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Abstract.

In this paper we establish average bounds on the partial quotients of fractions b/p, with
p prime and b from a multiplicative subgroup of (Z/pZ)*. As a consequence, we obtain
estimates for the partial quotients of b/p, for 'most’ primitive elements b. Our result
improves upon earlier work due to G. Larcher. The behavior of the partial quotients of b/p
is well known to be crucial to the statistical properties of the pseudo-congruential number
generator (modp). As a corollary, estimates on their pair correlation are refined.

¢1. Introduction.

Let z € [0, 1] be a real number with continued fraction [RS]

1

Tr = al—l——l = [al,ag,...].

a2+:
Denote {a;(z)}; the partial quotients {a1,as,---} C ZT of z.

It was proven by G. Larcher [L] that given a modulus N, there exists
1<b< N, (b,N) =1 such that

b
Zai<ﬁ> < clog N loglog N. (1.1)
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The question whether one can remove the loglog N factor in (1.1) is still open and would
follow from an affirmative answer to Zaremba’s conjecture (see [Z1], p.69), stating that

b
(bglvi)ril max ai<N> <, (1.2)

where ¢ is an absolute constant (independent of N). (See [Z2] and [C] for results related
to the conjecture.)

The quantity ), a;() is important in the study of equidistributions.

For a sequence x1,...,zy € [0,1]¢, we define the discrepancy
ces NnJ
D(es,..ay) = sup| L I OIL | (13)

where sup is taken over all boxes J C [0, 1]<.

For r € R, let [r] be the greatest integer less than or equal to r. We denote the fractional
part r — [r] of r by {r}.

—

Recall that the convergents M of a continued fraction x = [a1,a9,...] is
SRS g, (@)

[al, az, ... 7ai]7 and we have ¢; = a;q;—1 + ¢;—2.

Dbi (UC

i(z)

Q
S

The following are classical results relating discrepancy of an arithmetic progression (with
difference ) modulo 1 to the sum of partial quotients of x. (See [KN], p 126).

Proposition A. Let x € [0,1]|. Then the sequence kx,k =1,... ,N satisfies

c
D({z},{2z},... ,{Nz}) < ~ > aix). (1.4)
qi (x)<N
In particular, when z = % with (b, N) = 1, Proposition A implies

Proposition A’.

p({EH 2 () = £ 5 (2) s

for M < N.

Also, considering the sequence (£, {%0}) k = 1,... N in [0,1] x [0,1], there is the
following.
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Proposition B.

(3 {5} k=t v) < 5 Tai(). (1.6

%

Hence, substituting (1.1) in (1.5) and (1.6), we obtain discrepancy bounds of the form
D < §log Nloglog N for these sequences.

Next, consider the discrepancy for the linear congruential generator modulo N, i.e. we
take b primitive (mod N) and consider the sequence

(5} (5} i

where 7 = ¢(N) is the order of b (mod N).

When examining statistical properties of (1.7), the two quantities studied are

p({23 {51 {E))  (equidistribution) (1.9

and

p(({3H&h (51 %D)  Gursenien. )

Larcher proved that if N = p®, p prime, then there is b primitive (mod V), such that

C

p(p(n))

where ¢(n) is the Euler’s totient function.

(1.9) < log N loglog N, (1.10)

If N = p, his argument consists in observing that 7(b) = p — 1 for b primitive, and one

has trivially that
k k+1
(L} k =1 -2)

-o(({Z}{2)) o =1 p-1) +os (L.11)
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and the case is reduced to Proposition B.

The method of proving Proposition B (that proceeds by averaging over b) implies that
there is a primitive b (mod N) such that

Zai<%> < c% log N loglog N. (1.12)

(2

(Note that ¢(p(N)) is the number of primitive elements (mod N).)

Our aim is to improve (1.12) ( See Theorem 5), at least when p is prime, by removing

N
the factors 2PN

Proposition 1. Let G < Zy , with |G| > p/8%e. Then for M < (logp)® we have

log p
Gl.

{xEG:mZaX ai<%> >M}'<c

The next theorem is a direct consequence of Proposition 1.

Theorem 2. Let G < Z*

n o with |G| > p"/8*e. Then most elements x € G satisfy

max ai(%) < log p.

Note that even for G = Z7 , the bound clogp is the best result known (towards
Zaremba’s conjecture). (See [Z2] and [C].)

Theorem 3. For most primitive elements (mod p), we have max ai(%) < logp.

As for ), ai(%) with z € G, we have the following result.

Theorem 4. Let G < Z*

5 > with |G| > p"/8%e. Then most elements x € G satisfy

Zai(£> < clogp loglogp.
p

1
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Theorem 5. For most primitive elements x (mod p), we have

Z%(E) < clogp loglogp.
p

1

Together with Proposition A’, Proposition B and (1.11), Theorem 5 implies

Corollary 6. Let p be a large prime. Then there exists x primitive mod p such that

D(IK2Y ck=1,...  ar) < o8P loglos
P M

D(({} {5 cim ) < s bostons
D(({{E0) ko o) < Sl sy

§2. The proofs.

