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Abstract

Let f(x) = ax2+bx+c ∈ Z[x] be a quadratic polynomial with a ̸≡ 0 mod
p. Take z ∈ Fp and let Oz = {fi(z)}i∈Z+ be the orbit of z under f , where
fi(z) = f(fi−1(z)) and f0(z) = z. For M < |Oz|, We study the diameter
of the partial orbit OM = {z, f(z), f2(z), . . . , fM−1(z)} and prove that there
exists c1 > 0 such that

diam OM & min

{
Mp c1 ,

1

log p
M

4
5p

1
5 ,M

1
13

log logM

}
.

For a complete orbit C, we prove that

diam C & min{p 5c1 , e T/4 },

where T is the period of the orbit.

Introduction.

This paper belongs to the general theme of dynamical systems over finite
fields. Let p be a prime and Fp the finite field of p elements, represented by
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the set {0, 1, . . . , p− 1}. Let f ∈ Fp[x] be a polynomial, which we view as a
transformation of Fp. Thus if z ∈ Fp is some element, we consider its orbit

z0 = z, zn+1 = f(zn), n = 0, 1, . . . , (0.1)

which eventually becomes periodic. The period Tz = T is the smallest integer
satisfying

{zn : n = 0, 1, . . . , T − 1} = {zn : n ∈ N} (0.2)

We are interested in the metrical properties of orbits and partial orbits. More
precisely, for M < Tz, we define

diam OM = max
0≤n<M

|zn − z|. (0.3)

Following the papers [GS] and [CGOS], we study the expansion properties
of f , in the sense of establishing lower bounds on diam OM . Obviously, if
M ≤ T , then diam OM ≥ M . But, assuming that f is nonlinear and
M = o(p), one reasonably expects that the diameter of the partial orbit
is much larger. Results along these lines were obtained in [GS] under the

additional assumption that M > p
1
2
+ϵ. In this situation, Weil’s theorem

on exponential sums permits proving equidistribution of the partial orbit.
For M ≤ p1/2, Weil’s theorem becomes inapplicable and lower bounds on
diam OM based on Vinogradov’s theorem were established in [CGOS]. Our
paper is a contribution of this line of research. We restrict ourselves to
quadratic polynomials, though certainly the methods can be generalized.
(See [CCGHSZ] for a genaralization of Proposition 2 and Theorem 2 to higher
degree polynomials and rational maps.)

Our first result is the following.

Theorem 1. There is a constant c1 > 0 such that if f(x) = ax2+bx+c ∈ Z[x]
with (a, p) = 1, then with above notation, for any z ∈ Fp and M ≤ Tz,

diam OM & 1 min

{
Mp c1 ,

1

log p
M

4
5p

1
5 ,M

1
13

log logM

}
. (0.4)

In view of Theorem 2, one could at least expect that diam OM & min(p c, ecM)
as is the case when M = Tz.

1 h . g , if there exist constants C,M such that |h(x)| ≤ Cg(x) for all x > M .
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In the proof, we distinguish the cases diam OM > p c0 and diam OM ≤
p c0 , where c0 > 0 is a suitable constant. First, we exploit again exponential
sum techniques (though, from the analytical side, our approach differs from
[CGOS] and exploits a specific multilinear setup of the problem). More
precisely, Proposition 1 in §1 states that (for M ≤ T large enough)

diam OM & 1

log p
min

(
M

5
4 ,M

4
5p

1
5

)
. (0.5)

(Note that (??) is a clear improvement over Theorem 8 from [CGOS] for the
case d = 2.)

When diam OM ≤ p c0 , a different approach becomes available as ex-
plained in Proposition 2. In this situation, we are able to replace the (mod
p) iteration by a similar problem in the field C of complex numbers, for an ap-
propriate quadratic polynomial F (z) ∈ Q[z]. Elementary arithmetic permits
us to prove then that log diam OM is at least as large as 1

13
logM log logM .

Interestingly, assuming C a complete periodic cycle and diam C < p c0 ,
the transfer argument from Proposition 2 enables us to invoke bounds on the
number of rational pre-periodic points of a quadratic map, for instance the
results from R. Benedetto [B]. The conclusion is the following.

Theorem 2. There is a constant c0 > 0 such that if f(x) = ax2+bx+c ∈ Z[x]
with (a, p) = 1 and C ⊂ Fp is a periodic cycle for f of length T , then

diam C & min{p c0 , e T/4 }. (0.6)

1 Diameter of Partial Orbits.

Let f(x) = ax2 + bx + c ∈ Z[x], where a ̸≡ 0 (mod p). Fix x0 ∈ Fp and
denote the orbit of x0 by

Ox0 = {fj(x0)}j∈Z+ ,

where fj(x0) = f(fj−1(x0)) and f0(x0) = x0. The period of the orbit of x0

under f is denoted T = Tx0 = |Ox0 |. For A ⊂ Fp, we denote the diameter of
A by

diam A = max
x,y∈A

p

∥∥∥∥x− y

p

∥∥∥∥ ,
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where ∥a∥ is the distance from a to the nearest integer. We are interested in
the expansion of part of an orbit.

