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Abstract. For a prime p and a polynomial f ∈ Fp[X], we obtain
upper bounds on the number of solutions of the congruences

f(x) ≡ y (mod p) and f(x) ≡ y2 (mod p),

where (x, y) belongs to an arbitrary square with side length M .
Further, we obtain non-trivial upper bounds for the number of
hyperelliptic curves

Y 2 = X2g+1 + a2g−1X
2g−1 + . . .+ a1X + a0

over Fp, with coefficients in a 2g-dimensional cube

(a0, . . . , a2g−1) ∈ [R0 + 1, R0 +M ]× . . .× [R2g−1 + 1, R2g−1 +M ]

that are isomorphic to a given curve and give an almost sharp lower
bound on the number of non-isomorphic hyperelliptic curves with
coefficients in that cube.

1. Introduction

1.1. Basic definitions and problem formulation. For a prime p,
let Fp denote the finite field of p elements, which we assume to be
represented by the set {0, 1, . . . , p− 1}. Given a polynomial f ∈ Fp[X]
of degreem ≥ 3, and a positive integerM < p, we define by If (M ;R, S)
the number of solutions to the congruence

(1) y2 ≡ f(x) (mod p),

with

(2) (x, y) ∈ [R + 1, R +M ]× [S + 1, S +M ].

If the polynomial y2 − f(x) is absolutely irreducible, it is known from
the Weil bounds that

(3) If (M ;R, S) =
M2

p
+O(p1/2(log p)2),

where the implied constant depends only on m, see [22, 26]. It is clear
that the main term is dominated by the error term for M ≤ p3/4 log p,
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and for M ≤ p1/2(log p)2 the result becomes weaker than the trivial
upper bound If (M ;R, S) ≤ 2M . Here we use a different approach and
give nontrivial estimate of If (M ;R, S) for M < p1/4−ε when m = 3,
and for M < p1/3−ε when m ≥ 4. In particular, in the case m = 3
our result improves on the range of M the bound obtained in [8]. We
note that nontrivial bounds on the number of solutions (x, y) to the
congruence

y ≡ f(x) (mod p),

satisfying (2), have been obtained in [7] for any M < p. We also
mention that nontrivial bounds on the number of solutions (x, y) to
the congruences

xy ≡ a (mod p),

and
y ≡ ϑx (mod p),

satisfying (2), have been given in [9] with further improvements in [6].
Similar results for the congruence

Q(x, y) ≡ 0 (mod p),

whereQ(x, y) is an absolutely irreducible quadratic form with a nonzero
discriminant, can be found in [27].

A special case of the equation (1) are hyperelliptic curves over Fp.
The problem of concentration of points on hyperelliptic curves and
polynomial maps is connected with some problems on isomorphisms
that preserve hyperelliptic curves. Let g be a fixed positive integer
constant. We always assume that p is large enough so, in particular,
we have gcd(p, 2(2g+1)) = 1. Any hyperelliptic curve can be given by
a non-singular Weierstrass equation:

Ha : Y 2 = X2g+1 + a2g−1X
2g−1 + . . .+ a1X + a0,

where a = (a0, . . . , a2g−1) ∈ F2g
p (the non-singularity condition is equiv-

alent to non-vanishing of the discriminant of X2g+1+a2g−1X
2g−1+. . .+

a1X + a0), we refer to [1] for a background on hyperelliptic curves and
their applications.

It follows from a more general result of Lockhart [18, Proposition 1.2]
that isomorphisms that preserve hyperelliptic curves given by Weier-
strass equations are all of the form (x, y) → (α2x, α2g+1y) for some
α ∈ F∗

p, see also [16, Section 3]. Thus Ha is isomorphic to Hb, which
we denote as Ha ∼ Hb, if there exists α ∈ F∗

p such that

(4) ai ≡ α4g+2−2ibi (mod p), i = 0, . . . , 2g − 1.

It is known (see [16, 20]) that the number of non isomorphic hyperel-
liptic curves of genus g over Fp is 2p

2g−1 +O(gp2g−2). We address here
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the problem of estimating from below, the number of non-isomorphic
hyperelliptic curves of genus g over Fp, Ha, when a = (a0, . . . , a2g−1)
belongs to a small 2g-dimensional cube

(5) B = [R0 + 1, R0 +M ]× . . .× [R2g−1 + 1, R2g−1 +M ]

with some integers Rj, M satisfying 0 ≤ Rj < Rj + M < p, j =
0, . . . , 2g − 1.

In particular, we note that all components of a vector a ∈ B are
non-zero modulo p.

We also give an upper bound for the number

N(H;B) = #{a = (a0, . . . , a2g−1) ∈ B : Ha ∼ H}

of hyperelliptic curves Ha with a ∈ B that are isomorphic to a given
curve H.

In particular, our estimates extend and improve some of the results
of [8] where this problem has been investigated for elliptic curves (that
is, for g = 1).

First we observe that for large cubes one easily derive from the Weil
bound (see [15, Chapter 11]) an asymptotic formula

N(H;B) =
M2g

p2g−1
+O(p1/2(log p)2g)

(see also the proof of [15, Theorem 21.4]).
However here we are mostly interested in small values of M .
We note that we always have the trivial upper bound

N(H;B) ≤ 2M.

To see this, let H = Hb, b = (b0, . . . , b2g−1) ∈ F2g
p , be given by a

Weierstrass equation. We observe that if Ha ∼ H and H = Hb, where
b = (b0, . . . , b2g−1) ∈ F2g

p then a2g−1 can take at most M values in F∗
p,

and each a2g−1 determines two possible values for α2 in (4).
It is also useful to remark that one can not expect to get a general

bound stronger than

N(H;B) = O(M1/(2g+1)).

To see this we consider the set Q of quadratic residues modulo p in
the interval [1,M1/(2g+1)]. It is well-known that for almost all primes p
(that is, for all except a set of relative density zero) we have

#Q ∼ 0.5M1/(2g+1).

For example, this follows from a bound of Heath-Brown [14, Theorem 1]
on average values of sums of real characters.
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Consider now the set

A = {α ∈ Fp : α2 ∈ Q},

the curve H : Y 2 = X2g+1 +X2g−1 +X2g−2 + . . .+X + 1 and the 2g-
dimensional cube B = [1,M ]2g. It is clear that (α4, α6, . . . , α4g+2) ∈ B
for all α ∈ A. On the other hand A consist of all quadratic residues
modulo p in [1,M1/(2g+1)) and therefore #A = 2#Q ∼ M1/(2g+1).

1.2. Our results. Throughout the paper, any implied constants in
symbols O, ≪ and ≫ may occasionally depend, where obvious, on the
degree of polynomial f ∈ Fp[X], on the genus g and the real positive
parameters ε and δ, and are absolute otherwise. We recall that the
notations U = O(V ), U ≪ V and V ≫ U are all equivalent to the
statement that |U | ≤ cV holds with some constant c > 0.

