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Abstract

Let f(z) = ax®+bx +c € Z[z] be a quadratic polynomial with a #Z 0 mod
p. Take z € I, and let O, = {fi(2) }icz+ be the orbit of z under f, where
fi(z) = f(fiz1(2)) and fo(2) = z. For M < |O,|, We study the diameter
of the partial orbit Oy = {z, f(2), f2(2),..., f;u—1(2)} and prove that there
exists ¢; > 0 such that
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diam OMZHIin{Mpq M pé7M11310g10gM}.

"logp
For a complete orbit C, we prove that
diam C > min{p >, eT/* },

where T is the period of the orbit.

Introduction.

This paper belongs to the general theme of dynamical systems over finite
fields. Let p be a prime and F, the finite field of p elements, represented by
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the set {0,1,...,p—1}. Let f € F,[z] be a polynomial, which we view as a
transformation of F,. Thus if z € [F,, is some element, we consider its orbit

20 =2, Zny1 = f(zn), m=0,1,..., (0.1)

which eventually becomes periodic. The period T, = T is the smallest integer
satisfying
{zn:n=0,1,..., T =1} = {2z, : n € N} (0.2)

We are interested in the metrical properties of orbits and partial orbits. More
precisely, for M < T, we define

diam Oy = max |z, — z|. (0.3)
0<n<M

Following the papers [GS] and [CGOS], we study the expansion properties
of f, in the sense of establishing lower bounds on diam O;. Obviously, if
M < T, then diam Oy > M. But, assuming that f is nonlinear and
M = o(p), one reasonably expects that the diameter of the partial orbit
is much larger. Results along these lines were obtained in [GS] under the
additional assumption that M > p%“. In this situation, Weil’s theorem
on exponential sums permits proving equidistribution of the partial orbit.
For M < p'/?, Weil’s theorem becomes inapplicable and lower bounds on
diam Oy based on Vinogradov’s theorem were established in [CGOS]. Our
paper is a contribution of this line of research. We restrict ourselves to
quadratic polynomials, though certainly the methods can be generalized.
(See [CCGHSZ] for a genaralization of Proposition 2 and Theorem 2 to higher

degree polynomials and rational maps.)

Our first result is the following.

Theorem 1. There is a constant ¢c; > 0 such that if f(z) = az*+bz+c € Z|x]
with (a,p) = 1, then with above notation, for any z € F, and M < T,

1
diam Oy =1 min{Mpcl,@Mépé,M1131°g1°gM}. (0.4)

In view of Theorem 2, one could at least expect that diam Oy 2> min(p ¢, eM)

as is the case when M =T,.

L' h < g, if there exist constants C, M such that |h(x)| < Cg(z) for all x > M.



In the proof, we distinguish the cases diam Oy > p®© and diam Oy <
p ., where ¢y > 0 is a suitable constant. First, we exploit again exponential
sum techniques (though, from the analytical side, our approach differs from
[CGOS] and exploits a specific multilinear setup of the problem). More
precisely, Proposition 1 in §1 states that (for M < T large enough)

4
5

, M3p3). (0.5)

ot

diam OM 2

min (M
log p
(Note that (??) is a clear improvement over Theorem 8 from [CGOS] for the
case d = 2.)

When diam O, < p®, a different approach becomes available as ex-
plained in Proposition 2. In this situation, we are able to replace the (mod
p) iteration by a similar problem in the field C of complex numbers, for an ap-
propriate quadratic polynomial F(z) € Q[z]. Elementary arithmetic permits
us to prove then that log diam O, is at least as large as %3 log M log log M.

Interestingly, assuming C a complete periodic cycle and diam C < p,
the transfer argument from Proposition 2 enables us to invoke bounds on the
number of rational pre-periodic points of a quadratic map, for instance the
results from R. Benedetto [B]. The conclusion is the following.

