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§. Introduction.

Let p be a prime and u an integer coprime with p. The Fermat
quotient qp(u) is the unique integer satisfying

qp(u) ≡ up−1 − 1

p
mod p and 0 ≤ qp(u) ≤ p− 1 (0.1)

If p|u, we set qp(u) = 0.

The distribution of Fermat quotients and related sequences is inter-
esting from several perspectives. First, there are several applications,
in particular to algebraic number theory and computer science. Fer-
mat quotients play for instance a role in primality testing (see [L]) and
are well-studied as model for generating pseudo-random numbers. (See
[COW].) From the analytical side, establishing discrepancy bounds for
those sequences relies on the theory of exponential sums. Those meth-
ods provide nontrivial results, but there is nevertheless often a large
gap between what can be proven and the conjectured truth.

Exponential sum estimates for partial sequences qp(u), u = n +
1, . . . , n + N appear in the work of Health-Brown [Hb]. Our inter-
est in this paper is incomplete character sums, following up on the
paper [S1]. More precisely, we obtain nontrivial estimates on sums of
the type

N∑
u=1

χ
(
qp(u)

)
(Theorem 3.1)

N∑
u=1

χ
(
uqp(u)

)
(Theorem 3.2)

for N > p1+δ (δ > 0 arbitrary) and also for sums over primes
∑

`≤N

` prime

χ
(
qp(`)

)
(Theorem 4.1)
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for N > p
3
2
+δ.

Thus the restriction on N is weaker than those imposed in [S1]. Our
results contribute to some of the problems put forward in [S2].

For shorter range (N > p 3/4+δ), we have the following result (the
saving on the bound is only logarithmic).

∣∣∣
∑
u≤N

χ
(
qp(u)

)∣∣∣ . δ N(log N)−1+ε. (Theorem 5.1)

With respect to Theorems 3.1 and 3.2, the statements remain valid
for general intervals [M,M + N ] as in [S1].

The method is based on a new result on the distribution ( mod p)
of the sequence uqp(u) for u = 1, . . . , p, (see Proposition 2.1) which
is another issue brought up in [S1]. Its proof relies on the Heilbronn
exponential sum bound from [Hb] and [HbK]. which is combined with
combinatorial estimates from [BKS].

§1. Preliminaries.

Theorem 1.1. [BKS] Let G be a multiplicative subgroup of (Z/nZ)∗.
For T ∈ Z+, denote

N(n,G, T ) =
∣∣{(x, y) : 0 < |x|, |y| < T, xy−1 ∈ G}

∣∣
Then for |G| = t ≥ √

n and T arbitrary, we have

N(n,G, T ) ≤ T t
2v+1

2v(v+1) n−
1

2(v+1)
+ε + T 2 t

1
v n−

1
v
+ε, (1.1)

where v is an arbitrary fixed integer.

Theorem 1.2. [HB-K] Let G < (Z/p2Z)∗ be the subgroup of p-powers,
i.e.

G = {xp mod p2 : (x, p) = 1},
and let 1G be the indicator function of G. Then

∑

1≤x≤p2

∣∣1̂G(x)
∣∣4 ¿ p

9
2 . (1.2)

Remark 1.2.1. The subgroup G in Theorem 1.2 has the following
properties.

(i). |G| = p− 1.

(ii). There is a one-to-one correspondence between {1, · · · , p − 1}
and G by sending x to xp.
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Fact 1.3. Note that

qp(xy) = qp(x) + qp(y). (1.3)

§2. A distributional inequality.

Our main result is the following.

Proposition 2.1. For ξ ∈ Z/pZ, define

u(ξ) =
∣∣{x ∈ [1, p] : xp − x ≡ p ξ mod p2}

∣∣. (2.1)

Then
p∑

ξ=1

u(ξ)2 < p
11
8

+ε. (2.2)

Proof. It follows from property (ii) in Remark 1.3, we have

u(ξ) =
∣∣{y ∈ G : y ∈ p ξ + [1, p− 1]}

∣∣

≤
∑
y∈G

K(y − p ξ), (2.3)

where K;Z/p2Z → [0, 1] is a smooth function mapping [1, p] to the
constant 1.

Hence

|K̂(λ)| < p−100 for λ > p1+ε, (2.4)

where

K̂(λ) =

p2∑
x=1

K(x) ep2(λx).