Proposition 1. For 1 ≪ M < T , consider a partial orbit

OM = {x0, f(x0), f2(x0), . . . , fM−1(x0)}.

Then

diam OM & 1√
log p

min(M5/4,M4/5p1/5). (1.1)

Proof. Let M1 = diam OM . Take I ⊂ Fp with |I| = M1 and OM ⊂ I, then

|f(I) ∩ I| ≥ M − 1. (1.2)

We will express (??) using exponential sums.
Let 0 ≤ φ ≤ 1 be a smooth function on Fp such that φ = 1 on I and

supp φ ⊂ Ĩ, where Ĩ is an interval with the same center and double the
length of I. Equation (??) implies that∑

x∈I

φ(f(x)) ≥ M

and expanding φ in Fourier gives

φ(x) =
∑
ξ∈Fp

φ̂(ξ)ep(xξ), with φ̂(ξ) =
1

p

∑
x∈Fp

φ(x)ep(−xξ).

Combining these gives∑
ξ∈Fp

|φ̂(ξ)|
∣∣∣∑
x∈I

ep(ξf(x))
∣∣∣ & M. (1.3)

We will estimate
∑

x∈I ep(ξf(x)) using van der Corput-Weyl.
Take M0 = O(M), e.g. M0 =

1
100

M . Then∣∣∣∑
x∈I

ep(ξf(x))
∣∣∣ ≤ 1

M0

∑
0≤y<M0

∣∣∣∣∑
x∈I

ep

(
ξ
(
a(x+ y)2 + b(x+ y)

))∣∣∣∣+O(M0)

≤ 1√
M0

[ ∑
0≤y<M0

∣∣∣∑
x∈I

ep
(
ξ(ax2 + 2axy + bx)

)∣∣∣2]1/2 +O(M0)

=
1√
M0

∣∣∣∣ ∑
0≤y<M0

x1,x2∈I

ep

(
ξ(x1 − x2)(a(x1 + x2) + 2ay + b)

)∣∣∣∣1/2 +O(M0).

(1.4)
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(The second inequality is by Cauchy-Schwarz.)
Take φ sufficiently smooth as to ensure that∑

ξ∈Fp

|φ̂(ξ)| = O(1). (1.5)

Equations (??) and (??) imply

∑
ξ∈Fp

|φ̂(ξ)|
∣∣∣∣ ∑
0≤y<M0

x1,x2∈I

ep (ξ(x1 − x2)(a(x1 + x2) + 2ay + b))

∣∣∣∣1/2 & M3/2.

Hence by Cauchy-Schwarz and (??),∑
ξ∈Fp

|φ̂(ξ)|
∣∣∣∣ ∑
0≤y<M0

x1,x2∈I

ep (ξ(x1 − x2)(a(x1 + x2) + 2ay + b))

∣∣∣∣ & M3. (1.6)

Fix x1 + x2 = s ≤ 2M1; then∑
ξ∈Fp

|φ̂(ξ)|
∣∣∣∣ ∑
0≤y<M0

x∈I

ep (ξ(2x− s)(as+ 2ay + b))

∣∣∣∣ & M3

2M1

. (1.7)

Next, for z ∈ Fp, denote

η(z) = |{(x, y) ∈ I × [1,M0] : (2x− s)(2ay + b+ as) ≡ z (mod p)}| ,
(1.8)

and write the left hand side of (??) as

∑
ξ∈Fp

|φ̂(ξ)|

∣∣∣∣∣∣
∑
z∈Fp

η(z) ep(ξz)

∣∣∣∣∣∣
≤

(∑
ξ∈Fp

|φ̂(ξ)|2
)1/2(∑

ξ∈Fp

∣∣∣∑
z∈Fp

η(z)ep(ξz)
∣∣∣2)1/2

=
(1
p

∑
x∈Fp

|φ(x)|2
)1/2√

p
(∑

z∈Fp

η(z)2
)1/2

< 2M
1/2
1

(∑
z∈Fp

η(z)2
)1/2

,

(1.9)
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by Cauchy-Schwarz and Parseval.
Recall that (a, p) = 1. Let I ′ = I − s

2
, I ′′ = [1,M0] +

b+as
2a

⊂ Fp so that∑
z∈Fp

η(z)2 = E(I ′, I ′′),

the multiplicative energy of I ′ and I ′′.
It is well-known that

E(I ′, I ′′) ≤ log p max

{
|I ′||I ′′|, |I

′|2|I ′′|2

p

}
≤ log p max

{
M1M,

M2
1M

2

p

}
.

