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Abstract

Given f(x, y) ∈ Z[x, y] with no common components with xa − yb and xayb −
1, we prove that for p sufficiently large, except C(f) exceptions, the solutions

(x, y) ∈ Fp × Fp of f(x, y) = 0 satisfy ord(x) + ord(y) > c
( log p
log log p

)1/2
, where c is

a constant and ord(r) is the order of r in the multiplicative group F∗p. Moreover,

for most p < N , N being a large number, we prove that, except C(f) exceptions,

ord(x) + ord(y) > p1/4+ε(p), where ε(p) is an arbitrary function tending to 0 when

p goes to ∞.

1 Introduction.

Given a finite field Fq, it is a major problem to produce quickly a generator of
its multiplicative group F∗q and no deterministic polynomial-time algorithm
seems to be known so far. Short of being able to produce primitive elements,
one can settle for elements of large order. This question is also notoriously
difficult and there is an extensive literature with various contributions. This
note is mainly motivated by a paper of Voloch [V1] and earlier work of
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von zur Gathen and Shparlinski [GS], [S1]. The main result in [V1] states
roughly that if F (x, y) ∈ Fq[x, y] is absolutely irreducible and F (x, 0) is not

a monomial, given a solution (a, b) ∈ F∗q × F∗q of F (x, y) = 0 such that
d = [Fq(a) : Fq] is sufficiently large, then either a is of multiplicative order at
least d2−ε or b is of order at least exp

(
δ(log d)2

)
. In particular, considering

the equation y − x − 1 = 0, it follows that either a or a + 1 is at least of
order d2−ε. We recall the following general conjecture due to Poonen (See
also [V1].)

Let A be a semiabelian variety defined over Fq and X a closed subvariety of
A. Denote Z the union of all translates of positive-dimensional semiabelian
varieties over Fq contained in X. Then, for every nonzero x in (X−Z)(Fq),
the order of x in A(Fq) is at least

∣∣Fq(x)
∣∣c, for some constant c > 0.

The conjecture (if true) is very strong, compared with the presently known
results. In particular, those of [V1] (see also [V2].) appear as special cases,
but are quantitatively much weaker. In this paper we pursue the same line of
investigation but in a different direction. While the results of [V1] give lower
bounds on the order of x in terms of its degree [Fq(x) : Fq], we are interested
in large characteristic. Thus, fix a suitable f(x, y) ∈ Z[x, y], let p be a large
prime and consider solutions (x, y) ∈ Fp × Fp of f(x, y) = 0. What may
be said about the orders of x and y? In particular, one can ask for a lower
bound on min0<x<p−1

(
ord(x) + ord(x + 1)

)
for p → ∞. In this spirit, we

should cite the result of Bugeaud-Corvaja-Zannier [BCZ], according to which,
ord(2)+ord(3)

log p
→∞ for p→∞. Although this seems a slight improvement over

the obvious, the argument is deep and involves the subspace theorem in
an ingenious way. It illustrates the difficulty of the problem, even in the
restricted setting. Note that for large characteristic, one may also explore
the above questions for ‘most’ p while expecting better results. (See [EM].)
In particular, we obtain the following results.

Theorem 1. Let f(x, y) ∈ Z[x, y]. Assume the zero set of f has no common
components with that of xa− yb or xayb− 1 for any a, b ∈ Z+. Then there is
a constant C(f), depending only on f such that for a sufficiently large prime
p, for all but at most C(f) solutions (x, y) ∈ Fp × Fp of

f(x, y) = 0, (1.1)

we have

ord(x) + ord(y) > c
( log p

log log p

)1/2
, (1.2)
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where c is a constant and ord(r) is the order of r in the multiplicative group
F∗p.

Theorem 1 can be improved for almost all p as follows.

Theorem 2. Let f(x, y) ∈ Z[x, y]. Assume the zero set of f has no common
components with that of xa − yb or xayb − 1 for any a, b ∈ Z+. Then there
is a constant C(f), depending only on f such that for a set of primes p of
relative density 1, for all but at most C(f) solutions (x, y) ∈ Fp × Fp of

f(x, y) = 0,

we have
ord(x) + ord(y) > p1/4+ε(p), (1.3)

where ε(p) is an arbitrary function tending to 0 when p goes to ∞.

