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Abstract

We show that the intersection of the images of two polynomial maps on
a given interval is sparse. More precisely, we prove the following.
Let f(x), g(x) ∈ Fp[x] be polynomials of degrees d and e with d ≥ e ≥ 2.
Suppose M ∈ Z satisfies

p
1
E

(1+ κ
1−κ ) > M > pε,

where E = e(e+1)
2

and κ = (1
d
− 1

d2
)E−1

E
+ ε. Assume f(x)− g(y) is absolutely

irreducible. Then
|f([0,M ]) ∩ g([0,M ])| = M1−ε.

1 Introduction.

Our goal is to study the intersection of the images in Fp of a given inter-
val under two polynomial maps. What we prove is the following sparcity
property.

Theorem. Let f(x), g(x) ∈ Fp[x] be polynomials of degrees d and e with
d ≥ e ≥ 2. Suppose M ∈ Z satisfies

p
1
E

(1+ κ
1−κ ) > M > pε,
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where E = e(e+1)
2

and κ = (1
d
− 1

d2
)E−1

E
+ ε. Assume f(x)− g(y) is absolutely

irreducible. Then
|f([0,M ]) ∩ g([0,M ])| = M1−ε.

Let us stress that the above estimate is uniform in the sense that it does
not depend on the choice of the polynomials f and g.

Our approach consists in bounding the number of points on the curve
g(y) = f(x) over Fp inside the box [0,M ]×[0,M ]. The problem of estimating
the number of integral points in a box lying on a curve C defined by an
equation F (x, y) = 0 with F (x, y) ∈ Z[x, y] has been extensively studied by
many authors

(
[1], [2], [9], [12], [13], [14], [15], [16], [17]

)
, in particular in

the celebrated paper of Bombieri and Pila [1]. The mod p analogue of this
problem is much less understood. However, some natural motivations come
from questions around the expansion properties of polynomial maps acting
on Fp, the study of orbits obtained by iteration of a given polynomial mod p
and also certain issues in cryptography related to hyperelliptic curves. One
could conjecture that if M < p1−ε, then∣∣{(x, y) ∈ [0,M ]2 : F (x, y) ≡ 0 (mod p)}

∣∣�M1−δ

for δ = δ(ε, d) and F (x, y) ∈ Z[x, y] of degree d ≥ 2 and absolutely irreducible
mod p. Such results can be proven assuming M is sufficiently small. Even
in the special case F (x, y) = g(y) − f(x) considered above, there is a size
restriction on M when deg f, deg g > 1. The method of attack consists indeed
in removing the mod p property in order to be able to invoke results such as
those in [1]. This lifting technique seems to require rather severe restrictions
on M . In some sense, the challenge would be to deal with such questions
directly mod p, without the need to lift the problem to Z.

Our result should be compared with earlier work in a similar spirit. (See
[7], [8], [11] for large boxes, [6] for small boxes, and [3], [4], [19] for special
curves.) In particular, the cases g(y) = y and g(y) = y2 are considered in [5].
Our focus here is only to relax as much as possible the size condition on M ,
required to obtain a non-trivial result, and not the quality of the estimate
itself. In the case g(y) = y2, [5] permits to treat only the range M < p

1
3
−ε.

The proposition below applied with e = 2 gives a less restrictive result.

Proposition. Let f(x) =
∑d

s=1 asx
s, g(x) =

∑e
s=0 bsx

s ∈ Fp[x] be polynomi-
als over Fp with d ≥ e ≥ 2. Suppose M ∈ Z satisfies

p
1
E

(1+ κ
1−κ ) > M > pε, (1.1)
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where E = e(e+1)
2

and κ = (1
d
− 1

d2
)E−1

E
+ ε. Assume f(x)− g(y) is absolutely

irreducible. Then the congruence

g(y) ≡ f(x) (mod p), 1 ≤ x, y ≤M, (1.2)

has at most M1−ε solutions.

In particular for e = 2, d = 3, the condition becomes M < p
1
3

+ 4
23 .

For a more friendly version, we may use Fact 2 in §2 and restate the
theorem as follows.

Theorem’. Let f(x), g(x) ∈ Fp[x] be monic polynomials of degrees d and e
with d ≥ e ≥ 2. Suppose M ∈ Z satisfies

p
1
E

(1+ κ
1−κ ) > M > pε,

where E = e(e+1)
2

and κ = (1
d
− 1

d2
)E−1

E
+ ε. Assume gcd(d, e) = 1. Then

|f([0,M ]) ∩ g([0,M ])| = M1−ε.