(1.10)

Thus, by (??), (??) and (??),

M3

M1

. M
1/2
1 (log p)1/2 max

{
M

1/2
1 M1/2,

M1M

p1/2

}
. (1.11)

Distinguish the cases M1M ≤ p and M1M > p, and (??) implies

M1 & min
{(

log p
)−1/4

M5/4,
(
log p

)−1/5
M4/5p1/5

}
. (1.12)

2 Partial orbits of small diameters.

For M < p c0 , one obtains the following stronger result. (Notations are as in
Proposition 1.)

Proposition 2. There exists c0 > 0 such that

diam OM > min
(
p c0 ,M

1
13

log logM
)
. (2.1)

Consequently,

diam OM & min

{
Mp

c0
5 ,

1

log p
M

4
5p

1
5 ,M

1
13

log logM

}
. (2.2)
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Proof. Let OM = {x0, x1, . . . , xM−1} with xj = f(xj−1) as before, and let
diam OM = M1. Since |xj − x0| ≤ M1, we can write xj = x0 + zj with
zj ∈ [−M1,M1]. Thus, a, b, c, x0 satisfy the M − 1 equations

a(x0 + zj)
2 + b(x0 + zj) + c ≡ x0 + zj+1 (mod p), j = 0, . . . ,M − 2,

and the Fp-variety

Vp =
M−2∩
j=0

[
(r + zj)

2 + v(r + zj) + w = u(r + zj+1) (mod p)

in the variables (u, v, w, r) ∈ F4
p is therefore nonempty. Note that the coeffi-

cients of the M − 1 defining polynomials in Z[u, v, w, r] are O(M2
1 ).

Assume
M1 < pc0 (2.3)

with c0 > 0 small enough . Elimination theory 2 implies that Vp ̸= ∅ as a
C-variety. Hence there are U, V,W,R ∈ C such that for all j

(R + zj)
2 + V (R + zj) +W = U(R + zj+1), j = 0, . . . ,M − 2.

Obviously, U ̸= 0, since z1, . . . , zM−2 are distinct. We therefore have a
quadratic polynomial

F (z) :=
1

U
(R + z)2 +

V

U
(R + z) +

W

U
−R = : Az2 +Bz + C, (2.4)

satisfying
F (zj) = zj+1 in C, for j = 0, . . . ,M − 2. (2.5)

Since z0 = 0, (??) and (??) imply C = z1 ∈ Z∩ [−M1,M1] and the equations

z21A+ z1B = z2 − z1

z22A+ z2B = z3 − z1

imply A,B ∈ Q with A = a
d
, B = b

d
, and a, b, d ∈ Z being O(M3

1 ). Equation
(??) becomes

zj+1 =
a

d
z2j +

b

d
zj + C. (2.6)

2 See [C] where a similar elimination procedure was used in a combinatorial problem.
In particular, see [C], Lemma 2.14 and its proof.
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Hence

a

d
zj+1 +

b

2d
=

(
a

d
zj +

b

2d

)2

+ C
a

d
− b2

4d2
+

b

2d
.

Putting

yj =
a

d
zj +

b

2d
∈ 1

2d
Z, j = 0, . . . ,M − 1

and

r

s
= C

a

d
− b2

4d2
+

b

2d
with s > 0, (r, s) = 1, |r|, s = O(M6

1 ),

gives

yj+1 = y2j +
r

s
, j = 0, . . . ,M − 2. (2.7)

Next, write yj = αj/βj, where βj|2d and (αj, βj) = 1; thus (??) gives

αj+1

βj+1

=
α2
j

β2
j

+
r

s
, j = 0, . . . ,M − 2. (2.8)

Note also that
|αj| = O(M4

1 ). (2.9)

Write the prime factorizations

s =
∏
p

pv(p) and βj =
∏
p

pvj(p), j = 0, . . . ,M − 1.

Claim. 2vj(p) ≤ v(p), for j < M −O(log logM1).

Proof. We may assume vj(p) > 0.

Case 1. 2vj(p) > vj+1(p).
Fact 2.1(which will be stated at the end of this section) and (??) imply

that v(p) = 2vj(p).

Case 2. 2vj(p) ≤ vj+1(p).
Again, we separate two cases.
Case 2.1. 2vj+1(p) > vj+2(p). Reasoning as in Case 1, we have

v(p) = 2vj+1(p) ≥ 22vj(p) > 2vj(p).

