PARTIAL QUOTIENTS AND DISTRIBUTION OF SEQUENCES

¹ Mei-Chu Chang Department of Mathematics University of California Riverside, CA 92521 mcc@math.ucr.edu

Abstract.

In this paper we establish average bounds on the partial quotients of fractions b/p , with p prime and b from a multiplicative subgroup of $(\mathbb{Z}/p\mathbb{Z})^*$. As a consequence, we obtain estimates for the partial quotients of b/p , for 'most' primitive elements b. Our result improves upon earlier work due to G. Larcher. The behavior of the partial quotients of b/p is well known to be crucial to the statistical properties of the pseudo-congruential number generator (modp). As a corollary, estimates on their pair correlation are refined.

§1. Introduction.

Let $x \in [0, 1]$ be a real number with continued fraction [RS]

$$
x = \frac{1}{a_1 + \frac{1}{a_2 + \cdots}} = [a_1, a_2, \dots].
$$

Denote $\{a_i(x)\}\$ i the partial quotients $\{a_1, a_2, \dots\} \subset \mathbb{Z}^+$ of x.

It was proven by G. Larcher [L] that given a modulus N , there exists $1 \leq b \leq N$, $(b, N) = 1$ such that

$$
\sum_{i} a_i \left(\frac{b}{N}\right) < c \log N \, \log \log N. \tag{1.1}
$$

Typeset by $\mathcal{A} \mathcal{M} \mathcal{S}$ -TEX

¹partially supported by NSF.

²⁰⁰⁰ Mathematics Subject Classification. 11K, 11L, 11J, 11B.

Keywords: partial quotients of continued fractions, distribution of sequences modulo 1.

2 MEI-CHU CHANG

The question whether one can remove the $\log \log N$ factor in (1.1) is still open and would follow from an affirmative answer to Zaremba's conjecture (see [Z1], p.69), stating that

$$
\min_{(b,N)=1} \max_{i} a_i \left(\frac{b}{N}\right) < c,\tag{1.2}
$$

where c is an absolute constant (independent of N). (See [Z2] and [C] for results related to the conjecture.)

The quantity $\sum_i a_i(x)$ is important in the study of equidistributions.

For a sequence $x_1, \ldots, x_N \in [0,1]^d$, we define the discrepancy

$$
D(x_1, ..., x_N) = \sup_J \left| \frac{|\{x_1, ..., x_N\} \cap J|}{N} - |J| \right|,
$$
\n(1.3)

where sup is taken over all boxes $J \subset [0,1]^d$.

For $r \in \mathbb{R}$, let $[r]$ be the greatest integer less than or equal to r. We denote the fractional part $r - [r]$ of r by $\{r\}$.

Recall that the convergents $\frac{p_i(x)}{q_i(x)}$ of a continued fraction $x = [a_1, a_2, \dots]$ is $\frac{p_i(x)}{q_i(x)} = \frac{p_i(x)}{q_i(x)}$ $\frac{p_i}{q_i} =$ $[a_1, a_2, \ldots, a_i]$, and we have $q_i = a_i q_{i-1} + q_{i-2}$.

The following are classical results relating discrepancy of an arithmetic progression (with difference x) modulo 1 to the sum of partial quotients of x. (See [KN], p 126).

Proposition A. Let $x \in [0,1]$. Then the sequence $kx, k = 1, ..., N$ satisfies

$$
D(\{x\}, \{2x\}, \dots, \{Nx\}) \leq \frac{c}{N} \sum_{q_i(x) < N} a_i(x). \tag{1.4}
$$

In particular, when $x = \frac{b}{b}$ $\frac{b}{N}$ with $(b, N) = 1$, Proposition A implies

Proposition A'.

$$
D\left(\left\{\frac{b}{N}\right\}, \left\{\frac{2b}{N}\right\}, \dots, \left\{\frac{Mb}{N}\right\}\right) \le \frac{c}{M} \sum_{i} a_i\left(\frac{b}{N}\right)
$$
 (1.5)

for $M \leq N$.

Also, considering the sequence $(\frac{k}{N}, \{\frac{kb}{N}\})$ $\frac{k}{N}$, $k = 1, ..., N$ in $[0, 1] \times [0, 1]$, there is the following.

PARTIAL QUOTIENTS 3

Proposition B.

$$
D\left(\left(\frac{k}{N}, \left\{\frac{kb}{N}\right\}\right) : k = 1, \dots, N\right) \le \frac{c}{N} \sum_{i} a_i \left(\frac{b}{N}\right). \tag{1.6}
$$

Hence, substituting (1.1) in (1.5) and (1.6) , we obtain discrepancy bounds of the form $D \leq \frac{c}{\lambda}$ $\frac{c}{N}$ log N log log N for these sequences.

