Expansions of quadratic maps in prime fields $*^{\dagger}$

Mei-Chu Chang[‡] Department of Mathematics University of California, Riverside mcc@math.ucr.edu

Abstract

Let $f(x) = ax^2 + bx + c \in \mathbb{Z}[x]$ be a quadratic polynomial with $a \not\equiv 0 \mod p$. Take $z \in \mathbb{F}_p$ and let $\mathcal{O}_z = \{f_i(z)\}_{i \in \mathbb{Z}^+}$ be the orbit of z under f, where $f_i(z) = f(f_{i-1}(z))$ and $f_0(z) = z$. For $M < |\mathcal{O}_z|$, We study the diameter of the partial orbit $\mathcal{O}_M = \{z, f(z), f_2(z), \dots, f_{M-1}(z)\}$ and prove that there exists $c_1 > 0$ such that

diam
$$\mathcal{O}_M \gtrsim \min \left\{ M p^{c_1}, \frac{1}{\log p} M^{\frac{4}{5}} p^{\frac{1}{5}}, M^{\frac{1}{13} \log \log M} \right\}.$$

For a complete orbit \mathcal{C} , we prove that

diam
$$\mathcal{C} \gtrsim \min\{p^{5c_1}, e^{T/4}\},\$$

where T is the period of the orbit.

Introduction.

This paper belongs to the general theme of dynamical systems over finite fields. Let p be a prime and \mathbb{F}_p the finite field of p elements, represented by

^{*2000} Mathematics Subject Classification.Primary 11B50, 37A45, 11B75; Secondary 11T23, 37F10 11G99.

 $^{^{\}dagger}\mathit{Key}$ words. dynamical system, orbits, additive combinatorics, exponential sums.

[‡]Research partially financed by the National Science Foundation.

the set $\{0, 1, \ldots, p-1\}$. Let $f \in \mathbb{F}_p[x]$ be a polynomial, which we view as a transformation of \mathbb{F}_p . Thus if $z \in \mathbb{F}_p$ is some element, we consider its orbit

$$z_0 = z, \ z_{n+1} = f(z_n), \quad n = 0, 1, \dots,$$
 (0.1)

which eventually becomes periodic. The *period* $T_z = T$ is the smallest integer satisfying

$$\{z_n : n = 0, 1, \dots, T - 1\} = \{z_n : n \in \mathbb{N}\}$$
(0.2)

We are interested in the metrical properties of orbits and partial orbits. More precisely, for $M < T_z$, we define

diam
$$\mathcal{O}_M = \max_{0 \le n < M} |z_n - z|.$$
 (0.3)

Following the papers [GS] and [CGOS], we study the expansion properties of f, in the sense of establishing lower bounds on diam \mathcal{O}_M . Obviously, if $M \leq T$, then diam $\mathcal{O}_M \geq M$. But, assuming that f is nonlinear and M = o(p), one reasonably expects that the diameter of the partial orbit is much larger. Results along these lines were obtained in [GS] under the additional assumption that $M > p^{\frac{1}{2}+\epsilon}$. In this situation, Weil's theorem on exponential sums permits proving equidistribution of the partial orbit. For $M \leq p^{1/2}$, Weil's theorem becomes inapplicable and lower bounds on diam \mathcal{O}_M based on Vinogradov's theorem were established in [CGOS]. Our paper is a contribution of this line of research. We restrict ourselves to quadratic polynomials, though certainly the methods can be generalized. (See [CCGHSZ] for a genaralization of Proposition 2 and Theorem 2 to higher degree polynomials and rational maps.)

Our first result is the following.

