
DOUBLE CHARACTER SUMS OVER SUBGROUPS
AND INTERVALS

MEI-CHU CHANG AND IGOR E. SHPARLINSKI

Abstract. We estimate double sums

Sχ(a, I,G) =
∑
x∈I

∑
λ∈G

χ(x+ aλ), 1 ≤ a < p− 1,

with a multiplicative character χ modulo p where I = {1, . . . ,H}
and G is a subgroup of order T of the multiplicative group of the
finite field of p elements. A nontrivial upper bound on Sχ(a, I,G)

can be derived from the Burgess bound if H ≥ p1/4+ε and from
some standard elementary arguments if T ≥ p1/2+ε, where ε > 0
is arbitrary. We obtain a nontrivial estimate in a wider range of
parameters H and T . We also estimate double sums

Tχ(a,G) =
∑
λ,µ∈G

χ(a+ λ+ µ), 1 ≤ a < p− 1,

and give an application to primitive roots modulo p with 3 non-zero
binary digits.

1. Introduction

1.1. Background and motivation. For a prime p, we use Fp to de-
note the finite field of p elements, which we always assume to be rep-
resented by the set {0, . . . , p− 1}.

Since the spectacular results of Bourgain, Glibichuk & Konyagin [8],
Heath-Brown & Konyagin [19] and Konyagin [25] on bounds of expo-
nential sums

(1)
∑
λ∈G

exp(2πiaλ/p), a ∈ F∗p,

over small multiplicative subgroups G of F∗p, there has been a remark-
able progress in this direction, also involving sums over consecutive
powers gi, i = 1, . . . , N , of elements g ∈ F∗p, see the survey [17] and
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also very recent results of Bourgain [4, 5] and Shkredov [28, 29]. Expo-
nential sums over short segments of consecutive powers g, . . . , gN of a
fixed element g ∈ F∗p, have also been studied, see [24, 26] and references
therein. However the multiplicative analogues of the sums (1), that is,
the sums ∑

λ∈G

χ(a+ λ), a ∈ F∗p,

with a nonprincipal multiplicative character χ of Fp have been resisting
all attempts to improve the classical bound

(2)

∣∣∣∣∣∑
λ∈G

χ(a+ λ)

∣∣∣∣∣ ≤ √p.
Note that (2) is instant from the Weil bound, see [20, Theorem 11.23],
if one notices that∑

λ∈G

χ(a+ λ) =
T

p− 1

∑
µ∈F∗

p

χ(a+ µ(p−1)/T ),

where T = #G (but can also be obtained via elementary arguments).
We now recall that Bourgain [3, Section 4] has shown that double

sums over short intervals and short segments of consecutive powers

H∑
x=1

N∑
n=1

exp(2πiaxgn/p), 1 ≤ a < p− 1,

can be estimated for much smaller values of N than for single sums
over consecutive powers. Here we show that similar mixing can also
be applied to the sums of multiplicative characters and thus lead to
nontrivial estimates of the sums

Sχ(a, I,G) =
∑
x∈I

∑
λ∈G

χ(x+ aλ), 1 ≤ a < p− 1,

where I = {1, . . . , H} is an interval of H consecutive integers and
G ⊆ F∗p is a multiplicative subgroup of order T for the values of H
and T to which previous bounds do not apply. More precisely, one
can immediately estimate the sums Sχ(a, I,G) nontrivially if for some
fixed ε > 0 we have H ≥ p1/4+ε, by using the Burgess bound, see [20,
Theorem 12.6], or T ≥ p1/2+ε, by using (2).

1.2. Main results. Here we obtain a nontrivial estimate in a wider
range of parameters H and T .
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Theorem 1. For every fixed real ε > 0 there are some δ > 0 and η > 0
such that if H > pε and T > p1/2−δ then for the interval I = {1, . . . , H}
and the multiplicative subgroup G ⊆ F∗p of order T , we have

Sχ(a, I,G) = O(HTp−η)

uniformly over a ∈ F∗p and nonprincipal multiplicative characters χ of
Fp.

We also obtain a similar estimate at the other end of region of H
and T , namely for a very small T and H that is still below the reach
of the Burgess bound (see [20, Theorem 12.6]). In fact in this case we
are able to estimate a more general sums

Sχ(f, I,G) =
∑
x∈I

∑
λ∈G

χ(x+ f(λ)),

with a non-constant polynomial f ∈ Fp[X].