Putting (2.3) and (2.4) together, we have

u(ξ) ≤ 1

p2

p2∑

λ=1

K̂(λ) ep(λξ) 1̂G(−λ),
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and
p∑

ξ=1

u(ξ)2

≤ 1

p4

p2∑

λ1, λ2=1

K̂(λ1)K̂(λ2)
[ p∑

ξ=1

ep

(
ξ(λ1 − λ2)

)]
1̂G(−λ1)1̂G(−λ2)

≤ 1

p3

p2∑

λ1, λ2=1

λ1≡λ2 mod p

|K̂(λ1)| |K̂(λ2)| |1̂G(−λ1)| |1̂G(−λ2)|

(2.5)

Since |K̂(λ)| . p and (2.4) holds, we have

p∑

ξ=1

u(ξ)2 . 1

p

∑

|λi|<p 1+ε

λ1≡λ2 mod p

|1̂G(λ1)| |1̂G(λ2)|

≤ p ε

p

∑

|λ|<p 1+ε

|1̂G(λ)|2

=
|G|2
p 1−ε

+
1

p 1−ε

∑

0<|λ|<p 1+ε

|1̂G(λ)|2.

(2.6)

(The second inequality is by Cauchy-Schwarz.)

To bound
∑

0<|λ|<p 1+ε |1̂G(λ)|2, we will use Theorems 1.1 and 1.2 and

an argument from [KS].

First, we note that 1̂G(λ) = 1̂G(λx) for x ∈ G.

∑

0<|λ|<p 1+ε

|1̂G(λ)|2 =
1

p

∑
x∈G

0<|λ|<p 1+ε

|1̂G(xλ)|2

=
1

p

∑

0<t<p2

c(t) |1̂G(t)|2

≤ 1

p

[∑
c(t)2

]1/2[∑
|1̂G(t)|4

]1/2

¿ p
5
4

[ ∑
c(t)2

]1/2

,

(2.7)



5

where

c(t) =
∣∣∣
{
(x, λ) ∈ G× [

0 < |λ| < p 1+ε
]

: xλ ≡ t mod p2
}∣∣∣.

(The first inequality is by Cauchy-Schwarz, and the second inequality
by Theorem 1.2.)

Next,
∑

c(t)2

=
∣∣∣
{
(x1, x2, λ1, λ2) ∈ G2 × [

0 < |λ| < p 1+ε
]2

: x1λ1 = x2λ2 mod p2}
∣∣

=p
∣∣∣
{
(x, λ1, λ2) ∈ G× [

0 < |λ| < p 1+ε
]2

: xλ1 = λ2 mod p2
}∣∣∣.

Applying Theorem 1.1 with n = p2, T = p 1+ε, v = 1, t = p, we have
∑

c(t)2 < p
{
p 1+εp

3
4 p−

1
2
+ε + p2+2εpp−2+ε

}

< p
9
4
+ε

(2.8)

Combining (2.6)-(2.8), we have

p∑

ξ=1

u(ξ)2 < p
11
8

+2ε. ¤

§3. Character sums with Fermat quotients.

Theorem 3.1. Let χ be a nontrivial multiplicative character mod p
and k = p1+δ, with 1 ≥ δ > 0. Then

∣∣∣
k∑

x=1

χ
(
qp(x)

)∣∣∣ . δ kp−
δ
16

+ε.

Proof.

For gcd(x, p) = 1, we write

x = s + py, with 1 ≤ s ≤ p− 1, and y ≤ pδ.

Since

(s + py)p−1 ≡ sp−1 + p(p− 1)sp−2y ≡ sp−1 − psp−2y mod p2,
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this gives

∣∣∣
k∑

x=1

χ(qp(x)
∣∣∣

=

∣∣∣∣
p−1∑
s=1

∑

y≤pδ

χ
(sp−1 − 1

p
− sp−2y

)∣∣∣∣

≤
p−1∑
s=1

∣∣∣∣
∑

y≤pδ

χ
(sp − s

p
− y

)∣∣∣∣

=
∑

ξ

u(ξ)

∣∣∣∣
∑

y≤pδ

χ(ξ − y)

∣∣∣∣ ,

(3.1)

where the inequality follows from the fact that sp−1 ≡ 1 mod p, and
u(ξ) is defined as in Proposition 2.1.