Theorem 1. There is a constant $c_1 > 0$ such that if $f(x) = ax^2 + bx + c \in \mathbb{Z}[x]$ with (a, p) = 1, then with above notation, for any $z \in \mathbb{F}_p$ and $M \leq T_z$,

diam
$$\mathcal{O}_M \gtrsim {}^1 \min\left\{ Mp^{c_1}, \frac{1}{\log p} M^{\frac{4}{5}} p^{\frac{1}{5}}, M^{\frac{1}{13} \log \log M} \right\}.$$
 (0.4)

In view of Theorem 2, one could at least expect that diam $\mathcal{O}_M \gtrsim \min(p^c, e^{cM})$ as is the case when $M = T_z$.

¹ $h \leq g$, if there exist constants C, M such that $|h(x)| \leq Cg(x)$ for all x > M.

In the proof, we distinguish the cases diam $\mathcal{O}_M > p^{c_0}$ and diam $\mathcal{O}_M \leq p^{c_0}$, where $c_0 > 0$ is a suitable constant. First, we exploit again exponential sum techniques (though, from the analytical side, our approach differs from [CGOS] and exploits a specific multilinear setup of the problem). More precisely, Proposition 1 in §1 states that (for $M \leq T$ large enough)

diam
$$\mathcal{O}_M \gtrsim \frac{1}{\log p} \min\left(M^{\frac{5}{4}}, M^{\frac{4}{5}}p^{\frac{1}{5}}\right).$$
 (0.5)

(Note that (??) is a clear improvement over Theorem 8 from [CGOS] for the case d = 2.)

When diam $\mathcal{O}_M \leq p^{c_0}$, a different approach becomes available as explained in Proposition 2. In this situation, we are able to replace the (mod p) iteration by a similar problem in the field \mathbb{C} of complex numbers, for an appropriate quadratic polynomial $F(z) \in \mathbb{Q}[z]$. Elementary arithmetic permits us to prove then that log diam \mathcal{O}_M is at least as large as $\frac{1}{13} \log M \log \log M$.

Interestingly, assuming C a complete periodic cycle and diam $C < p^{c_0}$, the transfer argument from Proposition 2 enables us to invoke bounds on the number of rational pre-periodic points of a quadratic map, for instance the results from R. Benedetto [B]. The conclusion is the following.

Theorem 2. There is a constant $c_0 > 0$ such that if $f(x) = ax^2 + bx + c \in \mathbb{Z}[x]$ with (a, p) = 1 and $C \subset \mathbb{F}_p$ is a periodic cycle for f of length T, then

diam
$$\mathcal{C} \gtrsim \min\{p^{c_0}, e^{T/4}\}.$$
 (0.6)

1 Diameter of Partial Orbits.

Let $f(x) = ax^2 + bx + c \in \mathbb{Z}[x]$, where $a \not\equiv 0 \pmod{p}$. Fix $x_0 \in \mathbb{F}_p$ and denote the *orbit* of x_0 by

$$\mathcal{O}_{x_0} = \{ f_j(x_0) \}_{j \in \mathbb{Z}^+},$$

where $f_j(x_0) = f(f_{j-1}(x_0))$ and $f_0(x_0) = x_0$. The *period* of the orbit of x_0 under f is denoted $T = T_{x_0} = |\mathcal{O}_{x_0}|$. For $A \subset \mathbb{F}_p$, we denote the *diameter* of A by

diam
$$A = \max_{x,y \in A} p \left\| \frac{x-y}{p} \right\|,$$

where ||a|| is the distance from a to the nearest integer. We are interested in the expansion of part of an orbit.

Proposition 1. For $1 \ll M < T$, consider a partial orbit

$$\mathcal{O}_M = \{x_0, f(x_0), f_2(x_0), \dots, f_{M-1}(x_0)\}.$$

Then

diam
$$\mathcal{O}_M \gtrsim \frac{1}{\sqrt{\log p}} \min(M^{5/4}, M^{4/5} p^{1/5}).$$
 (1.1)

Proof. Let $M_1 = \text{diam } \mathcal{O}_M$. Take $I \subset \mathbb{F}_p$ with $|I| = M_1$ and $\mathcal{O}_M \subset I$, then $|f(I) \cap I| \ge M - 1.$ (1.2)

We will express (??) using exponential sums.