Our arguments are based on elimination theory combined with a finiteness
result of torsion points on irreducible curves, conjectured by Lang and proved
by Ihara, Serre and Tate. (See [L1], [L2] and the paper of Ailon and Rudnick
[AR] for other applications of this result in a similar vein.) The formulation
appears in Lemma 5 (a) below. For the readers’ convenience, we include
a proof, based on the finiteness of solutions of linear equations in roots of
unity. (See Theorem CJ in the next section.) On the quantitative side, more
precise statements appear in the paper of Corvaja and Zannier [CZ], but
these refinements are not essential for our modest purpose. In our detailed
presentation, we aimed at illustrating the use of the subspace theorem and its
consequences to problems in finite fields. They may have other applications
and the above results likely have extensions to more variables.

In special cases, the above results can be made more precise.

Theorem 3. Let F (x) = x+ 1 or F (x) = x+ 1
x
.

(i). Let p be prime and
(−3
p

)
= −1. Then for all x ∈ Fp, (1.2) holds.

(ii) For a set of primes p < N of relative density 1 such that
(−3
p

)
= −1, all

x ∈ Fp satisfy (1.3).

This theorem should be compared with the ”large order” results by von
zur Gathen-Shparlinski [GS] and Voloch [V1].
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Notations and conventions.

(1). Let f, fα ∈ C[x1, · · · , xn].
V (f) = {(x1, · · · , xn) ∈ Cn : f(x1, · · · , xn) = 0}.
V ({fα}α) =

⋂
α V (fα).

(2). ε(x) = an arbitrary function tending to 0 when x goes to ∞.
(3). A solution to the equation

∑n
i=1 aixi = 1 is non-degenerate, if

∑
i∈I aixi 6=

0 for any I ⊂ {1, · · · , n}.
(4). U = { roots of unity }.

φ(m) = the Euler’s totient function.
Φm = the mth cyclotomic polynomial of degree φ(m).

2 The proofs.

We will use the following result from elimination theory.[CLO]

Lemma 4. Let f(x, y) ∈ Z[x, y], P1(x) ∈ Z[x], P2(y) ∈ Z[y] such that

V (f, P1, P2) = ∅.

Denote d0 = deg f , d1 = degP1, d2 = degP2 and H a bound on the coeffi-
cients of f, P1, P2.
Then there exist a ∈ Z \ {0} and g0, g1, g2 ∈ Z[x, y] such that

(i). a = g0(x, y)f(x, y)+g1(x, y)P1(x)+g2(x, y)P2(y),

(ii). |a| <
[
(d0+d1+d2)

2H
]d0d1+d1d2+d2d0 .

Proof.
The argument is standard and we include it for the sake of completeness.
LetA be an integral domain. Given u(x), v(x) ∈ A[x], we denote Resx(u, v) ∈

A the determinant of the Sylvester matrix of u and v. Recall that there are
polynomials U(x), V (x) ∈ A[x] such that

Resx(u, v) = U(x)u(x) + V (x)v(x).

Also, Resx(u, v) = 0 if and only if gcd(u, v) 6= 1.
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Take A = Z[y]. It follows that

r(y) = Resx
(
f(x, y), P1(x)

)
= U(x, y)f(x, y) + V (x, y)P1(x)

for some U, V ∈ Z[x, y].
Next, we apply elimination theory to the polynomials r(y), P2(y) ∈ Z[y]

and have

a = Resy(r, P2) = R(y)r(y) +W (y)P2(y)

= R(y)U(x, y)f(x, y) +R(y)V (x, y)P1(x) +W (y)P2(y).

Clearly, a 6= 0. Otherwise, for some y0 we have r(y0) = P2(y0) = 0. Then
f(x, y0) and P1(x) also have a common root x0, hence (x0, y0) ∈ V (f, P1, P2).
This is a contradiction.

It remains to evaluate a. Clearly, r(y) is of degree at most d0d1 with
coefficients bounded by (d0 + d1)!

(
d0
d1

)
Hd0+d1 < (d0 + d1)! d

d1
0 Hd0+d1 and

hence
|a| < (d0d1 + d2)!H

d0d1
[
(d0 + d1)! d

d1
0 Hd0+d1

]d2
< (d0d1 + d2)!

(
d0(d0 + d1)H

)(d0+d1)d2Hd0d1 . �

Remark 4.1. In our application, f(x, y) will be a fixed polynomial; since
d0 is a constant, the bound (ii) turns out to be better than the estimate
obtained from the quantitative Nullstellensatz theorem in [KPS].

We also need the following theorem which was implied by a result of
Conway and Jones about linear equations in roots of unity. (See [CJ] and
[E] for further reference and [DZ], [E], [S] for results of this type over C.)

