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Abstract

Let f(x) =
∑d

s=0 asx
s ∈ Z[x] be a polynomial with ad 6≡ 0 mod p. Take

z ∈ Fp and let Oz = {fi(z)}i∈Z+ ⊂ Fp be the orbit of z under f , where
fi(z) = f(fi−1(z)) and f0(z) = z. For M < |Oz|, we study the diameter of
the partial orbit Oz,M = {z, f(z), f2(z), . . . , fM−1(z)} and prove that

diam Oz,M & min

{
M c log logM , Mp c, M

1
2p

1
2

}
,

where ‘diameter’ is naturally defined in Fp and c depends only on d.
For a complete orbit C, we prove that

diam C & min{p c, e T/4 },

where T is the period of the orbit.
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1 Introduction.

The main theme of this note is to understand better the expansion properties
of polynomial maps f(x) =

∑d
s=0 asx

s ∈ Fp[x] acting on Fp. This line of
investigation was initiated in [GS], and in [C1] estimates were obtained for
quadratic polynomials. Thus our purpose here is to extend the results from
[C1] to the general case, which seems to involve some significant algebra
issues.

While polynomial iteration and orbits over the complex numbers are well-
studied, not much have been done for finite characteristic. Take z ∈ Fp and
let Oz = {fi(z)}i∈Z+ ⊂ Fp be the orbit of z under f , where fi(z) = f(fi−1(z))
and f0(z) = z. For M < |Oz|, we study the diameter of the partial orbit
Oz,M = {z, f(z), f2(z), . . . , fM−1(z)} and prove that

diam Oz,M & min

{
M c log logM , Mp c, M

1
2p

1
2

}
, (1.1)

where ‘diameter’ is naturally defined in Fp and c depends only on d.
For a complete orbit C, we prove that

diam C & min{p c, e T/4 }, (1.2)

where T is the period of the orbit.
Eventually, part of the strategy in proving (1.1) and (1.2) is to ”lift” the

problem from Fp to C, which constitutes the main difficulty in our analysis.
Once the issue is reduced to complex orbits of polynomials, estimate (1.2) is
derived from the work of R. Benedetto [B] on preperiodic points over global
fields. Some conjectures made in [B], if correct, would even give stronger
results.

It is certainly a challenging question to improve the lower bound (1.1),
which is likely not the final truth on this question. The merit of (1.1) as stated
is that for small M one obtains an estimate superpolynomial in M . Also,
this problem fits obviously in a broader context of expansion and iteration
of rational maps over finite fields. The exploration of this area is in an early
stage and should be interesting from both algebraic and analytic perspectives.

Let p be a prime and Fp the finite field of p elements, represented by the
set {0, 1, . . . , p − 1}. Let f ∈ Fp[x] be a polynomial and z ∈ Fp be some
element, we consider its orbit

z0 = z, zn+1 = f(zn), n = 0, 1, . . . . (1.3)

2



The period Tz = T is the smallest integer satisfying

{zn : n = 0, 1, . . . , T − 1} = {zn : n ∈ N}. (1.4)

Define

diam Oz,M = max
0≤n<M

p
∥∥∥zn − z

p

∥∥∥. (1.5)

Following the papers [GS] and [CGOS], we establish lower bounds on
diam Oz,M . Obviously, if M ≤ T , then diam Oz,M ≥ M . But, assuming

that f is nonlinear and M = o(p), one reasonably expects that the diameter
of the partial orbit is much larger. Results along these lines were obtained
in [GS] under the additional assumption that M > p

1
2
+ε. In this situation,

Weil’s theorem on exponential sums permits proving equidistribution of the
partial orbit. For M ≤ p1/2, Weil’s theorem becomes inapplicable and lower
bounds on diam Oz,M based on Vinogradov’s theorem were established in
[CGOS].

The idea of the proof follows that of quadratic polynomial in [C1]. The
work is Theorem 1 in §2.

2 Our results.

Most of our effort is to prove the following.

Theorem 1. Let f(x) =
∑d

s=0 asx
s ∈ Fp[x] with (ad, p) = 1. For z ∈ Fp

and M ≤ Tz, assume
diamOz,M < pc.

Then
diamOz,M �M c log logM , (2.1)

where c depends only on d.