Let $0 \leq \varphi \leq 1$ be a smooth function on \mathbb{F}_p such that $\varphi = 1$ on I and supp $\varphi \subset \widetilde{I}$, where \widetilde{I} is an interval with the same center and double the length of I. Equation (??) implies that

$$\sum_{x \in I} \varphi(f(x)) \ge M$$

and expanding φ in Fourier gives

$$\varphi(x) = \sum_{\xi \in \mathbb{F}_p} \widehat{\varphi}(\xi) e_p(x\xi), \text{ with } \widehat{\varphi}(\xi) = \frac{1}{p} \sum_{x \in \mathbb{F}_p} \varphi(x) e_p(-x\xi).$$

Combining these gives

$$\sum_{\xi \in \mathbb{F}_p} \left| \widehat{\varphi}(\xi) \right| \left| \sum_{x \in I} e_p(\xi f(x)) \right| \gtrsim M.$$
(1.3)

We will estimate $\sum_{x \in I} e_p(\xi f(x))$ using van der Corput-Weyl. Take $M_0 = O(M)$, e.g. $M_0 = \frac{1}{100}M$. Then

$$\begin{split} \sum_{x \in I} e_p(\xi f(x)) \bigg| &\leq \frac{1}{M_0} \sum_{0 \leq y < M_0} \bigg| \sum_{x \in I} e_p \Big(\xi \big(a(x+y)^2 + b(x+y) \big) \Big) \bigg| + O(M_0) \\ &\leq \frac{1}{\sqrt{M_0}} \bigg[\sum_{0 \leq y < M_0} \bigg| \sum_{x \in I} e_p \big(\xi (ax^2 + 2axy + bx) \big) \bigg|^2 \bigg]^{1/2} + O(M_0) \\ &= \frac{1}{\sqrt{M_0}} \bigg| \sum_{\substack{0 \leq y < M_0 \\ x_1, x_2 \in I}} e_p \Big(\xi (x_1 - x_2) (a(x_1 + x_2) + 2ay + b) \Big) \bigg|^{1/2} + O(M_0) \end{split}$$

$$(1.4)$$

(The second inequality is by Cauchy-Schwarz.)

Take φ sufficiently smooth as to ensure that

$$\sum_{\xi \in \mathbb{F}_p} |\widehat{\varphi}(\xi)| = O(1). \tag{1.5}$$

Equations (??) and (??) imply

$$\sum_{\xi \in \mathbb{F}_p} |\widehat{\varphi}(\xi)| \left| \sum_{\substack{0 \le y < M_0 \\ x_1, x_2 \in I}} e_p \left(\xi(x_1 - x_2)(a(x_1 + x_2) + 2ay + b)\right) \right|^{1/2} \gtrsim M^{3/2}.$$

Hence by Cauchy-Schwarz and (??),

$$\sum_{\xi \in \mathbb{F}_p} |\widehat{\varphi}(\xi)| \left| \sum_{\substack{0 \le y < M_0 \\ x_1, x_2 \in I}} e_p \left(\xi(x_1 - x_2)(a(x_1 + x_2) + 2ay + b) \right) \right| \gtrsim M^3.$$
(1.6)

Fix $x_1 + x_2 = s \le 2M_1$; then

$$\sum_{\xi \in \mathbb{F}_p} \left| \widehat{\varphi}(\xi) \right| \left| \sum_{\substack{0 \le y < M_0 \\ x \in I}} e_p \left(\xi(2x - s)(as + 2ay + b) \right) \right| \gtrsim \frac{M^3}{2M_1}.$$
(1.7)

