement of the same strength as Burgess, in
Fpn .

If n = 1 and f(x) is linear, [FI] proved a non-trivial bound assuming
H > p1/4+ε. For a general polynomial f(x) the only available result are
that of P. Enflo [E] and a comment made by Heath-Brown [H] in the
review of [E]. Heath-brown’s estimate (for n = 1) assumes again that

H > p1/4+ε and comes with a saving of the form p−c(ε)/2d
, where d is

the degree of f(x).

Our result below treats the situation of a field Fpn (relying on Konya-
gin’s bound for the multiplicative energy of a box BH as described
above) and a polynomial f(x) of arbitrary degree d, assuming H >

p1/4+ε. We obtain a saving over the trivial bound of the form p−c(n,ε)/(d+1)2 ,
so that, interestingly, even for n = 1 the result seems new.

Notation and Convention.

1. e(θ) = e2πiθ, ep(θ) = e( θ
p
)

2. When there is no ambiguity, p ε = [p ε] ∈ Z.
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3. Multiplicative energy

E(A, B) =
∣∣∣
{
(a1, a2, b1, b2) ∈ A× A×B ×B : a1b1 = a2b2

}∣∣∣.

Let ω1, . . . , ωn be an arbitrary basis for Fpn over Fp. Then for any
x ∈ Fpn , there is a unique representation of x in terms of the basis.

x = x1ω1 + · · ·+ xnωn.

A box BH ⊂ Fpn of size H is a set such that for each j, the coefficients
xj form an interval.

BH =
{ n∑

j=1

xjωj : xj ∈ [1, H], ∀j
}

. (1)

Theorem. Let χ (respectively, ψ) be a non-principal multiplicative
(resp. additive) character of Fpn. For a basis ω1, ω2, . . . , ωn of Fpn over
Fp, let BH be a box as defined in (1) by the basis with

H > p
1
4
+κ for some κ > 0. (2)

Then for a polynomial f ∈ Fpn of degree d, we have
∣∣∣

∑
x∈BH

ψ
(
f(x)

)
χ(x)

∣∣∣ < c(n, κ)(d + 1)2p−δ|B|,

where

δ =
κ2n

4(1 + 2κ)(2n + (d + 1)2)

and c(n, κ) is a constant depending on n and κ.

Sketch of Proof.

As in [C1], [C2] and [K], we use Burgess’ method [Bu1].

Let ε > 0 be specified later (see (16)) and let Bp−2εH be a box of
size p−2εH as defined in (1). For y ∈ Bp−2εH and 0 < t < pε, since
yt ∈ Bp−εH , we have

∣∣∣
∑

x∈BH

ψ
(
f(x)

)
χ(x)−

∑
x∈BH

ψ
(
f(x + yt)

)
χ(x + yt)

∣∣∣

≤
∣∣B \ (B + yt)

∣∣ +
∣∣(B + yt) \B

∣∣ < 2np−εHn.
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Hence∣∣∣
∑

x∈BH

ψ
(
f(x)

)
χ(x)

∣∣∣

≤ 1

p ε|Bp−2εH |

∣∣∣∣
∑

x∈B
H

, y∈Bp−2εH

0<t<pε

ψ
(
f(x + yt)

)
χ(x + yt)

∣∣∣∣ + O(p−εHn).

(3)

An additive character is of this form

ψ(z) = ep(Tr ξz), for some ξ ∈ Fpn .

Expanding

f(x + yt) = ad(x, y)td + ad−1(x, y)td−1 + · · ·+ a0(x, y),

and we write

ψ
(
f(x + yt)

)
= e

( d∑
j=0

Tr ξaj(x, y)

p
tj

)
. (4)

Fix ε1 > 0 (to be specified later) and partition [0, 1]d+1 in boxes Qα

of size p−ε1 . There are p ε1(d+1) boxes. Partition BH×Bp−2εH according
to the boxes Qα.

BH ×Bp−2εH =
⋃
α

Ωα,

where

Ωα =
{

(x, y) ∈ BH ×Bp−2εH :

(
Tr ξaj(x, y)

p

)

1≤j≤d+1

∈ Qα (mod 1)
}

.

Hence for θα = (θα,1, . . . , θα,d+1) ∈ Qα and (x, y) ∈ Ωα, we have
∣∣∣∣
Tr ξaj(x, y)

p
− θα,j

∣∣∣∣ < p−ε1 , for j = 1, . . . , d + 1. (5)

Since t < p ε, (4) and (5) imply that for (x, y) ∈ Ωα,
∣∣∣∣ψ

(
f(x + yt)

)− e
( d∑

j=0

θα,j tj
)∣∣∣∣

≤ 2π
∑

j

∣∣∣∣
Tr ξaj(x, y)

p
− θα,j

∣∣∣∣ tj

< 2π(d + 1)pdε−ε1 . p−ε,

(6)
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for
ε1 = (d + 1)ε. (7)

Therefore, the bound in (3) is bounded by

1

p ε|Bp−2εH |
∑

α

∑

(x,y)∈Ωα

∣∣∣∣
p ε∑
t=1

e
( d∑

j=0

θα,j tj
)

χ(x+yt)

∣∣∣∣+O(p−εHn). (8)