Theorem CJ. Let a1, · · · , an ∈ Q\{0}. Then the number of non-degenerate
solutions in U of the equation

aiξ1 + · · ·+ anξn = 1 (2.1)

is at most O(exp(cn3/2(log n)1/2)).

From the theorem above, one can easily deduce the following

Corollary CJ. Consider the linear equation

a1ξ1 + · · ·+ anξn = 0, ai ∈ Z \ {0} (2.2)

with solutions ξi ∈ U . Then there exists a subset U of Un with |U| ≤
O(exp(cn3/2(log n)1/2)) such that for any ξ = (ξ1, · · · , ξn) ∈ Un satisfying
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(2.2), there is a partition {1, · · · , n} =
⋃
α Iα with |Iα| ≥ 2 and there is

ζ = (ζ1, · · · , ζn) ∈ U such that

ξi
ξj

=
ζi
ζj
, ∀α, and ∀ i, j ∈ Iα. (2.3)

From the proceeding, we derive the further result.

Lemma 5. Let f(x, y) ∈ Z[x, y]. Assume V (f) has no common components
with V (xa − yb) and V (xayb − 1) for any a, b ∈ Z+. Then

(a).
∣∣∣V (f)

⋂
U2
∣∣∣ < C(f).

(b). There exists K(f) ∈ Z+, such that for any cyclotomic polynomials

Φk,Φ` with
max(k, `) ≥ K(f), (2.4)

then
V
(
f,Φk(x),Φ`(y)

)
= ∅. (2.5)

For the readers’ convenience, we give the proof here.

Proof of Lemma 5 (a).
Let f(x, y) =

∑
k,` ak,`x

ky`. Setting ξk,` = xky`, we obtain the equation∑
k,`

ak,`ξk,` = 0 (2.6)

to which we apply Corollary CJ. Hence, there is U with |U| ≤ C(deg f), of
triples ζ = (ζk,`), ζk,` ∈ U such that for any ξ = (ξk,`) with ξk,` ∈ U satisfying
(2.6), there is a partition Iα of the indices and some ζ ∈ U such that

ξk,`
ξk′,`′

=
ζk,`
ζk′,`′

, ∀α, and ∀(k, `), (k′, `′) ∈ Iα. (2.7)

Hence
xk−k

′
y`−`

′
= ζk,`ζk′,`′ . (2.8)

If there exist α, α′ and (k1, `1), (k2, `2) ∈ Iα, (k3, `3), (k4, `4) ∈ Iα′ such that

k1 − k2
`1 − `2

6= k3 − k4
`3 − `4

,
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then x, y are determined. Therefore, we assume

dim〈(k1 − k2, `1 − `2) : (k1, `1), (k2, `2) ∈ Iα for some α〉 ≤ 1. (2.9)

For each α, we take some (kα, `α) ∈ Iα. Rewrite f as

f(x, y) =
∑
α

xkαy`α
∑

(k,`)∈Iα

ak,`x
k−kαy`−`α , (2.10)

where, by (2.9)
(k − kα, `− `α) = ck,`(e, f) (2.11)

for some (e.f) ∈ Z2 \ {(0, 0)}.
Moreover, we may assume that there is some (x0, y0) ∈ U2 satisfying∑

(k,`)∈Iα

ak,`x
k
0y

`
0 = 0, for all α (2.12)

(since otherwise, we would not have to consider the partition {Iα}).
It follows from (2.10)-(2.12) that the curve V (x− x0tf )∩ V (y− y0t−e) is

contained in V (f), contradicting to our assumption on V (f). �

Proof of Lemma 5 (b).
Clearly, from part (a), we may conclude that there is an integer M =

M(f) such that
V (f) ∩ U2 ⊂ V (xM − 1, yM − 1). (2.13)

Also,
V
(
f,Φk(x),Φ`(y)

)
⊂ V (f) ∩ U2.

Hence, if V
(
f,Φk(x),Φ`(y)

)
6= ∅, then Φk(x)|xM−1 and Φ`(y)|yM−1, which

are impossible assuming K > M. �

Combining Lemma 4 with Lemma 5 (b) gives

Lemma 6. Let f(x, y) ∈ Z[x, y]. Assume V (f) has no common components
with V (xa − yb) and V (xayb − 1) for any a, b ∈ Z+. Let K(f) ∈ Z+ be
given by Lemma 5 (b) and let Φk and Φ` be cyclotomic polynomials with
max(k, `) ≥ K(f).
Then there exist a ∈ Z+ and g0, g1, g2 ∈ Z[x, y] such that

(i). a = g0(x, y)f(x, y) + g1(x, y)Φk(x) + g2(x, y)Φ`(y) ,
(ii). log a < c d2 log d, where d = max

(
φ(k), φ(`)

)
.
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Proof of Theorem 1.
Let K = K(f) be given by Lemma 6, and let

E = {ρ ∈ Fp : ∃ Φm with m ≤ K and Φm(ρ) = 0}.