Take an integer r ∼ 1
δ
. By Hölder inequality and Proposition 2.1,

(3.1) is bounded by

[ ∑

ξ

u(ξ)
2r

2r−1

]1− 1
2r

[ p∑

ξ=1

∣∣∣
∑

y≤pδ

χ(ξ − y)
∣∣∣
2r

] 1
2r

≤
[ ∑

ξ

u(ξ)

]1− 1
r

[ ∑

ξ

u(ξ)2

] 1
2r

[ p∑

ξ=1

∣∣∣
∑

y≤pδ

χ(ξ − y)
∣∣∣
2r

] 1
2r

≤ p1− 1
r p

11
16r

+ε

[ p∑

ξ=1

∣∣∣
∑

y≤pδ

χ(ξ − y)
∣∣∣
2r

] 1
2r

.

Using Weil’s bound for the last factor gives

∣∣∣
k∑

x=1

χ(qp(x)
∣∣∣

. p1− 5
16r

+ε

{
c(r)pδ rp + p2rδc(r)

√
p

} 1
2r

≤ c(r)p1− 5
16r

+ δ
2
+ 1

2r
+ε + c(r)p1− 5

16r
+δ+ 1

4r
+ε

= c(r)k
{

p
3

16r
− δ

2
+ε + p−

1
16r

+ε
}

= c(r)kp−
δ
16

+ε. ¤
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The same approach applies to
∑k

x=1 χ
(

xp−x
p

)
.

Theorem 3.2. Let χ be a nontrivial multiplicative character mod p
and k = p1+δ, with 1 ≥ δ > 0. Then

∣∣∣
k∑

x=1

χ
(xp − x

p

)∣∣∣ . δ kp−
δ
16

+ε.

Proof.

As in the proof of Theorem 3.1, for gcd(x, p) = 1, we set

x = s + py, with 1 ≤ s ≤ p− 1, and 0 ≤ y ≤ pδ.

Then
xp − x

p
≡ sp − s

p
− y mod p.

We obtain

∣∣∣
k∑

x=1

χ
(xp − x

p

)∣∣∣ ≤
p−1∑
s=1

∣∣∣
∑

y≤pδ

χ
(sp − s

p
− y

)∣∣∣.

This is (3.1) in the proof of Theorem 3.1. ¤

§4. Sums over primes.

In the same paper [S], Shparlinski also obtained nontrivial bound on

∑
x≤N

x prime

χ
(
qp(x)

)
,

the character sums with Fermat quotients over primes for N > p3+ε.
In the next theorem, we improve his result.

Theorem 4.1. Assume N > p
3
2
+δ. Then we have

∑
x≤N

x prime

χ
(
qp(x)

)
< Np−δ1 ,

where δ1 = δ2/3.

Remark 4.1.1. The analysis in the proof of Theorem 4.1 can be made
more precise to give a better dependence of δ1 on δ but we only want
to get a nontrivial bound under the weakest possible assumption on N .
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We will use the following two lemmas.

Lemma 4.2. Let η1 and η2 be functions defined on Z/pZ such that

p∑
x=1

|ηi(x)| ≤ 1 for i = 1, 2,

p∑
x=1

|η1(x)|2 < p−
1
2
−δ, (4.1)

and

‖η2‖∞ < p−δ, (4.2)

for some δ > 0.

Let χ be a nontrivial multiplicative character mod p. Then
∣∣∣
∑

η1(x1)η2(x2)χ(x1 + x2)
∣∣∣ < p−δ1

for some δ1 > δ2/2.

The proof of Lemma 4.2 is analogous to the argument used to prove
Theorem 3.1.

Lemma 4.3. For 1 ¿ T < p, define

σ(z) =
∣∣{x ∈ [1, T ] : qp(x) = z

}∣∣.
Then

(i). If T > pθ with θ > 0, then
∑

σ(z)2 < T 1+θ/2.

(ii). If T > p3/4+θ with 1
2

> θ > 0, then
∑

σ(z)2 < T 2p−1/2−θ/2.

Proof. In Theorem 1.1, we take n = p2, t = p and

G = {xp mod p2 : 1 ≤ x ≤ p− 1}.
Then

N(p2, G, T ) < Tp
1

2v(v+1)
+ε + T 2p−

1
v
+ε. (4.3)

Also,
∑
z<T

σ(z)2 =
∣∣{(x1, x2) ∈ [1, T ]2 : qp(x1) = qp(x2)}

∣∣

=
∣∣{(x1, x2) ∈ [1, T ]2 : xp−1

1 ≡ xp−1
2 mod p}

∣∣
=

∣∣{(x1, x2) ∈ [1, T ]2 : x1 ∈ x2G}
∣∣

≤ N(p2, G, T ).
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To prove the lemma, for Case (i), in (4.3), we take v ∼ 1
θ
. So

T = p
1
v
+ε, and (4.3) is bounded by T 1+ 1

2(v+1) < T 1+ θ
2 . For Case (ii), we

take v = 1 in (4.3). ¤

Proof of Theorem 4.1.