Theorem 2. There is a constant ¢y > 0 such that if f(z) = az*+bz+c € Z|x]
with (a,p) =1 and C C F, is a periodic cycle for f of length T', then

diam C > min{p<,eT/* }. (0.6)

1 Diameter of Partial Orbits.

Let f(z) = ax® + bx + ¢ € Z[z], where a # 0 (mod p). Fix zy € F, and
denote the orbit of xy by

Oro = {J(20) ez

where f;(zo) = f(fj—1(z0)) and fo(xo) = xo. The period of the orbit of z
under f is denoted T' = T,, = |O,,|. For A C F,, we denote the diameter of
A by

diam A = max p
T, yeA

p 7

3



where ||a]| is the distance from a to the nearest integer. We are interested in
the expansion of part of an orbit.

Proposition 1. For 1 < M < T, consider a partial orbit

On = {0, f(20), fa(x0), - - -, frr—1(20) }-

Then
1

Vlogp
Proof. Let M; = diam Oy,. Take I C [F, with |I| = M; and Oy, C I, then

lf(Hyni|>M —1. (1.2)

diam Oy 2 min (M4, M*/5pt/5). (1.1)

We will express (?77?) using exponential sums.
Let 0 < ¢ < 1 be a smooth function on [F, such that ¢ = 1 on I and

supp ¢ C I, where [ is an interval with the same center and double the
length of 1. Equation (??7) implies that

S e(f@) > M
and expanding ¢ in Fourier g;VEeIS
olo) = 3 B(E)ylac). with G16) = ; > plolep(—ae).
Combining these givpes o
> )| > (1 ()] 2 M. (13)

We will estimate Y _;e,({f(x)) using van der Corput-Weyl.
Take My = O(M), e.g. My = 15 M. Then

S < qp T | Eeeator o+t )|+ 00on

zel O o<y<Mo | zer

< \/1ﬁo [ Z ’ Z ep(é“(axQ + 2axy + bx)) ﬂ . + O(M,)

0<y<Mo z€l

1/2
_ \/1V S e —m)(alwr +22) + 2ay + )| +O(My).
0 To<y<My
xy,x2€] (14)



(The second inequality is by Cauchy-Schwarz.)
Take ¢ sufficiently smooth as to ensure that

Y@= 0(). (1.5)

§€Fp

Equations (??) and (??) imply

1/2
DSIROI D ep(Elrr — o) (alwy +a2) + 2ay + b)) | 2 M2,
fer 0<y<Mp
xy,x2€]

Hence by Cauchy-Schwarz and (77?),

> 1@l

§€Fy

S elelon - allalon + )+ 204 0)| 20 (1)

0<y<Mp
xy,x0€]

Fix 1 + x5 = s < 2M;; then

3

SO X el zge 1)
g€k 0<y<Mo !
zel

Next, for z € F,,, denote

n(z) = {(z,y) € I x [1, M) : (22 — s)(2ay + b+ as) =z (mod p)}|,

(1.8)
and write the left hand side of (?7) as
DB n(z) epl€2)
¢€eF, z€F,
< (Y rer) (] neee))”
€€F, EEF,  2€F, » (1.9)
= (X k) VB (Soner)”
<ol (Y n?) "



by Cauchy-Schwarz and Parseval.

Recall that (a,p) = 1. Let I' =1 — 5, I" = [1, Mo + b;rgs C F, so that
Z 77(2’)2 - E(],, ]//>7
z€F,

the multiplicative energy of I’ and I”.
It is well-known that

) i PP
E(I'1") <logp max < |I'||I"]|, ———
p

e (1.10)
<logp max{MlM, 1 }
Thus, by (??), (??) and (?7),

M? 1/2 1/2 M M

M SMI/ (lng)1/2maX{M1/ Ml/Q’plT . (111)
Distinguish the cases MM < p and M;M > p, and (?7) implies

M, 2 min{(logp)_1/4M5/4, (logp)_1/5M4/5pl/5} . (1.12)
0

2 Partial orbits of small diameters.

For M < p, one obtains the following stronger result. (Notations are as in
Proposition 1.)