Next, consider the discrepancy for the linear congruential generator modulo N , i.e. we take b primitive $(\text{mod } N)$ and consider the sequence

$$
\left\{\frac{b}{N}\right\}, \left\{\frac{b^2}{N}\right\}, \dots, \left\{\frac{b^{\tau}}{N}\right\},\tag{1.7}
$$

where $\tau = \varphi(N)$ is the order of b (mod N).

When examining statistical properties of (1.7) , the two quantities studied are

$$
D\left(\left\{\frac{b}{N}\right\}, \left\{\frac{b^2}{N}\right\}, \dots, \left\{\frac{b^{\tau}}{N}\right\}\right) \qquad \text{(equidistribution)} \tag{1.8}
$$

and

$$
D\left(\left(\left\{\frac{b}{N}\right\}, \left\{\frac{b^2}{N}\right\}\right), \dots, \left(\left\{\frac{b^{\tau-1}}{N}\right\}, \left\{\frac{b^{\tau}}{N}\right\}\right)\right) \qquad \text{(pair serial-test)}.\tag{1.9}
$$

Larcher proved that if $N = p^s$, p prime, then there is b primitive (mod N), such that

$$
(1.9) < \frac{c}{\varphi(\varphi(n))} \log N \log \log N,\tag{1.10}
$$

where $\varphi(n)$ is the Euler's totient function.

If $N = p$, his argument consists in observing that $\tau(b) = p - 1$ for b primitive, and one has trivially that

$$
D\left(\left(\left\{\frac{b^k}{p}\right\}, \left\{\frac{b^{k+1}}{p}\right\}\right); k = 1, \dots, p-2\right)
$$

$$
= D\left(\left(\left\{\frac{x}{p}\right\}, \left\{\frac{xb}{p}\right\}\right) : x = 1, \dots, p-1\right) + O(1)\frac{1}{p} \tag{1.11}
$$

and the case is reduced to Proposition B.

The method of proving Proposition B (that proceeds by averaging over b) implies that there is a *primitive b* (mod N) such that

$$
\sum_{i} a_i \left(\frac{b}{N}\right) < c \frac{N}{\varphi(\varphi(N))} \log N \, \log \log N. \tag{1.12}
$$

¡ Note that $\varphi(\varphi(N))$) is the number of primitive elements $(\text{mod } N)$.

Our aim is to improve (1.12) (See Theorem 5), at least when p is prime, by removing the factors $\frac{N}{\varphi(\varphi(N))}$.

Proposition 1. Let $G < \mathbb{Z}_p^*$, with $|G| > p^{7/8+\epsilon}$. Then for $M < (\log p)^c$ we have

$$
\left| \left\{ x \in G : \max_{i} a_i \left(\frac{x}{p} \right) > M \right\} \right| < c \frac{\log p}{M} |G|.
$$

The next theorem is a direct consequence of Proposition 1.

Theorem 2. Let $G < \mathbb{Z}_p^*$, with $|G| > p^{7/8+\epsilon}$. Then most elements $x \in G$ satisfy max $a_i\left(\frac{x}{n}\right)$ $(\frac{x}{p}) \lesssim \log p$.

Note that even for $G = \mathbb{Z}_p^*$, the bound $c \log p$ is the best result known (towards Zaremba's conjecture). (See $[Z2]$ and $[C]$.)

Theorem 3. For most primitive elements (mod p), we have $\max a_i(\frac{x}{n})$ $\frac{x}{p}) \lesssim \log p.$

As for $\sum_i a_i$ \sqrt{x} \overline{p} ¢ with $x \in G$, we have the following result.

Theorem 4. Let $G < \mathbb{Z}_p^*$, with $|G| > p^{7/8+\epsilon}$. Then most elements $x \in G$ satisfy

$$
\sum_i a_i \left(\frac{x}{p} \right) \lesssim c \log p \, \log \log p.
$$

Theorem 5. For most primitive elements $x \pmod{p}$, we have

$$
\sum_i a_i \left(\frac{x}{p}\right) \lesssim c \log p \, \log \log p.
$$

Together with Proposition A', Proposition B and (1.11), Theorem 5 implies

Corollary 6. Let p be a large prime. Then there exists x primitive mod p such that

$$
D\left(\left\{k\frac{x}{p}\right\} : k = 1, ..., M\right) \le \frac{c \log p \log \log p}{M}
$$

$$
D\left(\left(\left\{\frac{k}{p}\right\}, \left\{\frac{kx}{p}\right\}\right) : k = 1, ..., p\right) \le \frac{c \log p \log \log p}{p}
$$

$$
D\left(\left(\left\{\frac{x^k}{p}\right\}, \left\{\frac{x^{k+1}}{p}\right\}\right) : k = 1, ..., p - 2\right) \le \frac{c \log p \log \log p}{p}.
$$

§2. The proofs.