We follow the usual procedure, estimating
∑
n≤N

Λ(n)χ
(
qp(n)

)
(4.4)

using Vaughan’s identity (See [IK], Prop 13.4.)

Λ(n) =
∑

b|n
b≤y

µ(b) log
n

b
−

∑∑

bc|n
b≤y, c≤z

µ(b)Λ(c) +
∑ ∑

bc|n
b>y, c>z

µ(b)Λ(c). (4.5)

Take
y = z = 2

√
N

so that the last term in (4.5) can be omitted. We obtain
∑
n≤N

Λ(n)χ
(
qp(n)

)

≤
∣∣∣

∑

b≤y

bd≤N

µ(b) log(d)χ
(
qp(bd)

)∣∣∣ +
∣∣∣

∑

b≤y, c≤z

bcd≤N

µ(b)Λ(c)χ
(
qp(bcd)

)∣∣∣. (4.6)

Using Fact 1.3 and a standard argument (See e.g. Theorem 3.4 in
[S].), we reduce the second sums in (4.6) to bilinear sums of the form

∣∣∣
∑

U≤u≤2U

V≤v≤2V

α(u)β(v)χ
(
qp(u) + qp(v)

)∣∣∣, (4.7)

with N1−ε < UV < N1+ε, p τ < U ≤ V , ‖α‖∞, ‖β‖∞ < pε, and linear
sums ∣∣∣

∑
U≤u≤2U

χ
(
qp(ξu)

)∣∣∣ (4.8)

with N1−τ < U < N .

Since N > p
3
2
+δ, we may use Corollary 3.2 in [S] to bound (4.8). (In

fact, the argument used in the proof of Theorem 3.1 may be adapted
as well.)

To estimate (4.7), we will use Lemmas 4.2 and 4.3.
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Define

η1(x) =
1

V

∑
V≤v≤2V

qp(v)=x

β(v),

and

η2(x) =
1

U

∑
U≤u≤2U

qp(u)=x

α(u).

Recall that U > pτ and V > N
1
2
−e > p

3
4
+ δ

2 .

Clearly,
∑ |η2(x)| ≤ 1

U

∑
U≤u≤2U |α(u)| < pε and similarly for η1.

Also, from Lemma 4.3,

‖η2‖2
∞

≤
∑

x

|η2(x)|2

≤ ‖α‖2
∞ U−2

∑
x

∣∣{U ≤ u ≤ 2U : qp(u) = x}
∣∣2

< pεU−1+ τ
2

< p−
τ
2 ,

and ∑
x

|η1(x)|2

≤ ‖β‖2
∞ V −2

∑
x

∣∣{V ≤ v ≤ 2V : qp(v) = x}
∣∣2

< p−
1
2
− δ

4
+ε

< p−
1
2
− δ

5 .

We rewrite (4.7) as

UV
∣∣∣
∑
x1,x2

η1(x1)η2(x2)χ(x1 + x2)
∣∣∣,

use Lemma 4.2 (replacing δ by min( δ
5
, τ

4
)) and get an estimate

UV p−δ2/2 < Np−δ2/3. ¤
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An argument similar to the one above can be used to treat the sums

∑
n≤N

n prime

χ
(np − n

p

)

from Problem 46 in [S2].

Theorem 4.4. Assume N > p
3
2
+δ. Then there is δ′ = δ′(δ) > 0 such

that ∣∣∣∣
∑
n≤N

n prime

χ
(np − n

p

)∣∣∣∣ < Np−δ′ .

Proof. First, we note that

(xy)p − xy

p
≡ xy qp(xy) ≡ xy

(
qp(x) + qp(y)

)
mod p.

Thus, instead of (4.7) and (4.8), we have
∣∣∣

∑
U≤u≤2U

V≤v≤2V

α(u)β(v)χ(u)χ(v)χ
(
qp(u) + qp(v)

)∣∣∣, (4.9)

with N1−ε < UV < N1+ε, p τ < U ≤ V , ‖α‖∞, ‖β‖∞ < pε, and
∣∣∣

∑
U≤u≤2U

χ(u)χ
(
qp(ξu)

)∣∣∣ (4.10)

with N1−τ < U < N .