8



Case 2.2. 2vj+1(p) ≤ vj+2(p). Therefore, vj+2(p) ≥ 22vj(p). We repeat
the argument for Case 2 with j = j + 1. Continuing this process, after τ
steps, we obtain either v(p) ≥ 2vj(p) or

vj+τ (p) ≥ 2τvj(p), (2.10)

when necessarily τ . log vj+τ (p) . log log βj+τ . log log d . log logM1.
Since j + τ ≤ M , the claim is proved.

It follows from the claim that β2
j |s for j < M − O(log logM1). Back to

(??), if v(p) > 2vj(p) for some j < M − O(log logM1), then vj+1(p) = v(p).
This contradicts to that β2

j+1|s. So we conclude that

β2
j = s =: s21 for j < M −O(log logM1). (2.11)

Hence

αj+1 =
α2
j

s1
+

r

s1
, (2.12)

which implies
α2
j + r ≡ 0 mod s1. (2.13)

Let s1 =
∏

pvii . Then αj satisfies (??) if and only if αj satisfies α2
j + r ≡ 0

mod pvii for all i. Since −r is a quadratic residue modulo pv if and only if it
is a quadratic residue modulo p for odd prime p, we have∣∣∣{πs1(αj)}j

∣∣∣ ≤ 2 · 2ω(s1) < e
log s1

log log s1 < e
4 logM1
log logM1 . (2.14)

Here πs1(αj) is the projection of αj in Zs1 .

To show M1 > M
1
13

log logM , we assume

logM1 <
1

13
logM log logM. (2.15)

Then (??) implies there exists ξ ∈ Zs1 such that

|J | =
∣∣∣∣{0 ≤ j ≤ M

2
: πs1(αj) = ξ

}∣∣∣∣ > M1/2. (2.16)

Thus
αj1 − αj2 ∈ s1Z, for j1, j2 ∈ J ,
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and
|αj1 − αj2 | ≥ s1, for j1 ̸= j2 ∈ J .

In particular there exists j ∈ J such that

|αj| ≥
M1/2

8
s1 and

∣∣|αj| − |r|1/2
∣∣ > M1/2

8
s1. (2.17)

Claim. Either |αj| > 10|r|1/2 or |αj+1| > 10|r|1/2.
Proof. Assume

|αj|, |αj+1| < 10|r|1/2. (2.18)

Hence, |r|1/2 & M1/2s1 by (??). From (??), (??) and (??)

10|r|1/2s1 > |αj+1|s1 = |α2
j + r|

≥ (|αj|+ |r|1/2)(|αj| − |r|1/2)

≥ |r|1/2 · M
1/2

8
s1

a contradiction, proving the claim.
Thus, there exists j < M/2 such that either

|αj| > 10s1 and |αj| > 10|r|1/2 (2.19)

or
|αj| > 10s1 and |αj+1| > 10|r|2. (2.20)

Clearly, (??) implies (??). Indeed, by (??),

|αj+1| ≥
1

s1

∣∣α2
j − |r|

∣∣ ≥ 99

100s1
α2
j > 2|αj|.

Iteration shows that ∣∣αj+M
3

∣∣ > 2
M
3 |αj| > 2

M
3

contradicting to (??). This proves (??).
Combining Proposition 1 and (??), we have (??).

Fact 2.1. Let a1
d1
, a2
d2
, a3
d3

∈ Q be rational numbers in lowest terms, and

p vp(di)||di. If a1
d1

+ a2
d2

+ a3
d3

= 0 and vp(d1) ≥ vp(d2) ≥ vp(d3), then vp(d1) =
vp(d2).
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3 Full cycles

In this section, we will prove Theorem 2.
Assume M1 = diam C < p c0 with c0 as in Proposition ??. The proof of

Proposition ?? gives a quadratic polynomial (cf. (??))

F (z) = z2 +
r

s
with r, s ∈ Z, |s| = O(M6

1 ) (3.1)

and a rational F -cycle {yj}0≤j<T , i.e.

yj+1 = F (yj) for 0 ≤ j ≤ T − 2

and
F (y

T−1
) = y0.

We now invoke a result of R. Benedetto [B], which gives quantitative bounds
on the number of preperiodic points of a polynomial f in a number field.

(
z is

preperiodic, if the set
{
z, f(z), f

(
f(z)

)
, . . .

}
is finite.

)
According to Theorem

7.1 in [B], the number of preperiodic points of F in Q is bounded by

(2σ + 1) [log2(2σ + 1) + log2(log2(2σ + 1)− 1) + 2] (3.2)

with σ the number of primes where F has bad reduction. Hence σ ≤ ω(s) ≤
logM1

log logM1
and (??) implies

T < 4 logM1 = 4 log diam C. (3.3)

Acknowledgement. The author would like to thank the referee for many help-
ful comments and the mathematics department of University of California at
Berkeley for hospitality.
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