We combine ideas from [6, 7, 8] with some new ideas and derive the
following results.

Theorem 1. Uniformly over all polynomials f ∈ Fp[X] of degree
deg f = 3 and 1 ≤ M < p, we have

If (M ;R,S) < M1/3+o(1) +
M5/3+o(1)

p1/6
,

as M → ∞.

One of the implications of Theorem 1 is that for elliptic curves, that
is, when the polynomial f in (1) if cubic, the bound If (M ;R, S) <
M1/3+o(1) holds for M ≪ p1/8, while [8, Theorem 6] guarantees this
bound only for M ≪ p1/9. We also note that when deg f = 3, our
upper bounds for If (M ;R,S) imply the same bounds for N(H;B) in
the case of elliptic curves.

Further, when M < p1/4−ε for some ε > 0, Theorem 1 guarantees a
nontrivial bound If (M ;R, S) ≪ M1−δ with some δ > 0 that depends
only on ε, improving upon the range M < p1/5−ε obtained in [8]. How-
ever, using a different approach we can obtain a nontrivial bound in
the range M < p1/3−ε

Theorem 2. Uniformly over all polynomials f ∈ Fp[X] of degree
deg f = 3 and M ≥ 1 we have

If (M ;R, S) ≤ max{
(
M7/3/p

)1/81
,M−1/16, (M3/p)1/16}M1+o(1).

The combination of Theorems 1 and 2 gives the following estimate:
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Corollary 3. Uniformly over all polynomials f ∈ Fp[X] of degree
deg f = 3 and 1 ≤ M < p, we have

If (M ;R, S) < M1+o(1)


M−2/3, if M < p1/8,
(M4/p)1/6, if p1/8 ≤ M < p15/62,
(M7/3/p)1/81, if p15/62 ≤ M < p195/617,
(M3/p)1/16, if p195/617 ≤ M < p1/3,

as M → ∞.

Our next result shows that when deg f ≥ 4 we also have a nontrivial
bound for If (M ;R,S) in the range M < p1/3−ε.

To formulate our result, we define Jk,m(H) as the number of solu-
tions of the system of m diophantine equations in 2k integral variables
x1, . . . , x2k:

xm
1 + . . .+ xm

k = xm
k+1 + . . . xm

2k,

. . .

x1 + . . .+ xk = xk+1 + . . . x2k,

1 ≤ x1, . . . , x2k ≤ H.

(6)

We also define κ(d) to be the smallest integer κ such that for k ≥ κ
there exists a constant C(k, d) depending only on k and d and such
that

(7) Jk,m(H) ≤ C(k, d)H2k−m(m+1)/2+o(1),

as H → ∞. Note that by a recent result of Wooley [25, Theorem 1.1],
that improves the previous estimate of [24], we have κ(d) ≤ d2 − 1 for
any d ≥ 3.

Theorem 4. Uniformly over all polynomials f ∈ Fp[X] of degree
deg f = m ≥ 4 and 1 ≤ M < p, we have

If (M ;R,S) ≤ M(M3/p)1/2κ(m)+o(1) +M1−(m−3)/2κ(m)+o(1),

as M → ∞.

In particular, for any ε > 0, there exists δ > 0 that depends only on
ε and deg f such that if M < p1/3−ε and deg f ≥ 4 then If (M ;R,S) ≪
M1−δ.

Next, we turn to estimates on N(H;B). A simple observation shows
that in the case of hyperelliptic curves with g ≥ 2 the quantityN(H;B)
is closely related to the problem of concentration of points of a qua-
dratic polynomial map. Then one can apply the general result of [7] and
get a nontrivial upper bound for N(H;B) for any range of M . How-
ever, here we use a different approach and we obtain a better bound.
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We prove the following result, which, besides of its application to bound
the quantity N(H;B), is of independent interest.

Theorem 5. Let f(X) ∈ Z[X] be a polynomial of degree m ≥ 2 with
the leading coefficient a ̸≡ 0 (mod p). Then for 1 ≤ M < p he number
Jf (M ;R,S) of solutions to the congruence

f(x) ≡ y (mod p), (x, y) ∈ [R + 1, R +M ]× [S + 1, S +M ],

is bounded by

Jf (M ;R, S) ≪ M2

p
+M1−1/2m−1

po(1).

as p → ∞.

We remark that in [7], the bound

Jf (M ;R, S) ≪ M(M/p)1/2κ(m)+o(1) +M1−(m−1)/2κ(m)+o(1)

has been given which is stronger than Theorem 5 for large values of m.
Also in [7] for M ≤ p2/(m

2+3), the bound

Jf (M ;R,S) ≪ M1/m+o(1)

has been obtained. Thus from this result and from Theorem 5 we get
the following consequence:

Corollary 6. For any hyperelliptic curve H of genus g ≥ 2 over Fp

and a cube B given by (5) with 1 ≤ M < p, we have

N(H;B) ≪ M2

p
+M1/2+o(1).

We also notice that results about concentration of points on curves
are closely related to the question about the diameter of partial trajec-
tories of polynomial dynamical systems. Namely, given a polynomial
f ∈ Fp[X] and an elements u0 ∈ Fp, we consider the sequence of ele-
ments of Fp generated by iterations un = f(un−1), n = 0, 1, . . .. Clearly
the sequence un is eventually periodic. In particular, let Tf,u0 be the
full trajectory length, that is, the smallest integer t such that ut = us

for some s < t. The study of the diameter

Df,u0(N) = max
0≤k,m≤N−1

|uk − un|

has been initiated in [13] and then continued in [7, 10]. In particular, it
follows from [13, Theorem 6] that for any fixed ε, for Tf,u0 ≥ N ≥ p1/2+ε

we have the asymptotically best possible bound

Df,u0(N) = p1+o(1)
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as p → ∞. For smaller values of N a series of lower bounds onDf,u0(N)
is given in [7, 10].

One easily derives from Theorem 5 the following result which im-
proves previous results to intermediate values of N (and is especially
effective for small values of m).

Corollary 7. For any polynomial f ∈ Fp[X] of degree m ≥ 2 with the
leading coefficient a ̸≡ 0 (mod p) and positive integer N ≤ Tf,u0, we
have

Df,u0(N) ≫ min{N1/2p1/2, N1+1/(2m−1−1)po(1)},
as p → ∞.

On the other hand, we remark that our method and results do not
affect the superpolynomial lower bounds of [10] that holds for small
values of N .

Furthermore, as we have mentioned above, when g = 1 the problem
of estimating N(H;B) is equivalent to estimating the concentration of
points on certain curves of degree 3 (which are singular and thus are
not elliptic curves) and Theorem 1 applies in this case. Using the idea
of the proof of Theorem 1, we establish the following result which is
valid for any hyperelliptic curve.

