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Abstract

Let p be the characteristic of Fq and let q be a primitive root modulo a prime

r = 2n + 1. Let β ∈ Fq2n be a primitive rth root of unity. We prove that the

multiplicative order of the Gauss period β + β−1 is at least (log p)c logn for some

c > 0. This improves the bound obtained by Ahmadi, Shparlinski and Voloch

when p is very large compared with n. We also obtain bounds for ”most” p.

1 Introduction.

Given a finite field Fq, it is a major problem to produce quickly a generator of
its multiplicative group F∗q and no deterministic polynomial-time algorithm
seems to be known so far. Short of being able to produce primitive elements,
one can settle for elements of large order. This question is also notoriously
difficult and there is an extensive literature with various contributions [S1].
This note is mainly motivated by the paper [ASV] and earlier work of von
zur Gathen and Shparlinski [GS], [S2] related to the orders of Gauss periods.
In [ASV], the following is proven.
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Theorem ASV. Let p be the characteristic of Fq and let q be a primitive
root modulo a prime r = 2n+1. Let β ∈ Fq2n be a primitive rth root of unity.
Then the Gauss period

α = β + β−1 ∈ Fqn (1.1)

has multiplicative order Ln satisfying the lower bound

Ln > exp

((
π

√
2(p− 1)

3p
+ o(1)

)√
n

)
(1.2)

as n→∞ and the bound (1.2) is uniform in q.
(For a further improvement on (1.2), see [P].)

This estimate is unsatisfactory if for instance we would fix a large n and
let p→∞. We will prove the following

Theorem 1’. Under the assumption of Theorem ASV, assuming n > n0 for
some constant n0, we have

Ln >

[
log p

5n(log n)2

]12−7 logn

. (1.3)

Theorem 1’ combined with Theorem ASV and Theorem 3 in [C] give the
following.

Theorem 1. Under the assumption of Theorem ASV, and either n > 1 or(−3
p

)
= −1, we have

Ln > (log p)c logn

for some constant c > 0.

If n ≤ n0,we invoke Theorem 3 in [C] and its proof, which provides
explicitly the exceptional cases. (See also Remark 1.2 below.) In fact, [C]
gives the following lower bound

ord(x) + ord(x+ x−1) > c
( log p

log log p

)1/2
, (1.4)

if x ∈ Fp and ord(x) 6= 3, 6.

Remark 1.1. Under the assumption of Theorem ASV, we have Φr(β) = 0
(Φr being the r-cyclotomic polynomial). Hence [Fp(β) : Fp] ≤ r − 1 = 2n
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and ord(β + β−1) < p2n. Thus, we cannot expect a lower bound on Ln in
terms of q = pk.

Remark 1.2. We see that the assumption n > n0 is necessary. Let n = 1,
r = 3, and p = q ≡ 2 (mod 3). Take β ∈ Fp satisfying β2 + β + 1 = 0. Then
α = β + β−1 satisfies α2 = 1 and has order 2.

In a more general context, we should also refer to the work of Voloch
[V1].

The main result in [V1] states roughly that if F (x, y) ∈ Fq[x, y] is abso-
lutely irreducible and F (x, 0) is not a monomial, given a solution (a, b) ∈
F∗q × F∗q of F (x, y) = 0 such that d = [Fq(a) : Fq] is sufficiently large,
then either a is of multiplicative order at least d2−ε or b is of order at least
exp

(
δ(log d)2

)
. In particular, considering the equation y − x − 1

x
= 0, it

follows that either a or a+ 1
a

is at least of order d2−ε. We recall the following
general conjecture due to Poonen (See also [V1].)

Let A be a semiabelian variety defined over Fq and X a closed subvariety of
A. Denote Z the union of all translates of positive-dimensional semiabelian
varieties over Fq contained in X. Then, for every nonzero x in (X−Z)(Fq),
the order of x in A(Fq) is at least

∣∣Fq(x)
∣∣c, for some constant c > 0.