For z ∈ Fpn , denote

µα(z) =
∣∣∣
{
(x, y) ∈ Ωα :

x

y
= z

}∣∣∣. (9)

The sum in the first term of (8) equals

∑
α

∑

z∈Fpn

µα(z)

∣∣∣∣
p ε∑
t=1

e
( d∑

j=0

θα,j tj
)

χ(z + t)

∣∣∣∣. (10)

Take r ∈ Z specified later. Hölder’s inequality bounds (10) by

( ∑
α

∑

z∈Fpn

µα(z)
2r

2r−1

)1− 1
2r

︸ ︷︷ ︸
(A)

( ∑
α

∑

z∈Fpn

∣∣∣∣
p ε∑
t=1

e
( d∑

j=0

θα,j tj
)

χ(z + t)

∣∣∣∣
2r) 1

2r

︸ ︷︷ ︸
(B)

.

(11)

Hölder’s inequality also gives

(A) ≤
( ∑

α,z

µα(z)
)1− 1

r
( ∑

α,z

µα(z)2
) 1

2r

= (
∑

α

| Ωα|)1− 1
r E(BH , Bp−2εH)

1
2r

≤ c(n)
(
p−2εH2

)n(1− 1
r
)
(
p−2nεH2n

) 1
2r

log p .

(12)

Here the equality follows from the definitions of µα(z) and the multi-
plicative energy. For the last inequality, we use Konyagin’s bound on
multiplicative energy [K] and that

E(BH , Bp−2εH) ≤ E
(
BH , BH

) 1
2 E

(
Bp−2εH , Bp−2εH

) 1
2 .

(
This is by Cauchy-Schwarz. (See [TV] Corollary 2.10.)

)
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To bound (B), we write

(B)2r =
∑

α

Bα

with

Bα =
∑

z

∣∣∣
p ε∑
t=1

e
( d∑

j=0

θα,j tj
)

χ(z + t)
∣∣∣
2r

.

For fixed α, we expand
∣∣∣ ∑p ε

t=1 e
( ∑d

j=0 θα,j tj
)

χ(z + t)
∣∣∣
2r

and obtain

∣∣∣∣
p ε∑
t=1

e
( d∑

j=0

θα,j tj
)

χ(z + t)

∣∣∣∣
2r

=
∑

t1,..., t2r

cα(t1, . . . , t2r)χ

(
(z + t1) · · · (z + tr)

(z + tr+1) · · · (z + t2r)

) (13)

with |cα(t1, . . . , t2r)| = 1. This gives

(B)2r ≤ (2r)2rp ε1(d+1)
∑

t1,..., t2r<pε

∣∣∣∣
∑

z

χ

(
(z + t1) · · · (z + tr)

(z + tr+1) · · · (z + t2r)

)∣∣∣∣

≤ (2r)2rp ε1(d+1)
[
pnprε + p

n
2 p2rε

]

(The last inequality is given by Weil’s estimate.)

Therefore,

(B) < crp
ε1(d+1)

2r

[
p

n
2r

+ ε
2 + p

n
4r

+ε
]
. (14)

Putting (10)-(12) and (14) together, we have the first term of (8)
bounded by

c(n)r log p

p ε(p−2εH)n

(
p−2εH2

)n(1− 1
r
)
(
p−2nεH2n

) 1
2r

p
ε1(d+1)

2r

[
p

n
2r

+ ε
2 + p

n
4r

+ε
]

≤c(n)r log p Hn−n
r p

ε1(d+1)
2r

+ εn
r

[
p

n
2r
− ε

2 + p
n
4r

]

≤c(n)r Hnp
ε
2r

(
(d+1)2+2n

)[( p
1
2

H

)n
r
p−

ε
2 +

( p
1
4

H

)n
r

]

<c(n)r Hnp
ε
2r

(
(d+1)2+2n

)[
p

n
4r
− ε

2 + p−κ n
r

]
.

(15)(
The last inequality is by our assumption (2).

)



6

Take
ε = κ

n

(d + 1)2 + 2n
(16)

and

r =
⌈
(2κ + 1)

n

ε

⌉
=

⌈(
(d + 1)2 + 2n

)(
2 +

1

κ

)⌉
. (17)

Substituting (16) in the second factor of (15), we obtain p
κn
2r . Our

choice of r implies that r > (2κ+1)n
ε

and hence κn
2r

+ n
4r

< ε
4
. Therefore,

(15) is bounded by

c(n, κ)(d + 1)2Hn(p−
ε
4 + p−κ n

2r ) < c(n, κ)(d + 1)2Hnp
− κ2n

4(1+2κ)((d+1)2+2n) .
(
The inequality is because r < 2

(
(d + 1)2 + 2n

)(
2 + 1

κ

)
by (17).

)

Remark. One may estimate the quantity
∑

t1,..., t2r

∣∣ ∑
α

cα(t1, . . . , t2r)
∣∣,

which essentially equals to

∫

Πd+1

∣∣∣
p ε∑
t=1

e
( d∑

j=0

θj tj
) ∣∣∣

2r

dθ0 · · · dθd

and may be estimated using the classical Vinogradov’s mean value the-
orem. This will lead to some further saving of δ that may be significant
for specific values of κ and d. In the context of our theorem where we
focus on small κ and large d, the improvement turns out to be without
interest.
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