Let p be prime and let $G < \mathbb{Z}_p^*$ be a multiplicative subgroup. Denote $\psi \geq 0$ a smooth bump function, $\psi = 1$ on $\left[-\frac{1}{4}\right]$ $\frac{1}{4}, \frac{1}{4}$ $\frac{1}{4}$] and supp $\psi \subset \left[-\frac{1}{3}\right]$ $\frac{1}{3}, \frac{1}{3}$ $\frac{1}{3}$]. We define $\psi_{\varepsilon}(x) = \psi(\frac{x}{\varepsilon})$ $\frac{x}{\varepsilon}$) (as a function on \mathbb{R}).

We then view ψ_{ε} as a function on $\mathbb{T} = \mathbb{R}/\mathbb{Z}$, given by

$$
\psi_{\varepsilon}(t) = \sum_{j} \hat{\psi}_{\varepsilon}(j)e(jt)
$$
\n(2.1)

and where in (2.1) the summation may be restricted to $|j| < \frac{C}{\varepsilon}$ $\frac{C}{\varepsilon}$.

Choose $M > 1$. Let $||r|| = \min (\{r\}, 1 - \{r\})$. Clearly, ¢

$$
\left| \left\{ x \in G : \max_{i} a_{i} \left(\frac{x}{p} \right) > M \right\} \right| \leq \left| \left\{ x \in G : \min_{0 < k < p/M} k \middle\| \frac{kx}{p} \right\| < \frac{1}{M} \right\} \right|
$$
\n
$$
< \sum_{\ell, 2^{\ell-1} < p/M} \sum_{2^{\ell-1} < k \leq 2^{\ell}} \sum_{x \in G} \psi_{\frac{s}{2^{\ell}M}} \left(\frac{kx}{p} \right). \tag{2.2}
$$

We will use character sums to bound the double sum of the bump functions in (2.2) .

$6\,$ MEI-CHU CHANG

Lemma 7. Let $I \subset (0,p)$ be an interval and ψ_{ε} be the bump function defined above. Then we have ´ \overline{a} ´

$$
\sum_{k \in I} \sum_{x \in G} \psi_{\varepsilon} \left(\frac{kx}{p} \right) = |I| |G| \int \psi_{\varepsilon} - \frac{|I| |G|}{p - 1} \left(1 - \int \psi_{\varepsilon} \right) + O(A), \tag{2.3}
$$

where $A = \varepsilon \sqrt{p} \min(|I|, \sqrt{p}, |I|^{\frac{1}{2}} p^{\frac{3}{16}})$ $\frac{3}{16}$) min $\left(\frac{1}{5}\right)$ $(\frac{1}{\varepsilon},\sqrt{p}\; , \varepsilon^{-\frac{1}{2}}p^{\frac{3}{16}}\Big)p^{\; \varepsilon}.$

Proof. Using (2.1) , the left-hand-side of (2.3) equals

$$
|I| |G| \left(\int \psi_{\varepsilon} \right) + \sum_{k \in I} \sum_{j \neq 0} \hat{\psi}_{\varepsilon}(j) \sum_{x \in G} e_p(jkx). \tag{2.4}
$$

Using multiplicative characters

$$
1_G(x) = \frac{|G|}{p-1} \sum_{\chi=1 \text{ on } G} \chi(x) \tag{2.5}
$$

for the second term in (2.4), we obtain the bound

$$
\frac{|G|}{p-1} \Big[\sum_{k \in I} \sum_{j \neq 0} \hat{\psi}_{\varepsilon}(j) \sum_{x=1}^{p-1} e_p(jkx) \Big] + \max_{\chi \neq \chi_0} \Big| \sum_{k \in I} \sum_{j \neq 0} \hat{\psi}_{\varepsilon}(j) \sum_{x=1}^{p-1} \chi(x) e_p(jkx) \Big|. \tag{2.6}
$$