Theorem 8. For any hyperelliptic curve H of genus g ≥ 1 over Fp, any
cube B given by (5) with 1 ≤ M < p and any odd integer h ∈ [3, 2g+1],
we have

N(H;B) <
(
M1/h +M

(
M4/p

)2/h(h+1)
)
M o(1),

as M → ∞.

We observe that if M < p1/(2g
2+2g+4) then, taking h = 2g + 1 in

Theorem 8, we obtain the estimate N(H;B) ≤ M1/(2g+1)+o(1) which,
as we have seen, is sharp up to the o(1) term.

LetH (B) be a collection of representatives of all isomorphism classes
of hyperelliptic curves Ha, a ∈ B, where B is a 2g-dimensional cube of
side length M . In [8] the lower bound #H (B) ≫ min{p,M2+o(1)} has
been obtained for elliptic curves (that is, for g = 1). We extend this
result to g ≥ 2. Certainly the upper bounds of our theorems lead to a
lower bound on #H (B). However, here using a different approach we
obtain a near optimal bound for #H (B).

Theorem 9. For g ≥ 1 and any cube B given by (5) with and 1 ≤
M < p, we have

#H (B) ≫ min{p2g−1,M2g+o(1)},
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as M → ∞. Furthermore, if g ≥ 2 the o(1) term can be removed when
M > p1/(2g).

2. Preparations

The following result is well-known and can be found, for example,
in [19, Chapter 1, Theorem 1] (which a more precise form of the cele-
brated Erdős–Turán inequality).

Lemma 10. Let γ1, . . . , γM be a sequence of M points of the unit inter-
val [0, 1]. Then for any integer K ≥ 1, and an interval [α, β] ⊆ [0, 1],
we have

#{n = 1, . . . ,M : γn ∈ [α, β]} −M(β − α)}

≪ M

K
+

K∑
k=1

(
1

K
+min{β − α, 1/k}

) ∣∣∣∣∣
M∑
n=1

exp(2πikγn)

∣∣∣∣∣ .
To use Lemma 10 we also need an estimate on exponential sums with

polynomials, which is essentially due to Weyl, see [15, Proposition 8.2].
Let ∥ξ∥ = min{|ξ − k| : k ∈ Z} denote the distance between a real

ξ and the closest integer.

Lemma 11. Let f(X) ∈ R[X] be a polynomial of degree m ≥ 2 with
the leading coefficient ϑ ̸= 0. Then∣∣∣∣∣

M∑
n=1

exp(2πif(n))

∣∣∣∣∣
≪ M1−m/2m−1

 ∑
−M<ℓ1,...,ℓm−1<M

min{M, ∥ϑm!ℓ1 . . . ℓm−1∥−1}

21−m

.

We also need the following estimate of Bombieri and Pila [5] on the
number of integral points on polynomial curves.

Lemma 12. Let C be an absolutely irreducible curve of degree d ≥ 2
and H ≥ exp(d6). Then the number of integral points on C and inside of
a square [0, H]× [0, H] does not exceed H1/d exp(12

√
d logH log logH).

The following result is used in the proofs of Theorems 1 and 8.

Lemma 13. Let f, g ∈ Fp[X] be two polynomials of degrees n and
m such that m - n. Assume that the integers x1, . . . , xn are pairwise
distinct modulo p and y1, . . . , yn are arbitrary integers. Then the con-
gruence

(8) f(x) ≡ g(y) (mod p), 0 ≤ x, y < p,
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has at most mn solutions with

(9) det


xn xn−1 . . . x y
xn
1 xn−1

1 . . . x1 y1
. . .

xn
n xn−1

n . . . xn yn

 ≡ 0 (mod p).

Proof. Since

det

xn
1 xn−1

1 . . . x1

. . .
xn
n xn−1

n . . . xn

 = x1 . . . xn

∏
1≤i<j≤n

(xi − xj) ̸≡ 0 (mod p),

we deduce that, for any x and y, the last column in (9) is a unique
modulo p linear combination of the previous columns. In particular,
for every solution (x, y) to (8) and (9) we have y ≡ h(x) (mod p) for
some nontrivial polynomial h(X) ∈ Fp[X] that does not depend on x
and y.

Now we insert this into (8). We observe that now the right hand side
of (8), that is g(h(x)), is a nontrivial polynomial of degree m deg h.
Thus, the congruence (8) is a nontrivial polynomial congruence of de-
gree d with n ≤ d ≤ mn. Therefore it has at mostmn solutions modulo
p. ⊓⊔

We say that a set I is an interval in Fp of length |I| = L if it consists
of residues modulo p of L consecutive integers. We also use aI to denote
the set obtained from I by element-wise multiplication by a ∈ Fp and
I1 − I2 to denote for the difference set

I1 − I2 = {t1 − t2 : t1 ∈ I1, t2 ∈ I2}.

Lemma 14. Let γ ∈ (0, 1) and let I and J be two intervals in Fp such
that

2γ−1 < |I| ≤ |J | < γp

16
.

Assume that for some a ∈ Fp we have the bound

#(aI ∩ J) > γ|I|.

Then there exist integers t and u with

0 < t < γ−1, |u| ≤ 4γ−2 |J |
|I|

,

such that

u ≡ at (mod p).
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Proof. From the pigeon-hole principle and the condition # (aI ∩ J) >
γ|I| ≥ 2 it follows that there exists t ∈ I − I with 0 < t < γ−1 and
u ∈ J − J such that

(10) at ≡ u (mod p).

It remains to show that in fact

(11) |u| ≤ 4γ−2 |J |
|I|

.

Clearly a ̸≡ 0 (mod p). Hence u ̸= 0. Denote

L =

⌊
|I|
t

⌋
and consider the arithmetic progression

P = t{1, . . . , L} ⊆ [1, |I|].

We see from (10) that

aP ≡ u{1, . . . , L} (mod p).

We can obviously assume that the interval I starts from zero. We can
cover the interval I with 2t shifts of P

I = {0, . . . , |I| − 1} ⊆
t−1∑
r=−t

(P + r).

Hence, we get

γ|I| < #(aI ∩ J) ≤
t−1∑
r=−t

#((ar + aP ) ∩ J)

=
t−1∑
r=−t

#({1, . . . , L}u ∩ (J − ar)) .

(12)

If |u|L ≤ p, using that |u| ≤ |J | we see that for every r = −t, . . . , t−1,

# ({1, . . . , L}u ∩ (J − ar)) ≤ 1 +
|J |
|u|

≤ 2|J |
|u|

.