We will use the following lower bound on the diameters. (See Corollary
9 [CCGHSZ].)

Theorem CCGHSZ. For any polynomial f ∈ Fp[x] of degree d ≥ 2, z ∈ Fp

and M ≤ Tz, we have

diamOz,M � min{M1/2p1/2, M1+1/(2d−1−1) log p−ε},
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as p→∞.

Combining Theorem 1 and Theorem CCGHSZ, we obtain

Theorem 2. Let f(x) =
∑d

s=0 asx
s ∈ Fp[x] with (ad, p) = 1, then for any

z ∈ Fp and M ≤ Tz,

diam Oz,M & min

{
M c log logM , Mp c, M

1
2p

1
2

}
, (2.2)

where c depends only on d.

For C a complete periodic cycle and diam C < p c0 , the transfer argument
from Theorem 1 enables us to invoke bounds on the number of rational
pre-periodic points of a polynomial map, for instance the results from R.
Benedetto [B]. The conclusion is the following.

Theorem 3. Let f(x) =
∑d

s=0 asx
s ∈ Fp[x] with (ad, p) = 1, and let C ⊂ Fp

be a periodic cycle for f of length Tz, then

diam C & min{p c, e T/4 }, (2.3)

where c depends only on d.

3 Proof of Theorem 1.

The set up.

Lemma 1. Let D = diam Oz,M and let

f(x) =
d∑
s=0

asx
s ∈ Fp[x], ad 6≡ 0 (mod p),

f(xj) ≡ xj+1, (mod p) for 0 ≤ j < M.

Assume
(i). All xj, 0 ≤ j < M are distinct.
(ii). |xj − x0| ≤ D < pc(d) for all j < M .
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Then there exist a polynomial F (x) = bdx
d+bd−2x

d−2+· · ·+b0 ∈ Z[x], bd 6=
0, and q ∈ Z+, such that

(a). xj+1 − x0 = 1
q
F (xj − x0) for all j < M .

(b). |bs|, q < DC.
(c). (q, bd−2, · · · , b0) = 1.

Proof.
For 0 ≤ j < M , consider the polynomials

Φj(ξ, α0, · · · , αd) =
d∑
s=0

αs(xj − x0 + ξ)s − (xj+1 − x0 + ξ) ∈ Z[ξ, α0, · · · , αd],

whose coefficients are bounded by CDd, by (ii).

Claim.
⋂M−1
j=0 [Φj = 0] 6⊂ [αd = 0].

We will use the following Quantitative Nullstellensatz theorem. (Also
see [C2] where a similar elimination procedure was used in a combinatorial
problem. In particular, see Lemma 2.14 in [C2] and its proof.)

Theorem (Quantitative Nullstellensatz)
Let f1, · · · , fr ∈ Z[x1, · · · , xm] with deg fs ≤ d, and let V =

⋂
[fs = 0] be

the variety defined by {fs}s. Assume f ∈ Z[x1, · · · , xm] vanishing on V .
Then there exist A ∈ Z \ {0}, and g1, · · · , gr ∈ Z[x1, · · · , xm] such that

Afk =
∑

gifi and

logA < C(m, d)H,

where H = max (H(fi), H(f)) and the height of a polynomial g is the maxi-
mum of logrithms of the coefficients of g.

Proof of Claim.
Otherwise, Quantitative Nullstellensatz implies there are Ψj ∈ Z[ξ, α0, · · · , αd]

and A ∈ Z \ {0} such that, in particular,

Aαkd =
∑

ΦjΨj for some k ∈ Z+ (3.1)

and
|A| < DC . (3.2)
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Taking ξ0 = x0, α0 = a0, · · · , αd = ad, we have Φj(x0, a0, · · · , ad) =
f(xj) − xj+1 ≡ 0 (mod p), so that Aakd ≡ 0 (mod p), i.e. A ≡ 0 (mod p).
Hence |A| ≥ p, contradicting (3.2). �

The claim implies that there is a polynomial G(x) =
∑d

s=0 βsx
s ∈ C[x],

βd 6= 0 such that G(xj − x0) = xj+1 − x0 for j < M .
Considering the system of linear equations G(xj−x0) = xj+1−x0 for 0 ≤

j < M (with βs as variables), where x0, · · · , xM−1 are distinct by assumption

(i). It follows that βs ∈ Q. i.e. βs = b′s
q1

with |b′s|, q1 < DC .