Clearly, the first term in (2.6) is

$$
\frac{|G|}{p-1} \Big[\sum_{k \in I} \sum_{j \neq 0} \hat{\psi}_{\varepsilon}(j) \sum_{x=1}^{p-1} e_p(jkx) \Big] = -\frac{|G|}{p-1} |I| \Big(\sum_j \hat{\psi}_{\varepsilon}(j) - \hat{\psi}_{\varepsilon}(0) \Big)
$$

=
$$
-\frac{|I| |G|}{p-1} \Big(1 - \int \psi_{\varepsilon} \Big).
$$
 (2.7)

For the second term in (2.6) , we make changes of variable in x to obtain

$$
\left[\sum_{k\in I} \chi(\bar{k})\right] \left[\sum_{j\neq 0} \hat{\psi}_{\varepsilon}(j) \chi(\bar{j})\right] \left[\sum_{x=1}^{p-1} \chi(x) e_p(x)\right],\tag{2.8}
$$

where \bar{x} and \bar{k} denote inverses of x and k (mod p).

Also

$$
\Big|\sum_{j} \hat{\psi}_{\varepsilon}(j)\chi(\overline{j})\Big| \leq V \max_{J} \Big|\sum_{j\in J} \chi(j)\Big|,
$$

where V is the variation of $\hat{\psi}_{\varepsilon}(j)$ and J is an interval of size $\langle \frac{C}{\varepsilon} \rangle$ $\frac{C}{\varepsilon}$.

By Cauchy-Schwarz,

$$
V = \sum_{j} |\hat{\psi}_{\varepsilon}(j) - \hat{\psi}_{\varepsilon}(j+1)|
$$

=
$$
\sum_{j} |[\psi_{\varepsilon}(x)(1 - e(-x))]^{\wedge}(j)|
$$

$$
\lesssim \frac{1}{\sqrt{\varepsilon}} ||\psi_{\varepsilon}(x)(1 - e(-x))||_{2} \lesssim \varepsilon.
$$
 (2.9)

To estimate character sums over an interval, we use Polya-Vinogradov and Garaev-10 estimate character sums over an
Karatsuba ([GK] with $r = 2$), and have

$$
\left| \sum_{a < x < a + H} \chi(x) \right| \lesssim \begin{cases} H & \text{(2.10)} \\ \sqrt{p} \, \log p & \text{(2.11)} \\ H^{\frac{1}{2}} p^{\frac{1}{2} - \frac{3}{4 \cdot 2} + \frac{1}{4 \cdot 2^2} + \varepsilon} < H^{\frac{1}{2}} p^{\frac{3}{16} + 0} . \end{cases}
$$

For the last factor in (2.8), we have the bound \sqrt{p} .

Hence

$$
(2.8) \lesssim \varepsilon \sqrt{p} \min(|I|, \sqrt{p}, |I|^{\frac{1}{2}} p^{\frac{3}{16}}) \min\left(\frac{1}{\varepsilon}, \sqrt{p}, \varepsilon^{-\frac{1}{2}} p^{\frac{3}{16}}\right) p^{\varepsilon} \tag{2.12}
$$

proving the lemma. \square

Sometimes it is more convenient to use the following version of Lemma 7

Lemma 7'.

$$
\sum_{k \in I} \sum_{x \in G} \psi_{\varepsilon} \left(\frac{kx}{p} \right) = |I| |G| \int \psi_{\varepsilon} + \frac{|I| |G|}{p} + O(A), \tag{2.13}
$$

This is obtained by a rough estimate of (2.7).

$$
(2.7)<\frac{|G|}{p-1}|I|\sum|\hat{\psi}_{\varepsilon}(j)|\lesssim \frac{|G|}{p}|I|.
$$

Proof of Proposition 1.

Fix ℓ , apply Lemma 7' with $I = [2^{\ell-1}, 2^{\ell}], \varepsilon = \frac{8}{2^{\ell}}$ $\frac{8}{2^{\ell}M}$. After summation over ℓ in (2.2), we have

$$
\left| \left\{ x \in G : \max_{i} a_{i} \left(\frac{x}{p} \right) > M \right\} \right| \leq \sum_{\ell, 2^{\ell} < p/M} 2^{\ell - 1} |G| \int \psi_{\frac{8}{2^{\ell}M}} + O\left(\frac{|G|}{M} \right) \right. \\
\left. + \sum_{\ell} \frac{\sqrt{p}}{2^{\ell}M} \min(2^{\ell}, \sqrt{p}, \sqrt{2}^{\ell} p^{3/16}) \min(2^{\ell}M, \sqrt{p}, \sqrt{2^{\ell}M} p^{3/16}) p^{\epsilon} . \right. \tag{2.14}
$$