Thus, by (12)

γ|I| ≤ (2t)
2|J |
|u|

≤ 4γ−1 |J |
|u|

which gives the desired estimate on |u|.
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If |u|L > p we cover {1, . . . , L} by intervals of length ⌊p/|u|⌋ and we
obtain

# ({1, . . . , L}u ∩ (J − ar)) ≤ 2|J |
|u|

(
1 +

L

⌊p/|u|⌋

)
≤ 4|J |L
|u| ⌊p/|u|⌋

≤ 4|J |L
p− |u|

≤ 4|J |L
p− |J |

≤ 8|J ||I|
pt

,

since |J | < p/2 and L ≤ |I|/t. Therefore, by (12), we have

γ|I| < 2t

(
8|J ||I|
pt

)
and then |J | > γp/16, which contradicts our assumption. ⊓⊔

Corollary 15. Let J0, . . . , Jk be intervals in Fp. Let S be a subset of
the set of the solutions (x0, x1, . . . , xk) ∈ J0× . . .×Jk to the congruence

a0x0 + . . .+ akxk ≡ 0 (mod p),

where ai ∈ Fp and a0 ̸= 0. Define

γ =
#S

|J1| . . . |Jk|
and assume that

2γ−1 < |Jk| ≤ . . . ≤ |J1| ≤ |J0| <
γp

16
.

Then, for any i = 1, . . . , k there exist elements ti, ui with

0 < ti < γ−1, |ui| ≤ 4γ−2 |J0|
|Ji|

such that

ai ≡ a0
ui

ti
(mod p).

Proof. By the pigeonhole principle it is clear that for any i = 1, . . . , k
there exists µ such the equation a0x0 + aixi ≡ µ (mod p) has at least

#S|Ji|
|J1| . . . |Jk|

= γ|Ji|

distinct solutions (x0, xi) ∈ J0 × Ji. If ai ̸= 0 we apply Lemma 14 with
I = Ji, J = −J0 + µ/a0, a = ai/a0. If ai = 0, the result holds with
ui = 0 and ti = 1. ⊓⊔

The following statement is a particular case of a more general result
of Wooley [25, Theorem 1.1].
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Lemma 16. The number of solutions of the system of diophantine
equations

xj
1 + . . .+ xj

8 = xj
9 + . . .+ xj

16, j = 1, 2, 3

in integers xi with |xi| ≤ M , i = 1, . . . , 16, is at most M10+o(1).

Proof. Writing xi = Xi −M − 1 with a positive integer Xi ≤ 2M + 1,
i = 1, . . . , 16, after some trivial algebraic transformation we see that
the number of solutions to the above solution is equal to J8,3(2M +1).
Since by the result of Wooley [25, Theorem 1.1] we have κ(3) ≤ 8, the
bound (7) applies with H = 2M + 1. ⊓⊔

We note that Lemma 16 can be formulated in a more general form
with κ(3) instead of 8 variables on each side, but this generalization
(assuming possible improvements of the bound κ(3) ≤ 8) does not
affect out main results.

3. Proof of Theorem 1

For the brevity, in this section we denote I = If (M ;R,S). We can
assume that I is large. We fix some L with

(13) 1 ≤ L ≤ I

20
,

to be chosen later. By the pigeon-hole principle, there exists Q such
that the congruence

y2 ≡ f(x) (mod p), Q+ 1 ≤ x ≤ Q+M/L, S + 1 ≤ y ≤ S +M,

has at least I/L solutions. Since there are at most two solutions to
the above congruence with the same value of x, by the pigeon-hole
principle, there exists an interval of length 20M/I containing at least
10 solutions (x, y) with pairwise distinct values x. Let x0 be the first of
these values and let (x0, y0) be the corresponding solution. It is clear
that I/L is bounded by the number of solutions of

(y0 + y)2 ≡ f(x0 + x) (mod p),

−M/L ≤ x ≤ M/L, −M ≤ y ≤ M,

which is equivalent to

y2 ≡ c3x
3 + c2x

2 + c1x+ c0y (mod p),

−M/L ≤ x ≤ M/L, −M ≤ y ≤ M,
(14)

with (c3, p) = 1. Besides, there are at least 10 solutions (x, y) with
x pairwise distinct and such that 0 ≤ x ≤ 20M/I. From these 10
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values we fix 3 solutions (x1, y1), (x2, y2), (x3, y3) and rewrite the con-
gruence (14) in the matrix form

(15)


x3 x2 x y
x3
3 x2

3 x3 y3
x3
2 x2

2 x2 y2
x3
1 x2

1 x1 y1



c3
c2
c1
c0

 ≡


y2

y23
y22
y21

 (mod p).

By Lemma 13, we know that at most 6 pairs (x, y), with x pairwise
distinct, satisfy both the congruence (15) and the congruence∣∣∣∣∣∣∣∣

xh . . . x y
xh
h . . . xh yh

. . .
xh
1 . . . x1 y1

∣∣∣∣∣∣∣∣ ≡ 0 (mod p).

Since there are at least 10 solutions to (15), for one of them, say (x4, y4),
we have

∆ =

∣∣∣∣∣∣∣∣
x3
4 x2

4 x4 y4
x3
3 x2

3 x3 y3
x3
2 x2

2 x2 y2
x3
1 x2

1 x1 y1

∣∣∣∣∣∣∣∣ ̸≡ 0 (mod p).

Note that 1 ≤ |∆| ≪ (M/I)6M . Now we solve the system of con-
gruences

(16)


x3
4 x2

4 x4 y4
x3
3 x2

3 x3 y3
x3
2 x2

2 x2 y2
x3
1 x2

1 x1 y1



c3
c2
c1
c0

 ≡


y24
y23
y22
y21

 (mod p)

with respect to (c3, c2, c1, c0). We write ∆j for the determinant of the
matrix on the left hand side where we have substituted the column j
by the vector (y24, y

2
3, y

2
2, y

2
1). With this notation we have that

cj ≡ ∆4−j∆
∗ (mod p), j = 0, . . . 3,

where ∆∗ is defined by ∆∆∗ ≡ 1 (mod p), and the congruence (14) is
equivalent to

∆1x
3 +∆2x

2 +∆3x+∆4y −∆y2 ≡ 0 (mod p).

In particular, since, as we have noticed, c3 ̸≡ 0 (mod p), we have that
∆1 ̸≡ 0 (mod p). We can write this congruence as an equation over Z:
(17) ∆1x

3 +∆2x
2 +∆3x+∆4y −∆y2 = pz, (x, y, z) ∈ Z3.

We can easily check that

|∆4| ≪ (M/I)6M2
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and

|∆j| ≪ (M/I)2+jM3, j = 1, 2, 3.

Thus, collecting the above estimates and taking into account L ≪ I,
we derive

|z| ≪ 1

p

(
|∆1|(M/L)3 + |∆2|(M/L)2 + |∆3|(M/L) + |∆4|M + |∆|M2

)
≪ M3

p

(
M6

I3L3
+

M7

I4L2
+

M6

I5L
+

M6

I6

)
≪ M9

pI3L3
.