Next, for $z \in \mathbb{F}_p$, denote

$$\eta(z) = |\{(x,y) \in I \times [1, M_0] : (2x - s)(2ay + b + as) \equiv z \pmod{p} \}|,$$
(1.8)

and write the left hand side of (??) as

$$\sum_{\xi \in \mathbb{F}_{p}} |\widehat{\varphi}(\xi)| \left| \sum_{z \in \mathbb{F}_{p}} \eta(z) e_{p}(\xi z) \right|$$

$$\leq \left(\sum_{\xi \in \mathbb{F}_{p}} |\widehat{\varphi}(\xi)|^{2} \right)^{1/2} \left(\sum_{\xi \in \mathbb{F}_{p}} \left| \sum_{z \in \mathbb{F}_{p}} \eta(z) e_{p}(\xi z) \right|^{2} \right)^{1/2}$$

$$= \left(\frac{1}{p} \sum_{x \in \mathbb{F}_{p}} |\varphi(x)|^{2} \right)^{1/2} \sqrt{p} \left(\sum_{z \in \mathbb{F}_{p}} \eta(z)^{2} \right)^{1/2}$$

$$< 2M_{1}^{1/2} \left(\sum_{z \in \mathbb{F}_{p}} \eta(z)^{2} \right)^{1/2},$$
(1.9)

by Cauchy-Schwarz and Parseval.

Recall that (a, p) = 1. Let $I' = I - \frac{s}{2}$, $I'' = [1, M_0] + \frac{b+as}{2a} \subset \mathbb{F}_p$ so that

$$\sum_{z \in \mathbb{F}_p} \eta(z)^2 = E(I', I''),$$

the multiplicative energy of I' and I''.

It is well-known that

$$E(I', I'') \le \log p \max\left\{ |I'| |I''|, \frac{|I'|^2 |I''|^2}{p} \right\}$$

$$\le \log p \max\left\{ M_1 M, \frac{M_1^2 M^2}{p} \right\}.$$
 (1.10)

Thus, by (??), (??) and (??),

$$\frac{M^3}{M_1} \lesssim M_1^{1/2} (\log p)^{1/2} \max\left\{M_1^{1/2} M^{1/2}, \frac{M_1 M}{p^{1/2}}\right\}.$$
 (1.11)

Distinguish the cases $M_1M \leq p$ and $M_1M > p$, and (??) implies

$$M_1 \gtrsim \min\left\{\left(\log p\right)^{-1/4} M^{5/4}, \left(\log p\right)^{-1/5} M^{4/5} p^{1/5}\right\}.$$
 (1.12)

2 Partial orbits of small diameters.

For $M < p^{c_0}$, one obtains the following stronger result. (Notations are as in Proposition 1.)

Proposition 2. There exists $c_0 > 0$ such that

diam
$$\mathcal{O}_M > \min\left(p^{c_0}, M^{\frac{1}{13}\log\log M}\right).$$
 (2.1)

Consequently,

diam
$$\mathcal{O}_M \gtrsim \min\left\{ Mp^{\frac{c_0}{5}}, \frac{1}{\log p} M^{\frac{4}{5}} p^{\frac{1}{5}}, M^{\frac{1}{13} \log \log M} \right\}.$$
 (2.2)

Proof. Let $\mathcal{O}_M = \{x_0, x_1, \ldots, x_{M-1}\}$ with $x_j = f(x_{j-1})$ as before, and let diam $\mathcal{O}_M = M_1$. Since $|x_j - x_0| \leq M_1$, we can write $x_j = x_0 + z_j$ with $z_j \in [-M_1, M_1]$. Thus, a, b, c, x_0 satisfy the M - 1 equations

$$a(x_0 + z_j)^2 + b(x_0 + z_j) + c \equiv x_0 + z_{j+1} \pmod{p}, \qquad j = 0, \dots, M - 2,$$

and the \mathbb{F}_p -variety

$$\mathcal{V}_p = \bigcap_{j=0}^{M-2} \left[(r+z_j)^2 + v(r+z_j) + w = u(r+z_{j+1}) \pmod{p} \right]$$

in the variables $(u, v, w, r) \in \mathbb{F}_p^4$ is therefore nonempty. Note that the coefficients of the M-1 defining polynomials in $\mathbb{Z}[u, v, w, r]$ are $O(M_1^2)$.