The conjecture (if true) is very strong, compared with the presently known
results. In particular, those of [GS], [ASV], [V1] and [V2] appear as special
cases, but are quantitatively much weaker.

In this paper we pursue the same line of investigation as in [C], considering
large characteristic p. Using the same method of proving Theorem 1’, we also
establish Theorem 2 and Theorem 3 below. The following statement gives a
lower bound on Ln for ‘most p’.

Theorem 2. For most primes p, under the assumption of Theorem ASV,
we have the lower bound

Ln > p1−
C

logn (1.5)

for some constant c.

The following remark has the same flavor as Theorem 2 and is a conse-
quence of Voloch’s result [V1].

Remark 2.1. Let q be fixed. For most primes `, the following holds.

Let β ∈ Fq satisfy Φ`(β) = 0. Then ord(β + β−1) > exp(`δ), where δ > 0 is
some constant.
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Note that instead of β + β−1, we may consider any polynomial f(x) ∈
Fq[x], which is not a monomial polynomial.

The next result is an extension of Theorem 3 in [C].

Theorem 3. Let p be the characteristic of Fq and let β ∈ Fq, [Fq(β) : Fq] = n
with n > c for some constant c. Then

ord(β) + ord
(
β +

1

β

)
>
(

log p
)1− C

logn
(

log log p log n
)−1

. (1.6)

Remark 3.1. A similar statement (with essentially identical proof) holds
for β + 1 instead of β + 1

β
.

Notations.

Let g(x) =
∑

i aix
i ∈ C[x]. The height of g is ht(g) = maxi |ai|.

[1, n] = {1, · · · , n}.
U = { roots of unity }.

φ(m) = the Euler’s totient function.
Φm = the mth cyclotomic polynomial.

ord(x) = the order of x in the multiplicative group F∗p.
Fp = the algebraic closure of Fp.

2 The proofs.

The following statement depends on the subspace theorem by Evertse, Schlick-
ewei, and Schmidt [ESS].

Lemma 1. Let r be sufficiently large and let ξ1, · · · , ξr ∈ C∗ be r distinct
roots of unity. Then there is a subset I ⊂ [1, r] satisfying

(i). |I| > 12−7 log r,
(ii). the elements ξs + ξ−1s , s ∈ I are multiplicatively independent.

Proof.
Denote ηs = ξs + ξ−1s and let {ηs}s∈I ⊂ {ηs}s∈[1,r] be a maximal subset

of multiplicative independent elements. Let r1 = |I|, H0 < 〈C∗, ·〉 be the
multiplicative group generated by {ηs}s∈I , and

H1 = {z ∈ C∗ : zm ∈ H0 for some m ∈ Z+}.
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Hence H1 < C∗ is a multiplicative group of rank r1. By maximality and that
1 ∈ H0,

H1 ⊃ U ∪ {ηs}s∈[1,r].

Therefore, for each s = 1, · · · , r,

1 + ξ2s = ξszs for some zs ∈ H1 ↓ (2.1)

implying that the unit equation

x1 − x2 = 1, x1, x2 ∈ H1 (2.2)

has at least
[
r
2

]
solutions. On the other hand, according to Theorem 1 in

[ESS], the number of solutions of (2.2) maybe uniformly bounded in terms
of the rank of H1, specifically by

exp
(
126(2r1 + 1)

)
. (2.3)

It follows that r1 > 12−7 log r. �

Lemma 2. Let P1(x), P2(x) ∈ Z[x] be polynomials of degrees d1, d2 and
heights H1, H2 respectively. Then their resultant Res(P1, P2) satisfies the
bound

|Res(P1, P2)| ≤
√
d1 + 1

d2√
d2 + 1

d1
Hd2

1 H
d1
2 . (2.4)

Proof. The resultant of P1 and P2 is the determinant of the Sylvester ma-
trix of the two polynomials. Viewing the determinant as the volume and
bounding it by the product of lengths of the row vectors give (2.4). �

We will need the following notation for the next lemma.