A similar version can be stated for the proposition.

Notations and Conventions.
1. e(θ) = e2πiθ, ep(θ) = e( θ

p
).

2. ‖α‖ denotes the distance of α to the nearest integer.
3. p = prime sufficiently large.
4. ε = various small constant.
5. I = Z ∩ I = an interval.
6. A . B means that |A| ≤ cB for some constant c.

2 Preliminary.

Theorem BP. ([1], Theorem 5) Let C be an absolute irreducible curve over
R of degree d ≥ 2 and let M ≥ exp(d 6). Then the number of integral points
on C and inside a square [0,M ]× [0,M ] does not exceed

M1/d exp(12
√
d logM log logM).
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The following is Theorem 11.2 in [18] which is a slight refinement of
Theorem 1.6 in [17]

Theorem W. Let M be sufficiently large. Suppose∣∣∣∣∣
M∑
x=1

e
( d∑
j=1

ajx
j
)∣∣∣∣∣ > M

B
.

Then there exist integers z, a′1, · · · , a′d such that 1 ≤ z ≤ Bc and

zaj ≡ a′j with |a′j| ≤
p

M j
Bc,

where

c =

{
d+ ε, if d ≥ 4,

1 + ε, if d = 2, 3.

The following is elementary.
(
See (8.6) in [10].

)
Fact 1. For α 6∈ Z

∣∣∣ M∑
x=1

e(αx)
∣∣∣ ≤ min

(
M,

1

2‖α‖

)
.

Fact 2. Let f(x), g(x) ∈ Z[x] be monic polynomials with deg f = d and
deg g = e. Assume gcd(d, e) = 1. Then the polynomial f(x)− g(y) ∈ Z[x, y]
is absolutely irreducible.

It is elementary to verify Fact 2. Assume f(x) − g(y) = Φ(x, y)Ψ(x, y).
We let x = te and y = td. Then the highest term of t in f(x) − g(y) is at
most tde−1. On the other hand, the assumption gcd(d, e) = 1 implies that
md+ ne 6= m′d+ n′e for (m,n) 6= (m′, n′) and m,m′ < e. Hence there is no
cancelation among the terms in Φ(x, y)

(
respectively, Ψ(x, y)

)
. Therefor the

highest term in Φ(x, y)Ψ(x, y) is tde. This is a contradiction.

3 The Proof.

We assume (1.2) has ∼M solutions.

We choose
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δ ∼ min

{( p
1
E

M

) E
E−1

, 1

}
. (3.1)

Then there exists J = [u, u+ δM ] such that

|{(x, y) ∈ [0,M ]× J : (x, y) satisfies (1.2)}| & δM. (3.2)

For y ∈ J , writing y = u+ y1 with y1 ∈ [0, δM ], we have

g(y) =
e∑
s=0

bs(u+ y1)s :=
e∑
s=0

b̃sy
s
1 ∈ Q, (3.3)

where

Q =
e∑
s=0

b̃s[0, δ
sM s] (3.4)

with
|Q| ∼ δEME. (3.5)

Let IQ be the indicator function of Q and let ĨQ(ξ) =
∑

x IQ(x)ep(ξx) be
its Fourir transform.

Claim. There exists ξ 6= 0 such that

∣∣∣ M∑
x=1

ep (−ξf(x))
∣∣∣ & δM

p ε
(3.6)

and ∣∣ÎQ(ξ)
∣∣ > |Q|

p ε
. (3.7)

Proof of Claim.
Let

Λ =
{
ξ 6= 0 :

∣∣ÎQ(ξ)
∣∣ > |Q|

p ε

}
.

It is easy to see, by Plancherel theorem, that

| Λ | < p1+2ε

|Q|
. (3.8)
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Denote by µ the normalized r-th convolution of IQ,

µ =

r︷ ︸︸ ︷
IQ ∗ (IQ ∗ I−Q) ∗ · · · ∗ (IQ ∗ I−Q)

|Q|r−1
.