Assume

$$M_1 < p^{c_0}$$
 (2.3)

with $c_0 > 0$ small enough . Elimination theory ² implies that $\mathcal{V}_p \neq \emptyset$ as a \mathbb{C} -variety. Hence there are $U, V, W, R \in \mathbb{C}$ such that for all j

$$(R+z_j)^2 + V(R+z_j) + W = U(R+z_{j+1}), \quad j = 0, \dots, M-2.$$

Obviously, $U \neq 0$, since z_1, \ldots, z_{M-2} are distinct. We therefore have a quadratic polynomial

$$F(z) := \frac{1}{U}(R+z)^2 + \frac{V}{U}(R+z) + \frac{W}{U} - R = :Az^2 + Bz + C, \qquad (2.4)$$

satisfying

$$F(z_j) = z_{j+1}$$
 in \mathbb{C} , for $j = 0, \dots, M - 2$. (2.5)

Since $z_0 = 0$, (??) and (??) imply $C = z_1 \in \mathbb{Z} \cap [-M_1, M_1]$ and the equations

$$z_1^2 A + z_1 B = z_2 - z_1$$

$$z_2^2 A + z_2 B = z_3 - z_1$$

imply $A, B \in \mathbb{Q}$ with $A = \frac{a}{d}, B = \frac{b}{d}$, and $a, b, d \in \mathbb{Z}$ being $O(M_1^3)$. Equation (??) becomes

$$z_{j+1} = \frac{a}{d}z_j^2 + \frac{b}{d}z_j + C.$$
 (2.6)

 $^{^2}$ See [C] where a similar elimination procedure was used in a combinatorial problem. In particular, see [C], Lemma 2.14 and its proof.

Hence

$$\frac{a}{d}z_{j+1} + \frac{b}{2d} = \left(\frac{a}{d}z_j + \frac{b}{2d}\right)^2 + C\frac{a}{d} - \frac{b^2}{4d^2} + \frac{b}{2d}.$$

Putting

$$y_j = \frac{a}{d}z_j + \frac{b}{2d} \in \frac{1}{2d}\mathbb{Z}, \quad j = 0, \dots, M-1$$

and

$$\frac{r}{s} = C\frac{a}{d} - \frac{b^2}{4d^2} + \frac{b}{2d} \quad \text{with } s > 0, (r,s) = 1, \ |r|, s = O(M_1^6),$$

gives

$$y_{j+1} = y_j^2 + \frac{r}{s}, \quad j = 0, \dots, M - 2.$$
 (2.7)

Next, write $y_j = \alpha_j / \beta_j$, where $\beta_j | 2d$ and $(\alpha_j, \beta_j) = 1$; thus (??) gives

$$\frac{\alpha_{j+1}}{\beta_{j+1}} = \frac{\alpha_j^2}{\beta_j^2} + \frac{r}{s}, \quad j = 0, \dots, M - 2.$$
(2.8)

Note also that

$$|\alpha_j| = O(M_1^4). (2.9)$$

Write the prime factorizations

$$s = \prod_{p} p^{v(p)}$$
 and $\beta_j = \prod_{p} p^{v_j(p)}, \quad j = 0, \dots, M - 1.$

Claim. $2v_j(p) \le v(p)$, for $j < M - O(\log \log M_1)$. Proof. We may assume $v_j(p) > 0$.

Case 1. $2v_j(p) > v_{j+1}(p)$.

Fact 2.1 (which will be stated at the end of this section) and (??) imply that $v(p) = 2v_j(p)$.

Case 2. $2v_j(p) \le v_{j+1}(p)$.