The first sum in (2.14) is bounded by $\frac{\log p}{M}|G|$. For the range of M considered, we can ignore M in (2.14). Observe that

$$
\min(2^{\ell}, \sqrt{p}, \sqrt{2}^{\ell} p^{3/16}) = \begin{cases} 2^{\ell}, & \text{if } 2^{\ell} < p^{3/8} \\ \sqrt{2}^{\ell} p^{3/16}, & \text{if } p^{3/8} \le 2^{\ell} < p^{5/8} \\ \sqrt{p}, & \text{if } 2^{\ell} \ge p^{5/8}. \end{cases} \tag{2.15}
$$

Hence the last sum in (2.14) is bounded by

$$
p^{\frac{1}{2}+\varepsilon} \Big\{ \sum_{2^{\ell} < p^{3/8}} 2^{-\ell} 4^{\ell} + \sum_{p^{3/8} \le 2^{\ell} < p^{5/8}} 2^{-\ell} 2^{\ell} p^{3/8} + \sum_{2^{\ell} > p^{5/8}} 2^{-\ell} p \Big\}
$$

$$
< p^{\frac{1}{2}+\varepsilon} \Big\{ p^{3/8} + (\log p) p^{3/8} + p^{3/8} \Big\} < p^{7/8+\varepsilon}.
$$
 (2.16)

Taking $M \gtrsim \log p$, we conclude the proof. \Box

Proof of Theorem 3.

Lemma 7 together with inclusion-exclusion argument implies that

$$
\sum_{k \in I} \sum_{\substack{x \in \mathbb{Z}_p^* \\ x \text{ primitive}}} \psi_{\varepsilon} \left(\frac{kx}{p} \right) = |I| \varphi(p-1) \left\{ \int \psi_{\varepsilon} - \frac{1}{p-1} \left(1 - \int \psi_{\varepsilon} \right) \right\} + O(A) p^{\varepsilon} \quad \Box.
$$

Proof of Theorem 4.

If we restrict ourselves to elements $x \in G$ such that

$$
\max\, a_i\Big(\frac{x}{p}\Big)
$$

we can bound

$$
\sum_{i} a_i \left(\frac{x}{p}\right) \lesssim \sum_{\substack{m \text{ dyadic} \\ M < M_0}} M \sum_{\ell, 2^{\ell} < \frac{p}{M}} \sum_{2^{\ell-1} < k \le 2^{\ell}} \psi_{\frac{8}{2^{\ell}M}} \left(\frac{kx}{p}\right). \tag{2.17}
$$

By Lemma 7, summing the right-hand-side of (2.17) over $x \in G$ gives

$$
|G| \sum_{\substack{M \text{ dyadic} \\ M < M_0}} M \sum_{\ell, 2^{\ell} < \frac{p}{M}} 2^{\ell - 1} \left\{ \int \psi_{\frac{8}{2^{\ell} M}} - \frac{1}{p} \left(1 - \int \psi_{\frac{8}{2^{\ell} M}} \right) \right\} + O(p^{7/8 + \varepsilon}). \tag{2.18}
$$

The first term is bounded by $|G|$ c(log M_0) log p. Since by Proposition 1, we may take $M_0 \sim \log p$, the theorem follows by averaging. \square

Theorem 5 follows from (2.18) together with an exclusion-inclusion argument.

REFERENCES

- [C]. T. W. Cusick, Zaremba's conjecture and sums of the divisor function, Math. Comput. Vol 61, 203, (1993), 171-176.
- [GK]. M. Z. Garaev, A. A. Karatsuba, On character sums and the exceptional set of a congruence problem, J. Number Theory 114 (2005), 182-192.
- [KN]. L. Kuipers, H. Niederreiter, Uniform Distribution of Sequences, New York : Wiley (1974).
	- [L]. G. Larcher, On the distribution of sequences connected with good lattice points, Monatsh. Math., Vol 101, 2, (1986), 135-150.
- [RS]. A. M. Rockett, P. Szusz, Continued Fractions, World Scientific, (1992).
- [Z1]. S. K. Zaremba, Applications of Number Theory to Numerical Analysis (S. K. Zaremba, ed.), Academic Press, New York, (1972), 39-119.
- [Z2]. , Good lattice points modulo composite numbers, Monatsh. Math. 78 (1974), 446-460.