Proposition 2. There exists co > 0 such that

diam Oj; > min (p . M%IOglogM> . (2.1)
Consequently,
. . 0 1 4 1 L loglog M
diam Oy 2 min{ Mp 5,1 M35ps, M 137808 M & (2.2)
ogp



Proof. Let Oy = {xo, 21,...,20-1} With z; = f(x;_1) as before, and let
diam Oy = M;. Since |z; — x| < M;, we can write z; = zo + z; with
z; € [=My, M;]. Thus, a,b, c, zy satisfy the M — 1 equations

a(zg + 2;)* + b(zg + 2j) + ¢ = 19+ 2j41 (mod p), j=0,...,M =2,

and the [F)-variety

M—2
Vo= [ [(r+2)+0(r+2) +w=nulr+2:1) (modp)
=0
in the variables (u,v,w,r) € IF; is therefore nonempty. Note that the coeffi-
cients of the M — 1 defining polynomials in Z[u, v, w,r] are O(M?).
Assume
M; < pco (23)

with ¢g > 0 small enough . Elimination theory ? implies that V, # 0 as a
C-variety. Hence there are U, V, W, R € C such that for all j

(R+2)*+V(R+2)+W=UR+zj41), j=0,...,M—2.

Obviously, U # 0, since zi,...,zy_o are distinct. We therefore have a
quadratic polynomial

1 V w
F(z) = E(R+z)2+ﬁ(R+z)+F—R::Az2+Bz+C, (2.4)

satisfying
F(z) =24 inC, forj=0,....M-2. (2.5)

Since zg = 0, (??) and (??) imply C' = 2z, € ZN[—M;, M;] and the equations

2
2iA+ 21 B=20—2

Z%A—i—ZzB = 23— 21

imply A, B € Q with A=¢%, B=2 and a,b,d € Z being O(M}). Equation
(??) becomes
a b
2 See [C] where a similar elimination procedure was used in a combinatorial problem.
In particular, see [C], Lemma 2.14 and its proof.
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Hence

a b a b\?2 a b b
—Zj+1+—: —Zj+— +Ca——+—.

d 2d d 2d 4d?  2d
Putting
b
= — G M—1
W=t g Saa I
and
r a b b _
EZCE_4_(12+ﬁ with s > 0, (r,s) = 1, |r|,s = O(M?),
gives
r .
yj+1:y§+;, j=0,...,M—2. (2.7)

Next, write y; = a;/f;, where 5;|12d and (o, 5;) = 1; thus (?7?) gives

2
Q1 Y T
L =0,...,M—2. 2.8
Bi+1 5]2 s 28)

Note also that
o] = O(M}). (2.9)

Write the prime factorizations

S:Hpv(P) and ﬂj:Hpvj(P)7 j=0,...,M—1.
p p

Claim. 2vj(p) < wv(p), for j < M — O(loglog M).
Proof. We may assume v;(p) > 0.

Case 1. 2vi(p) > vj41(p).

Fact 2.1(which will be stated at the end of this section) and (??) imply
that v(p) = 2v;(p).
Case 2. 2vi(p) < vj41(p).

Again, we separate two cases.

Case 2.1. 2vj41(p) > vj42(p). Reasoning as in Case 1, we have

v(p) = 20511 (p) > 2%v;(p) > 2v;(p).



Case 2.2. 2v;11(p) < vj1a(p). Therefore, vja(p) > 2%v;(p). We repeat
the argument for Case 2 with j = j 4+ 1. Continuing this process, after 7
steps, we obtain either v(p) > 2v;(p) or

Uy (p) = 270, (p), (2.10)

when necessarily 7 < logvji,(p) S loglog 84, < loglogd < loglog M;.
Since j + 7 < M, the claim is proved.

It follows from the claim that ﬂf\s for j < M — O(loglog M;). Back to
(?77?), if v(p) > 2v,(p) for some j < M — O(loglog M), then v;1(p) = v(p).
This contradicts to that 37,,[s. So we conclude that

Bi=s=:s; forj <M —O(loglog M). (2.11)
Hence
a]z r
iy = . + e (2.12)
which implies
af+r=0 mod s. (2.13)

Let sy = [[pj*. Then a; satisfies (??) if and only if a; satisfies of +7 =0
mod p;* for all 4. Since —r is a quadratic residue modulo p¥ if and only if it
is a quadratic residue modulo p for odd prime p, we have

log s1 4log My

(o)}, | < 22200 < emsfity < omtii (2.14)
Here 7, (o;) is the projection of «; in Z, .
To show My > M 15 loglog M , We assume
1
log M, < TglongoglogM. (2.15)

Then (?7?) implies there exists £ € Z, such that

\T| = '{0 <j< % L (o) = 5} > MYV2. (2.16)

Thus
ajl - an S 81Z7 fOI' j17j2 € j?



and
‘Oéjl _Oé]é‘ > S1, for jl 7é]2 eJ.