Again, we separate two cases. Case 2.1. $2v_{j+1}(p) > v_{j+2}(p)$. Reasoning as in Case 1, we have

$$v(p) = 2v_{j+1}(p) \ge 2^2 v_j(p) > 2v_j(p).$$

Case 2.2. $2v_{j+1}(p) \leq v_{j+2}(p)$. Therefore, $v_{j+2}(p) \geq 2^2 v_j(p)$. We repeat the argument for Case 2 with j = j + 1. Continuing this process, after τ steps, we obtain either $v(p) \geq 2v_j(p)$ or

$$v_{j+\tau}(p) \ge 2^{\tau} v_j(p),$$
 (2.10)

when necessarily $\tau \leq \log v_{j+\tau}(p) \leq \log \log \beta_{j+\tau} \leq \log \log d \leq \log \log M_1$. Since $j + \tau \leq M$, the claim is proved.

It follows from the claim that $\beta_j^2 | s$ for $j < M - O(\log \log M_1)$. Back to (??), if $v(p) > 2v_j(p)$ for some $j < M - O(\log \log M_1)$, then $v_{j+1}(p) = v(p)$. This contradicts to that $\beta_{j+1}^2 | s$. So we conclude that

$$\beta_j^2 = s =: s_1^2 \quad \text{for } j < M - O(\log \log M_1).$$
 (2.11)

Hence

$$\alpha_{j+1} = \frac{\alpha_j^2}{s_1} + \frac{r}{s_1},\tag{2.12}$$

which implies

$$\alpha_j^2 + r \equiv 0 \mod s_1. \tag{2.13}$$

Let $s_1 = \prod p_i^{v_i}$. Then α_j satisfies (??) if and only if α_j satisfies $\alpha_j^2 + r \equiv 0 \mod p_i^{v_i}$ for all *i*. Since -r is a quadratic residue modulo p^v if and only if it is a quadratic residue modulo *p* for odd prime *p*, we have

$$\left| \left\{ \pi_{s_1}(\alpha_j) \right\}_j \right| \le 2 \cdot 2^{\omega(s_1)} < e^{\frac{\log s_1}{\log \log s_1}} < e^{\frac{4 \log M_1}{\log \log M_1}}.$$
(2.14)

Here $\pi_{s_1}(\alpha_j)$ is the projection of α_j in \mathbb{Z}_{s_1} .

To show $M_1 > M^{\frac{1}{13} \log \log M}$, we assume

$$\log M_1 < \frac{1}{13} \log M \log \log M. \tag{2.15}$$

Then (??) implies there exists $\xi \in \mathbb{Z}_{s_1}$ such that

$$|\mathcal{J}| = \left| \left\{ 0 \le j \le \frac{M}{2} : \pi_{s_1}(\alpha_j) = \xi \right\} \right| > M^{1/2}.$$
 (2.16)

Thus

$$\alpha_{j_1} - \alpha_{j_2} \in s_1 \mathbb{Z}, \quad \text{for } j_1, j_2 \in \mathcal{J},$$

and

$$|\alpha_{j_1} - \alpha_{j_2}| \ge s_1$$
, for $j_1 \ne j_2 \in \mathcal{J}$.

In particular there exists $j \in \mathcal{J}$ such that

$$|\alpha_j| \ge \frac{M^{1/2}}{8} s_1$$
 and $||\alpha_j| - |r|^{1/2}| > \frac{M^{1/2}}{8} s_1.$ (2.17)

Claim. Either $|\alpha_j| > 10|r|^{1/2}$ or $|\alpha_{j+1}| > 10|r|^{1/2}$. Proof. Assume

$$|\alpha_j|, |\alpha_{j+1}| < 10|r|^{1/2}.$$
(2.18)

Hence, $|r|^{1/2} \gtrsim M^{1/2} s_1$ by (??). From (??), (??) and (??)

$$10|r|^{1/2}s_1 > |\alpha_{j+1}|s_1 = |\alpha_j^2 + r|$$

$$\geq (|\alpha_j| + |r|^{1/2})(|\alpha_j| - |r|^{1/2})$$

$$\geq |r|^{1/2} \cdot \frac{M^{1/2}}{8}s_1$$

a contradiction, proving the claim.