For (4.9), we define α1(u) = α(u)χ(u) and β1(v) = β(v)χ(v). We
obtain the same bound as for (4.7).

Bounding (4.10) amounts to estimate

∑
x≤X

χ
((ξx)p − ξx

p

)
(4.11)

with ξ fixed, (ξ, p) = 1 and X > N1−ε > p3/2. In fact, it suffices
to assume X > p1+δ since the same argument as for Theorem 3.2 is
applicable.

Thus, setting

x = s + py, with 1 ≤ s ≤ p− 1, and 0 ≤ y ≤ pδ,
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we have
(ξx)p − ξx

p
≡ (ξs)p − ξs

p
− ξy mod p. (4.12)

Following the same argument, we need the analogue of Proposition 2.1
with u on Z/pZ defined as

u(z) =
∣∣{s ∈ [1, p− 1] : (ξs)p − ξs ≡ p zξ mod p2

}∣∣.

Following the proof of Proposition 2.1, we have

u(z) =
∣∣{y ∈ G : ξpy ∈ p zξ + ξ[1, p− 1] mod p2

}∣∣
=

∣∣{y ∈ G : ξp−1y ∈ p z + [1, p− 1] mod p2
}∣∣.

Let K be as in the proof of Proposition 2.1. Then

u(z) ≤
∑
y∈G

K(ξp−1y − pz)

≤ 1

p2

p2∑

λ=1

K̂(λ) ep(λz) 1̂G(−ξp−1λ),

and

p∑
z=1

u(z)2

≤ 1

p3

p2∑

λ1, λ2=1

λ1≡λ2 mod p

|K̂(λ1)| |K̂(λ2)| |1̂G(−ξp−1λ1)| |1̂G(−ξp−1λ2)|.

As for (2.5), we need to estimate

∑

0<|λ|<p 1+ε

|1̂G(ξp−1λ)|2 =
1

p

∑

0<t<p2

c(t) |1̂G(t)|2,

where

c(t) =
∣∣∣
{
(x, λ) ∈ G× [

0 < |λ| < p 1+ε
]

: xξp−1λ ≡ t mod p2
}∣∣∣

=
∣∣∣
{
(x, λ) ∈ G× [

0 < |λ| < p 1+ε
]

: xλ ≡ ξp−1
1 t mod p2

}∣∣∣

with ξξ1 ≡ 1 mod p2.
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The argument is completed exactly as in Proposition 2.1 and we
obtain

p∑
z=1

u(z)2 < p
11
8

+ε. ¤

§5. Shorter ranges.

We return to Problem 45 in [S2]. It is in fact possible to obtain a
nontrivial bound on ∑

n≤N

χ
(np−1 − 1

p

)

for N as small as p3/4+δ, but the saving on the bound is only logarith-
mic.

Theorem 5.1 For N > p 3/4+δ with δ > 0, we have∣∣∣∣
∑
n≤N

χ
(np−1 − 1

p

)∣∣∣∣ . δ N(log N)−1+ε.

Proof. We will remove subintervals (where we use the trivial bounds
on the character sums) until Lemma 4.2 is applicable.

We fix
δ1 = (log p)−1+ε.

(Note that δ1 < δ
10

.)

Let

V =
{
n ∈ [1, N ] : n has a prime divisor in [p δ1 , p

δ
2 ]

}
.

Clearly, ∣∣∣[1, N ] \ V
∣∣∣

≤ N
∏

p δ1<` <p
δ
2

` prime

(
1− 1

`

)

≤ N exp

{
−

∑

p δ1<` <p
δ
2

` prime

1

`

}
. N

δ1

δ
∼ N(log p)−1+ε.

(5.1)

(The last inequality follows from Prime Number Theorem.)



14

We will make a further subdivision of V .

Let
α = δ1 = (log p)−1+ε (5.2)

be a small parameter. We choose j1, j2 such that

pδ1 = (1 + α)j1 , p
δ
2 = (1 + α)j2 . (5.3)

Let Pj be the set of primes in [(1 + α)j, (1 + α)j+1] and let

Vj =
{
n ∈ [1, N ] : n has a single prime divisor in Pj

and no prime divisors in
⋃
i<j

Pi

}
. (5.4)

Clearly, from the definition,

V \
⋃

j1≤j≤j2

Vj

⊂ {
n ∈ [1, N ] : n has two prime divisors in some Pj, j1 ≤ j ≤ j2

}
.