Since ∆1 ̸= 0, ∆ ̸= 0, for each z, the curve (17) is absolutely irreducible,
and thus by Lemma 12 it contains at most M1/3+o(1) integer points
(x, y) with |x|, |y| ≤ M . Hence

I

L
≤ M1/3+o(1)

(
1 +

M9

pI3L3

)
for any L satisfying (13). This implies, that

(18) I ≤ LM1/3+o(1) +
M7/3

p1/4L1/2
.

If M < 10p1/8, then we take L = 1 and derive from (18) that

I ≤ M1/3+o(1) +
M7/3+o(1)

p1/4
≤ M1/3+o(1).

Let now M > 10p1/8. We can assume that I > M5/3p−1/6, as oth-
erwise there is nothing to prove. Then we take L =

⌊
M4/3p−1/6

⌋
and

note that the condition (13) is satisfied. Thus, we derive from (18) that

I ≤ LM1/3+o(1) +
M7/3+o(1)

p1/4L1/2
≤ M5/3+o(1)p−1/6

and the result follows.

4. Proof of Theorem 2

Clearly we can assume that M = o(p1/3) as otherwise the result is
trivial.

We fix one solution (x0, y0) to the congruence (1) and by making the
change of variables (x, y) 7→ (x − x0, y − y0), we see that it is enough
to study a congruence of the form

(19) y2 − c0y ≡ c3x
3 + c2x

2 + c1x (mod p), |x|, |y| ≤ M.
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Let W be the set of pairs (x, y) that satisfy (19), and by X we denote
the set of x for which (x, y) ∈ W for some y. Let

ρ =
#X
M

.

We now fix some ε > 0 and assume that

(20) ρ ≥ max{M−(1−ε)/16, (M3−ε/p)1/16}.
For ϑ > 0 we define the intervals

Iν,ϑ = [−ϑMν , ϑM ν ], ν = 1, 2, 3,

which we treat as intervals in Fp (as in Lemma 14).
We now consider the set

S ⊆ I1,8 × I2,8 × I3,8

of all triples

(21) s ≡ (x1 + . . .+ x8, x
2
1 + . . .+ x2

8, x
3
1 + . . .+ x3

8) (mod p),

where xi, i = 1, . . . , 8, independently run through the set X . We
observe that the system of congruences

(22) xj
1 + . . .+ xj

8 ≡ xj
9 + . . .+ xj

16 (mod p), j = 1, 2, 3,

has at most M10+o(1) solutions in integers xi, yi with |xi|, |yi| ≤ M .
Indeed, since M < p1/3−ε, the above congruence is converted to the
system of diophantine equations

xj
1 + . . .+ xj

8 = xj
9 + . . .+ xj

16, j = 1, 2, 3,

which by Lemma 16 has at most M10+o(1) solutions in integers xi with
|xi| ≤ M , i = 1, . . . , 16. Therefore, the congruence (22) has at most
M10+o(1) solutions in xi ∈ X , i = 1, . . . , 16, as well. Thus, collect-
ing elements of the set X 8 that correspond the same vector s given
by (21) and denoting the number of such representations by N(s), by
the Cauchy inequality, we obtain

(#X )8 =
∑
s∈S

N(s) ≤

(
#S

∑
s∈S

N(s)2

)1/2

≤
(
#SM10+o(1)

)1/2
.

Thus

#S ≥ (#X )16

M10+o(1)
= ρ16M6+o(1).

Hence, there exists at least ρ16M6+o(1) triples

(z1, z2, z3) ∈ I1,8 × I2,8 × I3,8

such that
c3z3 + c2z2 + c1z1 = z4 − c0z0
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for some z4 ∈ I2,8 and z0 ∈ I1,8. In particular we have that, the
congruence

c3z3 + c2z2 − z4 + c1z1 + c0z0 ≡ 0 (mod p),

(z3, z2, z1, z0, z4) ∈ I3,8 × I2,8 × I2,8 × I1,8 × I1,8

has a set of solutions S with #S ≥ ρ16M6+o(1). Next, we apply Corol-
lary 15 with the coefficients (a0, a1, a2, a3, a4) = (c3, c2,−1, c1, c0) and
the intervals

(J0, J1, J2, J3, J4) = (I3,8, I2,8, I2,8, I1,8, I1,8).

We observe that γ = ρ16M o(1) and that the inequalities ρ ≥ M−(1−ε)/16

and ρ ≥ (M3−ϵ/p)1/16 in (20) imply that the conditions 2γ−1 < |J4|
and |J0| < γp/16 in Corollary 15 are satisfied.

Corollary 15 implies that there exist ui, ti such that

c2 ≡ c3
u1

t1
(mod p), 0 < t1 < γ−1, |u1| ≤ 4γ−2M

−1 ≡ c3
u2

t2
(mod p), 0 < t2 < γ−1, |u2| ≤ 4γ−2M

c1 ≡ c3
u3

t3
(mod p), 0 < t3 < γ−1, |u3| ≤ 4γ−2M2

c0 ≡ c3
u4

t4
(mod p), 0 < t4 < γ−1, |u4| ≤ 4γ−2M2

Thus, the original elliptic equation is equivalent to the equation

t1t2t3t4x
3+u1t2t3t4x

2+ t1u2t3t4y
2+ t1t2u3t4x+ t1t2t3u4y ≡ 0 (mod p)

where |x|, |y| ≤ M . We observe that the left side is bounded by
21γ−5M3 = ρ−80M3+o(1), provided that p is large enough. Thus, the
above congruence becomes one of the equations

t1t2t3t4x
3 + u1t2t3t4x

2 + t1u2t3t4y
2 + t1t2u3t4x+ t1t2t3u4y − λp = 0,

for some integer λ with |λ| ≤ ρ−80M3+o(1)p−1 and by Lemma 12 we
conclude that the above congruence has O

(
M1/3

(
ρ−80M o(1)p−1 + 1

))
solutions. Thus we have

Mρ ≪ M1/3
(
ρ−80M3+o(1)p−1 + 1

)
,

which implies

≪ ρ ≤ max

{(
M7/3+o(1)

p

)1/81

,M−2/3

}
.

So we have the desired result, provided that (20) holds.
If the condition (20) fails, then since ε > 0 is arbitrary, the result

follows as well.
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5. Proof of Theorem 4

Let I be the set of solutions (x, y) of (1). When two solutions with
the same value of x appear in I we remove one of them. Let I0 be the
set of solutions after the removing process and write I0 = #I0 so

(23) If (M ;R, S) = #I ≤ 2I0.

Fix some integer k ≥ 1 and consider the set

Yk = {y21 + . . .+ y2k : (xi, yi) ∈ I0}.

By making the change of variables yi = S+ zi, i = 1, . . . , k, we observe
that

Yk = {z21 + . . .+ z2k + 2S(z1 + . . .+ zk) + kS2 :

(xi, S + zi) ∈ I, i = 1, . . . , k}.