Theorem 2. For every fixed real ε > 0 and integer d ≥ 1 there are
some δ > 0 and η > 0 such that if T > pε and H > p1/4−δ then for the
interval I = {1, . . . , H}, the multiplicative subgroup G ⊆ F∗p of order
T , we have

Sχ(f, I,G) = O(HTp−η)

uniformly over polynomials f ∈ Fp[X] of degree d and nonprincipal
multiplicative characters χ of Fp.

We also give an explicit version of Theorem 1 in the case when H =
p1/4+o(1) and T = p1/2+o(1), that is, when other methods just start to
fail.

Theorem 3. Let H = p1/4+o(1) and T = p1/2+o(1). Then for the interval
I = {1, . . . , H} and the multiplicative subgroup G ⊆ F∗p of order T , we
have

|Sχ(a, I,G)| ≤ HTp−5/48+o(1)

uniformly over a ∈ F∗p and nonprincipal multiplicative characters χ of
Fp.

Furthermore, we also consider double sums

Tχ(a,G) =
∑
λ,µ∈G

χ(a+ λ+ µ), 1 ≤ a < p− 1,

where both variables run over a multiplicative subgroup G ⊆ F∗p.
Using recent estimates of Shkredov [28] on the so-called additive

energy of multiplicative subgroups we also estimate them below the
obvious range T ≥ p1/2, where T = #G, given by the estimate

|Tχ(a,G)| ≤ Tp1/2,
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which follows from (2).

Theorem 4. Let T ≤ p2/3. Then for the multiplicative subgroup G ⊆
F∗p of order T , we have

|Tχ(a,G)| ≤

 T 19/26p1/2+o(1), if T ≤ p1/2,
T 9/13p27/52+o(1), if p1/2 < T ≤ p29/48,
Tp1/3+o(1), if p29/48 < T ≤ p2/3,

uniformly over a ∈ F∗p and nonprincipal multiplicative characters χ of
Fp.

Note that Theorem 4 nontrivial provided that T ≥ p13/33+ε for some
fixed ε > 0.

We also give an application of Theorem 4 to primitive roots modulo
p with few non-zero binary digits. More precisely, let up denote the
smallest u such that there exists a primitive root modulo p with up
non-zero binary digits. It is shows in [16, Theorem 5] that up ≤ 2
for all but o(Q/ logQ) primes p ≤ Q, as Q → ∞ (note that in [16]
the result is formulated only for quadratic non-residues but it is easy
to see that the argument also holds for primitive roots). Instead of
o(Q/ logQ), can obtain a slightly more explicit but still rather weak
bound on the size of the exceptional set. Here we show that Theorem 4
implies a rather strong bound on the set of primes p ≤ Q for which
up ≤ 3 does not hold.

Theorem 5. For all but at most Q26/33+o(1) primes p ≤ Q, we have
up ≤ 3 as Q→∞.

We also note that one may attempt to treat the sums Sχ(a, I,G)
and Tχ(a,G) within the general theory of double sums of multiplicative
characters, see [6, 7, 11, 12, 15, 21, 22, 23] and references therein.
However it seems that none of the presently known results implies a
nontrivial estimate in the range of Theorems 1 and 4.

2. Preparations

2.1. Notation and general conventions. Throughout the paper, p
always denotes a sufficiently large prime number and χ denotes an
non-principal multiplicative character modulo p. We assume that Fp is
represented by the set {0, . . . , p− 1}.

Furthermore, G always denotes a multiplicative subgroup of F∗p of
order #G = T and I always denotes the set I = {1, . . . , H}.

We also assume that f ∈ Fp[X] is a of degree d ≥ 1. In particular,
f is not a constant.
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The notations U = O(V ) and U � V are both equivalent to the
inequality |U | ≤ c V with some constant c > 0 that may depend on the
real parameter ε > 0 and the integer parameters d ≥ 1 and ν ≥ 1 and
is absolute otherwise.

In particular, all our estimates are uniform with respect to the poly-
nomial f and the character χ.

2.2. Bounds of some exponential and character sums. First we
recall the classical result of Davenport and Erdős [13], which follows
from the Weil bound of multiplicative character sums, see [20, Theo-
rem 11.23].