Hence, by Prime Number Theorem and that j ≤ log p
α

,
∣∣∣V \

⋃
j1≤j≤j2

Vj

∣∣∣

≤
∑
j≥j1

{ ∑

`1, `2∈Pj

N

`1`2

}

≤ N
∑
j≥j1

{ ∑

`∈Pj

1

`

}2

≤ N
∑
j≥j1

{ |Pj|
(1 + α)j

}2

≤ N
∑
j≥j1

{
1 + α

(1 + j) log(1 + α)
− 1

j log(1 + α)
+ O

(
e−

√
δ1 log p

)}2

. N
∑
j≥j1

(
1

j
+

1

j2α
+ O

(
e−

√
δ1 log p

))2

. N

(
1

j 1

+
log p

α
e−

√
δ1 log p

)

. N

j 1

. < N(log p)−2+ε.

(5.5)
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Next, denote

Ωj =

{
m ∈

[
1,

N

(1 + α)j+1

]
: m has no prime divisors in

⋃
i≤j

Pi

}
.

It follows from (5.4), the definition of Vj that

PjΩj ⊂ Vj

and

Vj \
(
Pj Ωj

) ⊂ Pj ×
[ N

(1 + α)j+1
,

N

(1 + α)j

]
.

Hence, using the bound on |Pj| gotten in (5.5), we have
∣∣∣Vj \

(
Pj Ωj

)∣∣∣ ≤ |Pj| Nα

(1 + α)j+1
. Nα

[
1

j
+ O

(
e−

√
δ1 log p

)]
.

Therefore,
∑

j1≤j≤j2

∣∣∣Vj \
(
Pj Ωj

)∣∣∣ .Nα
[
log j2 + j2e

−√δ1 log p
]

< N
[
α(log log p + log

1

α
) + (log p)e−

√
δ1 log p

]

. N(log p)−1+2ε.

(5.6)

Note also that from the definition of Ωj, the product map

Pj × Ωj −→ PjΩj

is a one-to-one and onto.

Combining (5.1), (5.5) and (5.6), we have∣∣∣
∑
n≤N

χ
(
qp(n)

)∣∣∣

. N(log p)−1+2ε +
∑

j1≤j≤j2

∣∣∣
∑

`∈Pj , m∈Ωj

χ
(
qp(`) + qp(m)

)∣∣∣.
(5.7)

For each j, the double sum
∑

`∈Pj , m∈Ωj

χ
(
qp(`) + qp(m)

)
=

∑
η1(x)η2(y)χ(x + y) (5.8)

with

η1(x) =
∣∣∣
{
m ∈ Ωj : qp(m) = x

}∣∣∣ ≤
∣∣∣
{
m ≤ N

(1 + α)j
: qp(m) = x

}∣∣∣
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and

η2(y) =
∣∣∣
{
` ∈ Pj : qp(`) = y

}∣∣∣ ≤
∣∣∣
{
` ≤ (1 + α)j+1 : qp(`) = y

}∣∣∣.

We will use Lemma 4.2 and Theorem 1.1 to estimate (5.8).

Recall that pδ1 ≤ (1 + α)j ≤ pδ/2. Hence N
(1+α)j > p3/4+δ/2.

By inequality (4.3)
(
with v = 1 for

∑
η1(x)2

)
,

∑
η1(x)2 ≤ N

(
p2, G,

N

(1 + α)j

)

≤ pε

(
N

(1 + α)j

)2{
(1 + α)j

N
p

1
4 + p−1

}

≤
(

N

(1 + α)j

)2

p−
1
2
− δ

3

and ∑
η2(y)2 ≤ N

(
p2, G, (1 + α)j

)

≤ pε(1 + α)2j min
v≥1

{
p1/ 2v(v+1)

(1 + α)j
+ p−1/v

}

≤ pε(1 + α)2j(1 + α)−j(1−δ/2)

< p−δ1/2(1 + α)2j.

(We obtain the third inequality by taking v such that p1/v > (1+α)j ≥
p1/(v+1).)

Thus, after normalization, Lemma 4.2 can be applied with δ replaced
by min( δ

3
, δ1

2
), and we obtain

∣∣∣
∑

`∈Pj , m∈Ωj

χ
(
qp(`) + qp(m)

)∣∣∣ < Np−δ2/2 < Np−cδ1 . (5.9)

The theorem follows from (5.7) and (5.9). ¤
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