Thus

#Yk ≤ #
{
r + 2Ss+ kS2 : 1 ≤ r ≤ kM2, 1 ≤ s ≤ kM

}
≤ k2M3.

It is clear that

Ik0 ≤ #{((x1, y1), . . . , (xk, yk)) ∈ Ik
0 :

f(x1) + . . .+ f(xk) ≡ y21 + . . .+ y2k (mod p)}

≤
∑
λ∈Yk

r(λ),

where

r(λ) = #{((x1, . . . , xk) ∈[R + 1, R +M ]k :

f(x1) + . . .+ f(xk) ≡ λ (mod p)}.

Using the Cauchy inequality, we derive

I2k0 ≤ #Yk

∑
λ∈Yk

r2(λ) ≤ k2M3Tk(R,M),

where Tk(R;M) is the number of solutions of

f(x1) + . . .+ f(xk) ≡ f(xk+1) + . . .+ f(x2k) (mod p),

(x1, . . . , x2k) ∈ [R + 1, R +M ]2k.

The quantity Tk(R;M) has been defined and estimated in [7] for R = 0
but making a change of variables, it is clear that the same bound
holds for any R (see also the argument in the proof of Lemma 16). In
particular, it is proved in [7] that

Tk(R;M) ≪ (Mm/p+ 1)Mm(m−1)/2Jk,m(M),
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where, as before, Jk,m(M) is the number of solutions of the system of
equations (6) with H = M .

Taking k = κ(m) so that the bound (7) holds, we derive

I2k0 ≤ M3 (Mm/p+ 1)Mm(m−1)/2M2k−m(m+1)/2+o(1)

≤ (Mm/p+ 1)M2k+3−m+o(1)

and obtain

I0 ≤ M(M3/p)1/2κ+o(1) +M1−(m−3)/2κ+o(1),

which together with (23) concludes the proof.

6. Proof of Theorem 5

Let J = Jf (M ;R,S).
Without loss of generality we can assume that

0 ≤ M + 1 < M + S < p.

Applying Lemma 10 to the sequence of fractional parts γn = {f(n)/p},
n = 1, . . . ,M , with

α = (S + 1)/p, β = (S +M + 1)/p, K = ⌊p/M⌋ ,

so that we have
1

K
+min{β − α, 1/k} ≪ M

p

for k = 1, . . . , K, we derive

J ≪ M2

p
+

M

p

K∑
k=1

∣∣∣∣∣
M∑
n=1

exp(2πikf(n)/p)

∣∣∣∣∣ .
Therefore, by Lemma 11, we have

J ≪ M2

p
+

M2−m/2m−1

p

×
K∑
k=1

 ∑
−M<ℓ1,...,ℓm−1<M

min

{
M,

∥∥∥∥apm!kℓ1 . . . ℓm−1

∥∥∥∥−1
}21−m

.

Now, separating the contribution from the terms with ℓ1 . . . ℓm−1 = 0
we obtain

J ≪ M2

p
+

M2−m/2m−1

p
(KMm−1)2

1−m

+
M2−m/2m−1

p
W,
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where

W =
K∑
k=1

 ∑
0<|ℓ1|,...,|ℓm−1|<M

min

{
M,

∥∥∥∥apm!kℓ1 . . . ℓm−1

∥∥∥∥−1
}21−m

.

Hence, recalling the choice of K, we derive

(24) J ≪ M2

p
+M1−1/2m−1

+
M2−m/2m−1

p
W.

The Hölder inequality implies the bound

W 2m−1 ≪ K2m−1−1

K∑
k=1 ∑
0<|ℓ1|,...,|ℓm−1|<M

min

{
M,

∥∥∥∥apm!kℓ1 . . . ℓm−1

∥∥∥∥−1
}
.

Collecting together the terms with the same value of z = m!kℓ1 . . . ℓm−1

and recalling the well-known bound on the divisor function, we con-
clude that

W 2m−1 ≪ K2m−1−1po(1)
∑

|z|<m!KMm−1

min

{
M,

∥∥∥∥apz
∥∥∥∥−1
}
.

Since the sequence ∥am/p∥ is periodic with period p, we see that

W 2m−1 ≪ K2m−1−1po(1)
KMm−1

p

p∑
z=1

min

{
M,

∥∥∥∥apz
∥∥∥∥−1
}

≪ K2m−1−1po(1)
KMm−1

p

(
M +

p∑
z=1

∥∥∥∥zp
∥∥∥∥−1
)

≪ K2m−1

Mm−1po(1).

Thus, recalling the choice of K, we derive

W ≤ KM (m−1)/2m−1

po(1) ≤ M (m−1)/2m−1−1p1+o(1),

which after the substitution in (24) concludes the proof.

7. Proof of Corollary 6

Let H = Hb for some b = (b0, . . . , b2g−1) ∈ F2g
p . We recall that

all components of any vector a ∈ B are non-zeros modulo p. Hence,
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b0 ∈ F∗
p and we see from (4) (combinig the equations with i = 2g+1−h

and i = 2g − 1) that

ah2g−1 ≡λa2g+1−h (mod p),

Rg+1−h + 1 ≤ag+1−h ≤ Rg+1−h +M,

R2g−1 + 1 ≤a2g−1 ≤ R2g−1 +M,

(25)

where

(26) λ = bh2g−1/b
2
g+1−h.

We also observe that
α2 = b2g−1/a2g−1.

Thus, each solution (ag+1−h, a2g−1) of (25) determines the value of α2

and therefore, all other values of a0, a1, . . . , a2g−1.
Thus we have seen that N(H;B) ≤ T , where T is the number of

solutions (x, y) of the congruence

(27) xh ≡ λy2 (mod p), R+1 ≤ x ≤ R+M, S+1 ≤ y ≤ S+M,

where R = Rg+1−h, S = R2g−1 and λ is given by (26).
We now observe that the congruence (27) taken with h = 4, which

is admissible for g ≥ 2, implies

x2 ≡ µy (mod p), R + 1 ≤ x ≤ R +M, S + 1 ≤ y ≤ S +M,

where µ is one of the two square roots of λ (we recall that g ≥ 2).
Applying Theorem 5 with a quadratic polynomial f , we immediately
obtain the desired result.

8. Proof of Theorem 8

As in the proof of of Corollary 6 we let H = Hb for some b =
(b0, . . . , b2g−1) ∈ F2g

p .

We can assume that M < p1/4 as otherwise the results is weaker
than the trivial upper bound N(H;B) ≪ M .

Also we can assume that T > M1/h, where, as before, T is the
number of solutions (x, y) to the congruence (27) as otherwise there is
nothing to prove.