Given a pair of nonempty disjoint sets I1, I2 ⊂ [1, r], and a set of exponents

k̃ = {ks}s∈I1∪I2, we denote

PI1,I2,k̃ (x) =
∏
s∈I2

x s ks
∏
s∈I1

(x2s + 1)ks −
∏
s∈I1

x s ks
∏
s∈I2

(x2s + 1)ks . (2.5)
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Lemma 3. Let r be a prime and Φr ∈ Z[x] be the rth cyclotomic polynomial.
Let

r1 = [12−7 log r].

Then there exists I ⊂ [1, r − 1] with |I| = r1 such that for any pair of

nonempty disjoint sets I1, I2 ⊂ I and any set of exponents k̃ = {ks}s∈I1∪I2,
we have polynomials Ψ(x), Q(x) ∈ Z[x]:

(a). A = Φr(x)Ψ(x) + PI1,I2,k̃ (x)Q(x) ∈ Z \ {0}.
(b). logA < r(log r)2 K, where K = maxs ks.

Proof.
Let z ∈ C be a root of Φr. Applying Lemma 1 to the distinct roots of

unity z, z2, · · · , zr−1 , we obtain I ⊂ [1, r] with |I| = r1 and {zs + z−s}s∈I is
a multiplicatively independent set. Hence for any I1, I2 ⊂ I and {ks}s∈I1∪I2 ,∏

s∈I1

(zs + z−s)ks 6=
∏
s∈I2

(zs + z−s)ks .

Namely, PI1,I2,k̃ (z) 6= 0.
Since Φr(x) is irreducible, gcd(Φr, PI1,I2,k̃ ) = 1 and Res(Φr, PI1,I2,k̃ ) 6= 0.

Part (a) follows by letting A = Res(Φr, PI1,I2,k̃ ). (See [CLO].)

Next, apply Lemma 2, taking d1 ≤ 2rr1K, H1 ≤ 2Kr1 , d2 = φ(r), H2 = 1
to get Part (b) with logA < 2rr1(log r)K < r(log r)2 K. �

Proof of Theorem 1’.
Let I ⊂ [1, r − 1] with |I| = r1 = [12−7 log r] be given by Lemma 3.

Denote

K =

[
log p

5n(log n)2

]
. (2.6)

We may assume K > 1, since otherwise there is nothing to prove.

Claim. The Kr1 elements

α
∑

t∈I htq
t

, 0 ≤ ht < K (2.7)

are distinct in Fqn.

Proof of Claim. Write

α
∑

t∈I htq
t

=
∏
t∈I

(
βq

t

+ β−q
t
)ht

. (2.8)
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Since q ∈ Z is primitive (mod r), the set of the least nonnegative residues of

{qt (mod r) : 1 ≤ t ≤ r− 1} is {1, · · · , r− 1}. Let Ĩ (respectively, {ks}s) be
the set corresponding to I (resp. {ht}t) under this identification. Then

α
∑

t∈I htq
t

=
∏
s∈Ĩ

(
βs + β−s

)ks
. (2.9)

Thus, if the claim is false, then there exist I1, I2 ⊂ Ĩ and k̃ = {ks}s∈I1∪I2
such that

PI1,I2,k̃(β) = 0 in Fq (2.10)

with PI1,I2,k̃ defined as in (2.5).

Apply Lemma 3. The right hand side of Part (a) vanishes in Fq. There-
fore, A ≡ 0 (mod p). Hence |A| ≥ p contradicting to Part (b) and (2.6).