In particular there exists j € J such that

1/2 /2
laj| > s1 and ||aj] — |7‘|1/2| > 51. (2.17)
Claim. Either |a;| > 10|r|*/2 or |ajyq| > 10]r|Y/2.
Proof. Assume
o, Jeja| < 10[7] 2. (2.18)

Hence, |r|'/2 > M'/2s; by (??). From (??), (??) and (?7?)

107251 > |oyqa]s1 = af + 7|
> (Jay| + [r|2) (Jag] — [r[*2)

M1/2
> |r|!/2 . 51
a contradiction, proving the claim.
Thus, there exists j < M /2 such that either
laj| > 10s; and  |ay| > 10r|"/? (2.19)
or
|| > 10s; and  |ajyq] > 10|17 (2.20)
Clearly, (??) implies (??). Indeed, by (77),
1 99
a5l 2 o = Il | 2 po=a} > 2

Iteration shows that
M M
‘aﬂ%‘ > 273 || > 23

contradicting to (??). This proves (77).
Combining Proposition 1 and (?7), we have (?7). O

Fact 2.1. Let 3,22 % ¢ Q be rational numbers in lowest terms, and

di’ da da
p”P(di)) di. If 4+ 3+ 3 =0 and vy(d1) 2 vp(da) > vp(d3), then vy(di) =
’Up<d2 .

d
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3 Full cycles

In this section, we will prove Theorem 2.
Assume M; = diam C < p“ with ¢ as in Proposition ??. The proof of
Proposition ?? gives a quadratic polynomial (cf. (77))

F(z)= 2+ 2 withrs € Z]s| = O(Mf) (3.1)
and a rational F-cycle {y;}o<j<r, i-€.
Yjr1=F(y;)) for0<j<T -2
and

F (nyl) = Yo-
We now invoke a result of R. Benedetto [B], which gives quantitative bounds
on the number of preperiodic points of a polynomial f in a number field. (z is
preperiodic, if the set {z, f(2), f(f(z)), . } is ﬁnite.) According to Theorem
7.1 in [B], the number of preperiodic points of F' in Q is bounded by

(20 4 1) [logy(20 + 1) + log,(logy (20 + 1) — 1) + 2] (3.2)

with o the number of primes where F' has bad reduction. Hence o < w(s) <

log My 29\ .
fostogar; and (77) implies

T < 4log M; = 4logdiam C. (3.3)

Acknowledgement. The author would like to thank the referee for many help-
ful comments and the mathematics department of University of California at
Berkeley for hospitality.

References

[B] R. Benedetto, Preperiodic points of polynomials over global fields ,
J. Reine Angew. Math. 608 (2007), 123153.

[CCGHSZ] M.-C. CHANG, J. CILLERUELO, M. GARAEV, J. HERNAN-

DEZ, I. SHPARLINSKI, A. ZUMALACARREGUI POINTS ON
CURVES IN SMALL BOXES AND APPLICATIONS (preprint).

11



[CGOS]

M.-C. Chang, Factorization in Generalized Arithmetic Progressions
and Application to the Erdos-Szemeredi Sum-Product Problems,
Geom. Funct. Anal. Vol. 13, (2003), 720-736.

J. Cilleruelo, M. Garaev, A. Ostafe, I. Shparlinski, On the concen-
tration of points of polynomial maps and applications, Math. Zeit.,
(to appear).

J. Gutierrez, 1. Shparlinski, Ezpansion of orbits of some dynamical
systems over finite fields Bull. Aust. Math. Soc. 82 (2010), 232-239.

12