We follow the proof of Theorem 1. We fix some L with

(28) 1 ≤ L ≤ T

8(h+ 1)
,

to be chosen later. Note that if T < 16g+16 there is nothing to prove.
Thus, there exists Q such that the congruence

xh ≡ λy2 (mod p), Q ≤ x ≤ Q+M/L, S + 1 ≤ y ≤ S +M,
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has at least T/L solutions. Since there are at most two solutions to
the above congruence with the same value of x, by the pigeon-hole
principle, there exists an interval of length 4(h+ 1)M/T containing at
least 2(h+1) solutions (x, y) with pairwise distinct values x. Let x0 be
the first of these values and (x0, y0) the solution. It is clear that T/L
is bounded by the number of solutions of

(x0 + x)h ≡ λ(y0 + y)2 (mod p),

−M/L ≤ x ≤ M/L, −M ≤ y ≤ M,

which is equivalent to

chx
h + . . .+ c1x+ c0y ≡ y2 (mod p),

−M/L ≤ x ≤ M/L, −M ≤ y ≤ M,
(29)

where

c0 = −2y0 and cj = λ∗
(
h

j

)
xh−j
0 , j = 1, . . . , h,

where λ∗ is defined by λ∗λ ≡ 1 (mod p) and 1 ≤ λ∗ < p. In particular,
ch ̸≡ 0 (mod p). Besides, there are at least 2h + 1 solutions (x, y)
of (29) with x pairwise distinct and such that 1 ≤ x ≤ 4(h + 1)M/T .
From these 2h+1 values we fix h: (x1, y1), . . . , (xh, yh) and rewrite (29)
in the form

(30)


xh . . . x y
xh
h . . . xh yh

. . .
xh
1 . . . x1 y1




ch
. . .
c1
c0

 ≡


y2

y2h
. . .
y21

 (mod p).

Since h is odd, by Lemma 13, we know that at most 2h pairs (x, y), with
x pairwise distinct, satisfy both the congruence (30) and the congruence∣∣∣∣∣∣∣∣

xh . . . x y
xh
h . . . xh yh

. . .
xh
1 . . . x1 y1

∣∣∣∣∣∣∣∣ ≡ 0 (mod p).

Since there are at least 2h + 1 solutions of (30), for one of them, say
(xh+1, yh+1), we have

∆ =

∣∣∣∣∣∣∣∣
xh
h+1 . . . xh+1 yh+1

xh
h . . . xh yh

. . .
xh
1 . . . x1 y1

∣∣∣∣∣∣∣∣ ̸≡ 0 (mod p).
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Note that 1 ≤ |∆| ≪ (M/T )h(h+1)/2M . Now we solve the system

(31)


xh
h+1 . . . xh+1 yh+1

xh
h . . . xh yh

. . .
xh
1 . . . x1 y1




ch
ch−1

. . .
c0

 ≡


y2h+1

y2h
. . .
y21

 (mod p)

with respect to (ch, . . . , c1, c0). We write ∆j for the determinant of the
matrix on the left hand side where we have substituted the column j
by the vector (y2h+1, . . . , y

2
1). With this notation we have that

cj =
∆h+1−j

∆
, j = 0, . . . h,

and the congruence (29) is equivalent to

∆1x
h +∆2x

h−1 + . . .+∆hx+∆h+1y −∆y2 ≡ 0 (mod p).

In particular, ∆1 ̸≡ 0 (mod p). We can write this congruence as an
equation over Z:
(32) ∆1x

h +∆2x
h−1 + . . .+∆hx+∆h+1y −∆y2 = pz, z ∈ Z.

We can easily check that

|∆h+1| ≪ (M/T )h(h+1)/2M2

and
|∆j| ≪ (M/T )h(h−1)/2+j−1M3, j = 1, . . . , h.

Thus, collecting the above estimates, we derive

|z| ≪ 1

p

(
h∑

j=1

|∆j|(M/L)h−j+1 + |∆h+1|M + |∆|M2

)

≪ M3

p

(
h∑

j=1

(M/T )h(h−1)/2+j−1(M/L)h−j+1 + (M/T )h(h+1)/2

)

≪ M3

p

(
Mh(h+1)/2T−h(h−1)/2L−h

h∑
j=1

(TL)−j+1 + (M/T )h(h+1)/2

)

≪ Mh(h+1)/2+3

pT h(h−1)/2Lh
.

Since h is odd, and ∆ ̸= 0, ∆1 ̸= 0, we have that, for each z, the
curve (32) is absolutely irreducible. Thus by a result of Bombieri and
Pila [5] it contains at most M1/h+o(1) integer points (x, y) with |x|, |y| ≤
M . Hence

(33) T ≤ LM1/h+o(1)

(
1 +

Mh(h+1)/2+3

pT h(h−1)/2Lh

)
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for any L satisfying (28).
We can assume that the following lower bounds hold for T :

(34) T > M1/h and T > 16(h+ 1)
(
M(M4/p)2/h(h+1) + 1

)
since otherwise there is nothing to prove.

Take L =
⌊
1 + (Mh(h+1)/2+3/p)2/h(h+1)

⌋
. We note that (28) holds as

otherwise L ≥ 2 and we have(
Mh(h+1)/2+3

p

)2/h(h+1)

≥ L− 1 ≥ L

2
>

T

16(h+ 1)

> M

(
M4

p

)2/h(h+1)

=

(
Mh(h+1)/2+4

p

)2/h(h+1)

,

which is impossible.
If M < p1/(h(h+1)/2+3) we have L = 1 and also

Mh(h+1)/2+3

pT h(h−1)/2Lh
≤ Mh(h+1)/2+3

p
< 1.

In this case, the bound (33) yields

T ≪ M1/h+o(1).

If M ≥ p1/(h(h+1)/2+3), we have

(Mh(h+1)/2+3/p)2/h(h+1) ≪ L ≪ (Mh(h+1)/2+3/p)2/h(h+1)

and, recalling our assumption (34) and the choice of L, we obtain

Mh(h+1)/2+3

pT h(h−1)/2Lh

≪ Mh(h+1)/2+3

pMh(h−1)/2(M4/p)(h−1)/(h+1)(Mh(h+1)/2+3/p)2/(h+1)
= 1.

Hence, in this case we derive from (33) that

T ≤ (Mh(h+1)/2+3/p)2/h(h+1)M1/h+o(1)

≤M
(
M4/p

)2/h(h+1)+o(1)
,

which concludes the proof.

9. Proof of Theorem 9

Clearly

(35)
∑

H∈H(B)

N(H;B) = M2g and
∑

H∈H(B)

N(H;B)2 = T (B).
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As in [8], using (35) and the Cauchy inequality we derive

#H (B) ≥ M4gT (B)−1.

From (4) we observe that T (B) is the numbers of pairs of vectors
(a,b), a,b ∈ B, such that there exists α such that

ai ≡ α4g+2−2ibi (mod p), i = 0, . . . , 2g − 1.

In particular,
a32g−1b

2
2g−2 ≡ a22g−2b

3
2g−1 (mod p).