The claim implies that α has order at least Kr1 . �

Proof of Theorem 2.
We start by observing that in view of (1.2), we may assume n < (log p)2.
Take P large and fix n < (logP )2. Let r1 be given by Lemma 3. (Note

that r = 2n+ 1.) Take

K =
1

r

(
P

(logP )7

) 1
r1+1

. (2.11)

Let

A = An =
∏

I1∩I2=∅,|I1|+|I2|≤r1
k̃={ks}s∈I1∪I2 ,ks<K

Res(Φr, PI1,I2,k̃) ∈ Z \ {0}, (2.12)

where
∏

is over non-vanishing resultants.
By Lemma 3 Part (b),

|A| < er(log r)
2K Kr1 rr1 = eP/(logP )5 . (2.13)

(The last inequality is by (2.11) and that r ≤ (logP )2.)
Let En be the set of prime divisors of An. Then |En| . P/(logP )6. Also,

for p 6∈ En, we have (p,An) = 1.
Let

E =
⋃

n<(logP )2

En.
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Then ∣∣E∣∣ < P

(logP )4
.

Let p < P , p 6∈ E . We repeat the argument in the proof of Theorem 1
and have

ord(α) > Kr1 > P
1− 1

r1+1 (logP )− log logP > P 1− C
logn > p1−

C
logn . �

Proof of Remark 2.1.
Let d = [Fq(β) : Fq]. Since ` is prime and Φ`(β) = 0, we have ord(β) = `

and hence qd ≡ 1 (mod `). According to the result of Erdős-Murty [EM]
(see Theorem EM below), for most `, ord`(q) > `1/2+ε(`), where ε(`) → 0 as
`→∞. Hence d > `1/2+ε(`), i.e. d2−ε(`) > `. Voloch’s result ([V1], section 5)
implies ord(β + β−1) > exp(dδ

′
) > exp(`δ). �

Theorem EM. Let δ > 0 be fixed and ε(x) be an an arbitrary function
tending to 0 when x goes to ∞. Then the number of primes p ≤ x such that
p− 1 has divisor in (xδ, xδ+ε(x)) is o( x

log x
).

Proof of Theorem 3.
Let J ⊂ [0, r − 1] be the set of the least nonnegative residues modulo r

of 1, q, q2, · · · , qn−1. Our assumption implies that |J | = n. Denote

K =

[
log p

r log r log n

]
. (2.14)

Let z ∈ C be a root of Φr. Applying Lemmas 1 and 3 on {zs : s ∈ J}, we
obtain I ⊂ J with r1 = |I| = [12−7 log n] such that PI1,I2,k̃ (z) 6= 0 for any

PI1,I2,k̃ , where I1, I2, k and PI1,I2,k̃ are as in (2.5).

Since deg(PI1,I2,k̃ ) ≤ rK log n and ht(PI1,I2,k̃ ) ≤ 2K logn, by Lemma 2, we
have

Res(Φr, PI1,I2,k̃ ) < rrK logn < p.

The last inequality is by (2.14). The argument for Theorem 1’ gives

ord(α) > Kr1 >

(
log p

r log r log n

)c logn
.
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If r = ord(β) <
(

log p
)1− 1

c logn
(

log n
)−1

, then log r < log log p and hence

ord(α) >
log p

(log log p)c logn
>
(

log p
)1− 1

c logn
(

log log p log n
)−1

. �

Acknowledgement. The author would like to thank I. Shparlinski and the
referee for helpful comments which improve the theorems. The author would
also like to thank K. Bibak for pointing out an error in a reference and the
Mathematics Department of University of California at Berkeley for hospi-
tality.

References

[ASV] O. Ahmadi, I. Shparlinski, J. F. Voloch, Multiplicative Order of
Gauss Periods, Int. J. Number. Theory 6 (2010), 877-882.

[C] M.-C. Chang, Elements of large order in prime finite fields, Bull.
Aust. Math. Soc., (to appear).

[CLO] D. A. Cox, J. Little, D. O’Shea, Ideals, Varieties, and Algorithms,
Springer-Verlag, 1992.
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