Let F1(x) =
∑d

s=0 b
′
sx
s. We will eliminate the xd−1-term by translation.

Take

y = x+
b′d−1
d
.

Therefore, yj =
zj
d

with zj = (xj − x0)d+ b′d−1, satisfies the equation

yj+1 =
1

q2
F2(yj), (3.3)

where F2(x) ∈ Z[x] is of degree d, with coefficients bounded by DC and has
no xd−1-term, and q2 ∈ Z+, q2 < DC .

Rewrite (3.3) as

zj+1 =
1

q
F (zj), (3.4)(

In particular,
F (zj) ≡ 0 (mod q).

)
(3.5)

where F (x) = bdx
d + bd−2x

d−2 + · · ·+ b0 ∈ Z[x],

(q, bd, bd−2, · · · , b0) = 1, (3.6)

and |bd|, |bd−2|, · · · , |b0|, q < DC .
To see that we may assume (c), we take p|(q, bd−2, · · · , b0). Then (3.6)

implies (bd, p) = 1 and (3.5) implies that bdz
d
j ≡ 0 (mod p), and hence zj ≡ 0

(mod p) for all j. Replacing zj by z̃j =
zj
p

, we have

z̃j+1 =
1

q
(bdp

d−1 z̃ dj + bd−2p
d−3 z̃ d−2j + · · ·+ b1z̃j + b′0), b′0 =

b0
p
.

This proves Lemma 1.
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To prove Theorem 1, we factor F (x) over an extension K of Q

F (x) = bd

d∏
s=1

(
x− ξs

bd

)
, ξs ∈ OK , (3.7)

where OK is the ring of integers of K.
Hence, ∑

s

ξs . (3.8)

Let q =
∏
pvp with vp ≥ 1.

First, we handle the large prime factors p of q.

Case 1. p > d.

Lemma 2. Assume p|q, p > d and Property (c) in Lemma 1. Then F (t)(zj) 6≡
0 (mod p) for some t ≤ d− 1.

Proof. Assume the contrary. Then

F (d−1)(zj) = d!bdzj ≡ 0 (mod p) (3.9)

implies
bdzj ≡ 0 (mod p).

Iterating, for 0 ≤ s ≤ d− 2, gives

F (s)(zj) = s!bs ≡ 0 (mod p), (3.10)

which implies
bs ≡ 0 (mod p),

contradicting Property (c). �

Write bd = pv
′
p b′d with v′p ≥ 0 and (b′d, p) = 1. Assume

vp > v′p . (3.11)

Let P be a prime ideal of OK over p and α ≥ 1 its exponent, i.e. p =
PαP1 · · · . By (3.5),

F (zj) ≡ 0 (mod pvp), (3.12)
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which, together with (3.7), imply

bd−1d F (zj) =
d∏
s=1

(bdzj − ξs) (mod P(v′p(d−1)+vp)α). (3.13)

Claim. There exist s ≤ d and u = u(s) > αv′p such that

bdzj − ξs ≡ 0 (mod Pu). (3.14)

Proof of Claim. Assume u ≤ αv′p such that for all s ≤ d, (3.14) holds.
We want to show

u ≤
[
d− 1

d
α v′p

]
. (3.15)

Clearly, from (3.14), for t ≤ d − 1, taking derivative t times of the product
in (3.13) gives

bd−1d F (t)(zj) ≡ 0 (mod P tαv′p+(d−t)u). (3.16)

Lemma 2 implies

αv′p(d− 1) ≥ tαv′p + (d− t)u ≥ du, (3.17)

which is (3.15).
Assume the claim fails. i.e. assume for all s, if (3.14) holds, then us ≤ αv′p.

From (3.13) and (3.15), taking average of the exponent of P , there is some
s ≤ d and σp := us such that

bdzj − ξs ≡ 0 (mod Pσp), (3.18)

where σp satisfies

(d− 1)σp ≥ α(v′p(d− 1) + vp)−
[
d− 1

d
α v′p

]
. (3.19)

In particular, by (3.11)
σp > αv′p .