Thus, by [8, Theorem 7] we see that there are only O
(
M4/p+M2+o(1)

)
possibilities for the quadruple (a2g−1, a2g−2, b2g−1, b2g−2). When it is
fixed, the parameter α in (4) can take at most 4 values, and thus for
every choice of (a0, . . . , a2g−3) there are only 4 choices for (b0, . . . , b2g−3).
Therefore,

(36) T (B) ≤ M2g−2
(
M4/p+M2+o(1)

)
.

When M < p1/(2g) we obtain T (B) ≤ M2g+o(1) and #H (B) ≥
M2g+o(1), which proves Theorem 9 in this range.

When M ≥ p1/(2g) we use a different approach. Using the notation

Ni(λ) = #{(ai, bi) : ai/bi ≡ λ (mod p), Ri + 1 ≤ ai, bi ≤ Ri +M},
we can write

T (B) =

p−1∑
α=1

N0(α
4g+2)N1(α

4g) . . . N2g−1(α
4).

Thus,

T 2g(B) ≤

(
p−1∑
α=1

N2g
0 (α4g+2)

)
. . .

(∑
α ̸=0

N2g
2g−1(α

4)

)

≤

(
(4g + 2)

p−1∑
α=1

N2g
0 (α)

)
. . .

(
4

p−1∑
α=1

N2g
2g−1(α)

)
and then we have

T (B) ≪ max
i

p−1∑
α=1

N2g
i (α).

We observe that for any α ̸≡ 0 (mod p) there exist integers r, s with
1 ≤ |r|, s ≤ p1/2, (r, s) = 1 and such that α ≡ r/s (mod p). Thus

p−1∑
α=1

N2g
i (α) ≤

∑
1≤r,s<p1/2

gcd(r,s)=1

N2g
i (r/s) +

∑
1≤r,s<p1/2

gcd(r,s)=1

N2g
i (−r/s).
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Our estimate of Ni(r/s) is based on an argument that is very close
to that used in the proof of [2, Lemma 1]. Namely, we observe that
Ni(r/s) is the number of solutions (x, y) to the congruence x/y ≡ r/s
(mod p) with Ri + 1 ≤ x, y ≤ Ri + M , which is equivalent to the
congruence

sx− ry ≡ c (mod p), 1 ≤ x, y ≤ M,

for a suitable c. We can write the congruence as an equation in integers

sx− ry = c+ zp, 1 ≤ x, y ≤ M, z ∈ Z.

We observe that

|z| ≤ |s|M + |r|M + |c|
p

≤ (|s|+ |r|)M
p

+ 1.

For each z we consider, in case it has, a solution (xz, yz), 1 ≤ xz, yz ≤
M . The solutions of the diophantine equation above is given by (x, y) =
(xz + rt, yz + st), t ∈ Z. The restriction 1 ≤ x, y ≤ M implies that
|t| ≤ M/max{r, s}.

Thus we have

Ni(r/s) ≤
(
1 +

2M

max{r, s}

)(
1 +

2M(s+ r)

p

)
≤ 1 +

4M max{r, s}
p

+
2M

max{r, s}
+

4M2

p
.

Therefore∑
1≤r,s<p1/2

gcd(r,s)=1

N2g
i (r/s)

≪
∑

1≤r,s<p1/2

(
1 +

M2g (max{r, s})2g

p2g
+

M2g

(max{r, s})2g
+

M4g

p2g

)

≪
∑

1≤r<s<p1/2

(
1 +

M2gs2g

p2g
+

M2g

s2g
+

M4g

p2g

)

≪
∑

1≤s<p1/2

(
s+

M2gs2g+1

p2g
+

M2g

s2g−1
+

M4gs

p2g

)

≪p+
M2g

pg−1
+M2g

∑
1≤s<p1/2

1

s2g−1
+

M4g

p2g−1
.

The estimate of the sum with N2g
i (−r/s) is fully analogous.
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Assume that M ≥ p1/(2g) and observe that∑
1≤s<p1/2

1

s2g−1
≪

{
logM, if g = 1,

1, if g ≥ 2.

Thus we have

(37) T (B) ≪

{
M2 logM +M4/p, if g = 1,

M2g +M4g/p2g−1, if g ≥ 2,

which gives

#H (B) ≥ M4gT (B)−1 ≫

{
min{p,M2+o(1)}, if g = 1,

min{p2g−1,M2g}, if g ≥ 2,

and proves Theorem 9 in the range M ≥ p1/2g.

10. Comments

The problem of obtaining a nontrivial upper bound for If (M ;R, S)
in the range p1/4 < M < p1/2 for cubic polynomials and in the range
p1/3 < M < p1/2 for polynomials of higher degree is still open.

On the other hand, we note that using bounds of exponential sums
obtained within the method of Vinogradov instead of Lemma 11, see [4,
12, 21, 23] and references therein, also leads to some nontrivial on
Jf (M ;R,S) but these results seem to be weaker that a combination of
Theorem 5 with the bounds from [7].

Similar ideas can be exploited to obtain lower bounds for the cardi-
nality of the set I(B) of non-isomorphic isogenous elliptic curves Ha

with coefficients in a cube B.
Indeed, let us denote by It the isogeny class consisting of elliptic

curves over Fp with the same number p + 1 − t of Fp-rational points.
By a result of Deuring [11], each admissible value of t, that is, with
|t| ≤ 2p1/2, is taken and hence there are about 4p1/2 isogeny classes.
Furthermore, Birch [3] has actually given a formula via the Kronecker
class number for the number of isomorphism classes of elliptic curves
over a finite field Fq lying in It. Finally, Lenstra [17] has obtained
upper and lower bounds for this number and, in particular, shown that
the number of isomorphism classes of elliptic curves of a given order is
O
(
p1/2 log p (log log p)2

)
.

Observe that once again bounds for N(H;B) can be translated into
bounds for the number of isogenous non isomorphic curves with coeffi-
cients in B, via multiplication by p1/2+o(1). However, as we have done
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before, one can obtain better bounds in terms of T (B) which given
by (35)

Thus, using (35) and (37), with g = 1, we see that for the set H(t,B)
of elliptic curves Ha ∈ It with a ∈ B, we have is given by

#H(t,B) =
∑

H∈H(B)∩It

N(H,B)

≤ (#It)
1/2

 ∑
H∈H(B)

N(H,B)2

1/2

= (#It)
1/2T (B)1/2

≪
(
M2p−1/4 + p1/4M log1/2 M

)
(log p)1/2 log log p.

This improves the trivial bound

H(N,B) ≪ min{M2, p3/2(log p)1/2 log log p}

for p1/4+ε ≤ M ≤ p7/8−ε (with any fixed ε > 0). Furthermore, it also
implies the lower bound

#I(B) ≫ M2

max|t|∈2p1/2 H(t,B)

≫ min{p1/4,Mp−1/4 log−1/2 M}(log p)−1/2(log log p)−1.
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