Lemma 6. For a fixed integer ν ≥ 1 and an integer R < p, we have∑
v∈Fp

∣∣∣∣∣
R∑
r=1

χ (v + r)

∣∣∣∣∣
2ν

� R2νp1/2 +Rνp.

The following result is a version of Lemma 6 with ν = 1 which is
slightly more precise in this case.

Lemma 7. For any set V ⊆ Fp and complex numbers αv of such that
|αv| ≤ 1 for v ∈ V, we have∑

u∈Fp

∣∣∣∣∣∑
v∈V

χ(u+ v)

∣∣∣∣∣
2

� #Vp.

Proof. Denoting by χ the conjugate character and recalling that χ(w) =
χ(w−1) for w ∈ F∗p, we obtain

∑
u∈Fp

∣∣∣∣∣∑
v∈V

χ(u+ v)

∣∣∣∣∣
2

=
∑
v,w∈V

αvαw
∑
u∈Fp

χ(u+ v)χ(u+ w).

If v = w the inner sum is equal to p−1. So the total contribution from
such terms is O(Mp). Otherwise, we derive∑

u∈Fp

χ(u+ v)χ(u+ w) =
∑
u∈Fp

χ(u+ v − w)χ(u)

=
∑
u∈F∗

p

χ(u+ v − w)χ(u) =
∑
u∈F∗

p

χ
(
1 + (v − w)u−1

)
=
∑
u∈F∗

p

χ (1 + u) =
∑
u∈Fp

χ (1 + u)− χ(1) = −χ(1).

So the total contribution from such terms is O(M2) = O(Mp) and the
result follows. ut
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We also need the following bound of Bourgain [2, Theorem 1].

Lemma 8. For every fixed real ε > 0 and integer r ≥ 1 there is some
ξ > 0 such that for any integers k1, . . . , kr ≥ 1 with

gcd(ki, p− 1) < p1−ε, and gcd(ki − kj, p− 1) < p1−ε,

for i, j = 1, . . . , r, i 6= j, uniformly over the coefficients a1, . . . , ar ∈ Fp,
not all equal to zero, we have

p−1∑
x=1

exp

(
2πi

p

(
a1x

k1 + . . .+ arx
kr
))
� p1−ξ.

Clearly for any F ∈ Fp[X] and a multiplicative subgroup G ⊆ F∗p of
order #G = T we have

1

#G
∑
λ∈G

exp

(
2πi

p
F (λ)

)
=

1

p− 1

p−1∑
x=1

exp

(
2πi

p
F (x(p−1)/T )

)
� p−ξ.

so we derive from Lemma 8:

Corollary 9. For every fixed real ε > 0 and integer d ≥ 1 there is
some ξ > 0 such that for T ≥ pε, uniformly over a ∈ F∗p, we have∑

λ∈G

exp

(
2πi

p
af(λ)

)
� Tp−ξ.

2.3. Bound on the number of solutions to some congruences.
First we note that combining Corollary 9 with the Erdős-Turán inequal-
ity (see, for example, [14, Theorem 1.21]) that relates the uniformity
of distribution to exponential sums, we immediately obtain:

Lemma 10. For every fixed real ε > 0 and integer r ≥ 1 there is some
κ > 0 such that for T ≥ pε, we have

#{λ ∈ G : f(λ) ≡ b+x (mod p), where x ∈ I} =
HT

p
+O

(
T 1−κ) ,

uniformly over b ∈ Fp.

Let N(I,G) be the number of solutions to the congruence

λx ≡ y (mod p), x, y ∈ I, λ ∈ G.
Some of our results rely on an upper bound on N(I,G) which is

given in [9, Theorem 1], see also [10] for some other bounds.

Lemma 11. Let ν ≥ 1 be a fixed integer. Then

N(I,G) ≤ Ht(2ν+1)/2ν(ν+1)p−1/2(ν+1)+o(1) +H2t1/νp−1/ν+o(1),
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as p→∞, where

t = max{T, p1/2}.

We also use the following bound which is due to Ayyad, Cochrane
and Zheng [1, Theorem 1].

Lemma 12. Let Ji = {bi+1, . . . , bi+hi} for some integers p > hi+bi >
bi ≥ 1, i = 1, 2, 3, 4. Then

#{(x1, x2, x3, x4) ∈ J1 × J2 × J3 × J4 : x1x2 ≡ x3x4 (mod p)}

=
1

p
h1h2h3h4 +O

(
(h1h2h3h4)

1/2 (log p)2
)
.