It is straightforward to show that

µ ≥ IQ
2r

and |µ̂| = |ÎQ|r

|Q|r−1
. (3.9)

From (3.2) and (3.9),

δM .
M∑
x=1

IQ (f(x)) ≤ 2r
M∑
x=1

µ (f(x)) =
2r

p

∑
ξ

µ̂(ξ)
M∑
x=1

ep (−ξf(x))

∼ |Q|M
p

+
1

p

∑
ξ∈Λ\0

µ̂(ξ)
M∑
x=1

ep (−ξf(x))︸ ︷︷ ︸
(A)

+
1

p

∑
ξ 6∈Λ

µ̂(ξ)
M∑
x=1

ep (−ξf(x))︸ ︷︷ ︸
(B)

.

(3.10)
Take r ∼ 1

ε
. Then

(B) ≤ 1

p
p
|Q|
prε

M ∼ |Q|M
p

. (3.11)

By (3.8),

(A) ≤ 1

p

p1+2ε

|Q|
|Q| max

ξ∈Λ\0

∣∣∣ M∑
x=1

ep (−ξf(x))
∣∣∣ (3.12)

Putting together (3.10)-(3.12) and using (3.5) and (3.1), we obtain

δM . p2ε max
ξ∈Λ\0

∣∣∣ M∑
x=1

ep (−ξf(x))
∣∣∣ (3.13)

and prove the claim.

It follows from (3.7) and (3.4) that

|Q|
pε

< |ÎQ(ξ)| =
∣∣∑

x

IQ(x)ep(ξx)
∣∣ =

∣∣∑
x∈Q

ep(ξx)
∣∣ =

e∏
j=1

∣∣∣ (δM)j∑
tj=0

ep(̃bjtjξ)
∣∣∣.

(3.14)
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Therefore, by (3.5),∣∣∣∣ (δM)j∑
tj=0

ep(̃bjtjξ)

∣∣∣∣ > (δM)j

pε
, for j = 1, · · · , e. (3.15)

Applying Fact 1, we have ∥∥∥ b̃jξ
p

∥∥∥ .
pε

(δM)j

i.e.

dist(̃bjξ, pZ) .
p1+ε

(δM)j
.

Hence,

b̃jξ ≡ b′j (mod p) with |b′j| .
p1+ε

(δM)j
. (3.16)

On the other hand, applying Theorem W to (3.6), we obtain z, a′1, · · · , a′d
such that

1 ≤ z ≤
( p ε

δ

)c
, z(−ajξ) ≡ a′j (mod p), and |a′j| ≤

p

M j

( p ε

δ

)c
,

(3.17)
where

c =

{
d+ ε, if d ≥ 4,

1 + ε, if d = 2, 3.

Multiplying (1.2) by zξ and using (3.16) and (3.17), we have

e∑
j=0

zb′jy
j
1 =

d∑
j=1

a′jx
j + wp (3.18)

for some w ∈ Z.
Since x ∈ [0,M ], y1 ∈ [0, δM ], combining (3.16)-(3.18) gives

w .
(pε
δ

)c
. (3.19)

Fix w in (3.18), Theorem BP implies that the number of solutions (x, y1) ∈
[0,M ]× [0,M ] is bounded by M1/d+ε. Hence, by our assumption on the num-
ber of solutions of (1.2),

M .
( p ε

δ

)c
M1/d+ε. (3.20)
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Together with (3.1), this gives

p1/E −ε < M1−(1− 1
d

)E−1
cE ≤M1−κ, (3.21)

which contradicts to (1.1).
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in Math., 277 Birkhäuser Verlag, Basel, (2009).

[3] T. H. Chan and I. E. Shparlinski, On the concentration of points on
modular hyperbolas and exponential curves, Acta Arith., 142 (2010),
59–66.

[4] M.-C. Chang, Expansions of quadratic maps in prime fields, Proc. Amer.
Math. Soc., (to appear).

[5] M.-C. Chang, J. Cilleruelo, M. Z. Garaev, J. Hernndez, I. E. Shparlinski,
A. Zumalacárregui, Points on Curves in Small Boxes and Applications,
Preprint 2011, (available from http://arxiv.org/abs/1111.1543).

[6] J. Cilleruelo and M. Z. Garaev, Concentration of points on two and
three dimensional modular hyperbolas and applications, Geom. and Func.
Anal., 21 (2011), 892–904.

[7] K. Ford, Recent progress on the estimation of Weyl sums, Proc. IV In-
tern. Conf. “Modern Problems of Number Theory and its Applications”:
Current Problems, Part II (Tula, 2001), Moscow State Univ., Moscow,
(2002), 48–66.

8
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