This is a contradiction. Hence the claim is proved. �
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Note that by (3.14), zj is determined by ξs (mod Pσp−αv′p) with s = s(p),
and hence it is determined by ξs (mod pσ

′
p) with σ′p the smallest integer

satisfying
ασ′p ≥ σp − αv′p . (3.20)

The case of small prime factors p of q requires some easy modification.

Case 2. p ≤ q.

Lemma 2’. Assume p|q, p ≤ d and Property (c) in Lemma 1. Then
F (t)(zj) 6≡ 0 (mod pC) for some constant C = C(d).

Inequalities (3.17) and (3.15) have to be replaced by

αv′p(d− 1) + C ≥ du (3.21)

and

u ≤ d− 1

d
α v′p + C. (3.22)

Also, instead of (3.19), we use

(d− 1)σp ≥ α(v′p(d− 1) + vp)−
d− 1

d
α v′p − C. (3.23)

Define
Q′ =

∏
vp>v′p

pσ
′
p (3.24)

with σ′p defined by (3.20).
What we proved is that∣∣{πQ′(zj) : j < M}

∣∣ ≤ d ω(Q
′) ≤ d ω(q) < c

logD
log logD . (3.25)

Our goal is to prove that

D > M c log logM . (3.26)

Assume (3.26) fails. Then (3.25) implies |{πQ′(zj) : j < M}| < M o(1),
and there is a large subset J ⊂ {1, 2, · · · , [M

2
]}, |J | >

√
M such that zi ≡ zj

(mod Q′) for any i, j ∈ J . In particular, there is some j ∈ J such that

|zj| > C1Q
′, and

∣∣∣zj − ξs
bd

∣∣∣ > C1Q
′ for s = 1, · · · , d (3.27)
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with C1 an arbitrary constant at most
[ √

M
2(d+1)

]
.

Returning to (3.4) and (3.7), we have

q |zj+1| = |bd|
d∏
s=1

∣∣∣zj − ξs
bd

∣∣∣ . (3.28)

Let
Q =

∏
vp>v′p

pvp−v
′
p . (3.29)

Identity (3.28) clearly implies

Q |zj+1| ≥
d∏
s=1

∣∣∣zj − ξs
bd

∣∣∣ . (3.30)

It follows from (3.8) that

d max
s

∣∣∣zj − ξs
bd

∣∣∣ ≥ d∑
s=1

∣∣∣zj − ξs
bd

∣∣∣ ≥ d |zj|.

Hence,

max
s

∣∣∣zj − ξs
bd

∣∣∣ ≥ 1

3

(
|zj|+ max

s

|ξs|
bd

)
. (3.31)

From (3.27), (3.31), and (3.30), we have

Q |zj+1| ≥
1

3
(C1Q

′)d−1
(
|zj|+ max

s

|ξs|
bd

)
. (3.32)

Claim. Q ≤ (Q′)d−1 C.
Proof of Claim.

We want to show that

vp − v′p ≤ σ′p(d− 1) for p > d and vp > v′p . (3.33)

By (3.20) and (3.19), this amounts to

αvp − αv′p ≤ σp(d− 1)− αv′p(d− 1),
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which follows from

αvp − αv′p ≤ vpα + (d− 1)v′pα−
[
d− 1

d
α v′p

]
− αv′p(d− 1),

and hence (3.33).
For p ≤ d, instead of (3.33), we derive from (3.23) that

vp − v′p < σ′p(d− 1) + C. (3.34)

Together with (3.24) and (3.29). the claim follows from (3.33) and (3.34).�

Therefore, choose C1 appropriately, (3.32) implies that

|zj+1| > 10

(
|zj|+ max

s

|ξs|
bd

)
. (3.35)

It follows that ∣∣∣zj+1 −
ξs
bd

∣∣∣ > 9

10
|zj+1| > 9|zj| > 9C1Q

′,

so that zj+1 still satisfies condition (3.27). In particular, |zj+1| > 10|zj|,
|zj+2| > 10|zj+1|, · · · , |zj+[M

2
]| > 10

M
2 . Hence 10

M
2 < DC , which is a contra-

diction and proves (3.26).
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