Thus ∣∣E∣∣ < K2 < C(f). (2.14)

We claim that (1.2) holds, except possibly for those (x, y) ∈ Fp in E × E .
Let (x, y) ∈ Fp × Fp satisfy (1.1) and (x, y) 6∈ E × E . Let k = ord(x)
and ` = ord(y). Then Φk(x) ≡ 0 (mod p) and Φ`(y) ≡ 0 (mod p). Since
(x, y) 6∈ E × E , we have max(k, `) > K. Lemma 6 (i) gives

a 6= 0 and a ≡ 0 (mod p) (2.15)

by the proceeding. It follows from Lemma 6 (ii) that

log p ≤ log a < c
(
φ(k)2 log φ(k) + φ(`)2 log φ(`)

)
< c(k2 + `2) log(k + `)

and hence (1.2) holds. �

Proof of Theorem 2.
Let N be a large integer and M = [N1/4−ε]. Let K = K(f) be given by

Lemma 6. For any k, ` satisfying K < max(k, `) < M , we apply Lemma 6
to Φk and Φ`. Lemma 6 (i) gives

ak,` = g0,k,`(x, y)f(x, y) + g1,k,`(x, y)Φk(x) + g2,k,`(x, y)Φ`(y) (2.16)

with ak,` ∈ Z+, ak,` < M cM2
and g0,k,`, g1,k,`, g2,k,` ∈ Z[x, y].

Define
a =

∏
k,`

K<max(k,`)<M

ak,` ∈ Z, (2.17)

which satisfies
a < M cM4

. (2.18)

We will repeat the argument for Theorem 1.
Given prime p, let Ep = E as defined in the proof of Theorem 1. Assume

(x, y) ∈ Fp×Fp \Ep×Ep and f(x, y) = 0. Let k = ord(x), ` = ord(y). Assume
k, ` < M . It follows from (2.16) that ak,` ≡ 0 (mod p) and hence p|a. Since
ω(a) ≤ cM4 < N1−ε by (2.18), for most primes p < N and any (x, y) ∈ Fp
satisfying f(x, y) = 0, we have ord(x) + ord(y) > M = N1/5−ε > p1/5−ε.
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Combining this last statement with the following theorem by Erdős and
Murty (see Theorem 2 in [EM]), we conclude the proof of Theorem 2. �

Theorem EM. Let δ > 0 be fixed and ε(x) be an an arbitrary function
tending to 0 when x goes to ∞. Then the number of primes p ≤ x such that
p− 1 has divisor in (xδ, xδ+ε(x)) is o( x

log x
).

Proof of Theorem 3.
We note that if x and x+ 1 ∈ U , then x satisfies

x2 + x+ 1 = 0. (2.19)

In deed, let x = cos θ + i sin θ and x + 1 = cos γ + i sin γ. Then cos θ =
−1 + cos γ. On the other hand, from sin θ = sin γ, we have cos θ = ± cos γ.
Hence cos θ = −1

2
and x = e

2
3
πi is a cubic root of unity.

Therefore, we have (2.5) for max(k, `) > 3. Combining with Lemma 4, we
have Lemma 6.

Similarly, for Part (ii), if x and x + 1
x
∈ U , then x satisfies either (2.19)

or
x2 − x+ 1 = 0. (2.20)

If
(−3
p

)
= −1, then (2.19), (2.20) have no solutions (mod p). The rest of the

argument is the same as that for Part (i). �

Remark 7. If
(−3
p

)
= 1, then (2.19) has a solution and y = x + 1 satisfies

y2 − y + 1 ≡ 0 (mod p). Hence

ord(x) = 6, ord(x+ 1) = 3.

Remark 8. According to a result in [S2], there are at least p1/2 elements
x ∈ Fp with

ord(x) + ord(x+ x−1) < p3/4+ε,

if p − 1 has a divisor d ∈ [p3/4+ε/2, p3/4+ε]. (By a result of Ford [F], there is
a positive proportion of such primes.) The same proof works if x + x−1 is
replaced by a non-monomial rational function F .
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