Thus, there exists j < M/2 such that either

$$|\alpha_j| > 10s_1$$
 and $|\alpha_j| > 10|r|^{1/2}$ (2.19)

or

$$|\alpha_j| > 10s_1$$
 and $|\alpha_{j+1}| > 10|r|^2$. (2.20)

Clearly, (??) implies (??). Indeed, by (??),

$$|\alpha_{j+1}| \ge \frac{1}{s_1} |\alpha_j^2 - |r| | \ge \frac{99}{100s_1} \alpha_j^2 > 2|\alpha_j|.$$

Iteration shows that

$$\left|\alpha_{j+\frac{M}{3}}\right| > 2^{\frac{M}{3}} |\alpha_j| > 2^{\frac{M}{3}}$$

contradicting to (??). This proves (??).

Combining Proposition 1 and (??), we have (??).

Fact 2.1. Let $\frac{a_1}{d_1}, \frac{a_2}{d_2}, \frac{a_3}{d_3} \in \mathbb{Q}$ be rational numbers in lowest terms, and $p^{v_p(d_i)} || d_i$. If $\frac{a_1}{d_1} + \frac{a_2}{d_2} + \frac{a_3}{d_3} = 0$ and $v_p(d_1) \ge v_p(d_2) \ge v_p(d_3)$, then $v_p(d_1) = v_p(d_2)$.

3 Full cycles

In this section, we will prove Theorem 2.

Assume $M_1 = \text{diam } \mathcal{C} < p^{c_0}$ with c_0 as in Proposition ??. The proof of Proposition ?? gives a quadratic polynomial (*cf.* (??))

$$F(z) = z^2 + \frac{r}{s}$$
 with $r, s \in \mathbb{Z}, |s| = O(M_1^6)$ (3.1)

and a rational *F*-cycle $\{y_j\}_{0 \le j \le T}$, *i.e.*

$$y_{j+1} = F(y_j) \quad \text{for } 0 \le j \le T - 2$$

and

$$F(y_{T-1}) = y_0.$$

We now invoke a result of R. Benedetto [B], which gives quantitative bounds on the number of preperiodic points of a polynomial f in a number field. (z is *preperiodic*, if the set $\{z, f(z), f(f(z)), \ldots\}$ is finite.) According to Theorem 7.1 in [B], the number of preperiodic points of F in \mathbb{Q} is bounded by

$$(2\sigma+1)\left[\log_2(2\sigma+1) + \log_2(\log_2(2\sigma+1) - 1) + 2\right]$$
(3.2)

with σ the number of primes where F has bad reduction. Hence $\sigma \leq \omega(s) \leq \frac{\log M_1}{\log \log M_1}$ and (??) implies

$$T < 4\log M_1 = 4\log \operatorname{diam} \mathcal{C}. \tag{3.3}$$

Acknowledgement. The author would like to thank the referee for many helpful comments and the mathematics department of University of California at Berkeley for hospitality.

References

- [B] R. Benedetto, Preperiodic points of polynomials over global fields,
 J. Reine Angew. Math. 608 (2007), 123153.
- [CCGHSZ] M.-C. CHANG, J. CILLERUELO, M. GARAEV, J. HERNAN-DEZ, I. SHPARLINSKI, A. ZUMALACARREGUI POINTS ON CURVES IN SMALL BOXES AND APPLICATIONS (preprint).

- M.-C. Chang, Factorization in Generalized Arithmetic Progressions and Application to the Erdos-Szemeredi Sum-Product Problems, Geom. Funct. Anal. Vol. 13, (2003), 720-736.
- [CGOS] J. Cilleruelo, M. Garaev, A. Ostafe, I. Shparlinski, On the concentration of points of polynomial maps and applications, Math. Zeit., (to appear).
- [GS] J. Gutierrez, I. Shparlinski, *Expansion of orbits of some dynamical* systems over finite fields Bull. Aust. Math. Soc. 82 (2010), 232-239.