Let p be prime and let G < Z; be a multiplicative subgroup. Denote ¢ > 0 a smooth
bump function, ¥ = 1 on [—i, %] and supp ¥ C [—%,% . We define 9. (z) = ¢(%) (as a
function on R).

We then view 1. as a function on T = R/Z, given by

77Z}fs(t) - Z&e(])e@t) (2'1)

and where in (2.1) the summation may be restricted to [j| < <.

Choose M > 1. Let ||r|| = min ({r},1 — {r}). Clearly,

k 1
{xGG: min kH—xH<—}‘
0<k<p/M

{xGG:mZax ai<§> >M}‘ <

< ¥ > Y v (%x) (2.2)

£,2¢=1<p/M 2¢-1<k< 2t z€G

We will use character sums to bound the double sum of the bump functions in (2.2).
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Lemma 7. Let I C (0,p) be an interval and . be the bump function defined above. Then

we have k e
ZZws x \IHG\/%J : | 1—/@05 +0 (2.3)

kel xeG

-

where A = €,/p min(][\,ﬁ,ﬁﬁp%)mm( /D€ §p%)p€_

Proof. Using (2.1), the left-hand-side of (2.3) equals

G [ 0e) + 32 3 5ei) 3 eplik) (2:4)

kel j#0 zeG

Using multiplicative characters

x=1on G

for the second term in (2.4), we obtain the bound

-1 p—1
L[S S0 Syt + x| S 60 T a0
p kel j#0 a—1 x#xo 11 10

Clearly, the first term in (2.6) is

L6155 0. S eptie)] = %UI(Z@ZL(]’) ~:(0))

kel j#0 z=1 ' (2.7)
L)

For the second term in (2.6), we make changes of variable in x to obtain
p—1
[ SOX®] [ 600 x| | 3 x(@)ep(@)] (2:8)
kel j#0 z=1
where 7 and k denote inverses of x and k (mod p).

Also
‘Zwe ’<Vmax‘2x ‘

JjeJ
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where V is the variation of 9. (j) and J is an interval of size < <.

By Cauchy-Schwarz,

V= |he(j) = d=(j + 1)
—Z\wa (1= e(=2))]" ()

)(1—e(—z)) H Se. (2.9)

2

To estimate character sums over an interval, we use Polya-Vinogradov and Garaev-
Karatsuba ([GK] with r = 2), and have

H
S |5 v s 210
a<zr<a+H H2p§—7+ 22"'5 < H%p%_FO. (211)

For the last factor in (2.8), we have the bound ,/p.

Hence
(2.8) < ey/p min(|I], /7 , [I|7pT5) min (-, /P ,6_%]9%)})5 (2.12)
g

proving the lemma. [

Sometimes it is more convenient to use the following version of Lemma 7

Lemma 7.
S v (2) =tiie fo+ HE o, 213

kel zeG

This is obtained by a rough estimate of (2.7).

G| ~ o < |G
(2.7) < E!I\ D> () £ 7|I|-

Proof of Proposition 1.
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Fix ¢, apply Lemma 7’ with I = [2¢71,2¢] ¢
we have

{1: € G rmax a,(p) > M}' 3 2“|G|/¢2;M +0(%)

£, 2t<p/M

14
+ Z V= min(2¢, \/p, V2 p3/16) min(2° M, VD5 V 20N p3/16)p

= 557+ After summation over /£ in (2.2),

(2.14)

The first sum in (2.14) is bounded by %]G!. For the range of M considered, we can
ignore M in (2.14). Observe that

2, if 2¢ < p/®
12
min(2¢, /p, V2 p¥/1%) = { \2Tp316 i p3/8 < ol < pB/8 (2.15)
N if 2¢ > p°/8,

Hence the last sum in (2.14) is bounded by

Z 9t 4t 4 Z 9 ot p3/8+ Z 2_£p}

2£<p3/8 p3/8§22<p5/8 2£>p5/8

<p? = {p*/® + (log p)p®/® + p/5} < p7/3+e. (2.16)

Taking M 2 logp, we conclude the proof. [J

Proof of Theorem 3.

Lemma 7 together with inclusion-exclusion argument implies that

> % () =i 0{ [vo- (1= [v)} +on: o

kel I'EZ*

x primitive

Proof of Theorem 4.

If we restrict ourselves to elements z € GG such that

x
max ai<—> < My,
p
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we can bound

IIC NS SEPTED SEED SRS (-5 (2.17)

i m dyadic £, 2¢<{F  20-1<k<2f p
M <My

By Lemma 7, summing the right-hand-side of (2.17) over x € G gives

Gl S MY 26—1{/1/}2;]“ —%(1—/¢Q;M>}+0(p7/8+€). (2.18)

M dyadic 0, 2t< 7
M <My

The first term is bounded by |G| ¢(log My)logp. Since by Proposition 1, we may take
My ~ log p, the theorem follows by averaging. [

Theorem 5 follows from (2.18) together with an exclusion-inclusion argument.
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