We now fix some real L > 1 and denote by L the set of primes of
the interval [L, 2L]. We need an upper bound on the quantity

W = #
{

(u1, u2, `1, `2, s1, s2) ∈ I2 × L2 × S2 :

u1 + s1
`1

≡ u2 + s2
`2

(mod p)
}(3)

for some special class of sets.
We say that a set S ⊆ Fp is h-spaced if no elements s1, s2 ∈ S and

positive integer k ≤ h satisfy the equality s1 + k = s2.
The following result is given in [11] and is based on some ideas of

Shao [27].

Lemma 13. If L < H and 2HL < p then for any H-spaced set S for
W , given by (3) we have

W � (#SHL)2

p
+ #SHLpo(1).

We also define

(4) U =
∑
v∈Fp

U(v)2,

where

(5) U(v) = #

{
(u, `, λ) ∈ I × L × G :

u+ f(λ)

`
≡ v (mod p)

}
.

Lemma 14. For every fixed real ε > 0 and integer d ≥ 1 there are
some δ > and η > 0 such that if

T > pε and p1/2−ε ≥ H ≥ L

then for U , given by (4) we have

U � HLT 2p−η.
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Proof. Let S1 be the largest H-separated subset of F0 = {f(λ) : λ ∈
G}. By Lemma 10 we have #S1 � pκ for some fixed κ > 0.

Inductively, we define Sk+1 as the largest H-separated subset of

Fk = Fk−1 \
k⋃
j=1

Sj, k = 1, 2, . . . .

Clearly for some b ∈ Fp and a set J = {b+ 1, . . . , b+H} we have

# (Fk ∩ J ) ≥ #Fk
#Fk+1

.

On the other hand, by Lemma 10

# (Fk ∩ J ) ≤ # (F1 ∩ J )� Tp−κ.

Hence there is a partition

F0 =
K⋃
k=0

Sk

into disjoined sets with K ≤ Tp−κ/2 such that

• #S0 ≤ Tp−κ/2,
• Sk is H-separated with #Sk ≥ pκ/2, k = 1, . . . , K.

For k = 0, . . . , K we define

Uk(v) = #

{
(u, `, s) ∈ I × L × Sk :

u+ s

`
≡ v (mod p)

}
.

We have

U(v) =
K∑
k=0

Uk(v) = U0(v) +
K∑
k=1

Uk(v).

So, squaring out and summing over all v ∈ Fp, we obtain

U �
∑
v∈Fp

U0(v)2 +
∑
v∈Fp

(
K∑
k=1

Uk(v)

)2

=
∑
v∈Fp

U0(v)2 +
∑
v∈Fp

K∑
k,m=1

Uk(v)Um(v).

Now, changing the order of summation in the second term in the above
and then using the Cauchy inequality, yields

(6) U � V1 + V 2
2 ,
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where

V1 =
∑
v∈Fp

U0(v)2 and V2 =
K∑
k=1

∑
v∈Fp

Uk(v)2

1/2

.

We have,

V1 = #
{

(u1, u2, `1, `2, s1, s2) ∈ I2 × L2 × S2
0 :

u1 + s1
`1

≡ u2 + s2
`2

(mod p)
}

≤ max
s1,s2∈Fp

#
{

(u1, u2, `1, `2) ∈ I2 × L2 :

u1 + s1
`1

≡ u2 + s2
`2

(mod p)
}
.

Since L ≤ H ≤ p1/2−ε, by Lemma 12 we obtain

(7) V1 � (#S0)2HL(log p)2 � HLT 2p−ε(log p)2.

Furthermore, Lemma 13 implies that for k = 1, . . . , K we have∑
v∈Fp

Uk(v)2 � (#SkHL)2p−1 + #SkHLpo(1).

Hence, applying the Cauchy inequality, we derive

V2 �
K∑
k=1

(
#SkHLp−1/2 + (#Sk)1/2H1/2L1/2po(1)

)
≤ HLTp−1/2 +H1/2L1/2po(1)

K∑
k=1

(#Sk)1/2

≤ HLTp−1/2 +H1/2L1/2po(1)

(
K

K∑
k=1

#Sk

)1/2

≤ HLTp−1/2 +H1/2K1/2L1/2T 1/2po(1).

Since K ≤ Tp−κ/2 and L ≤ H ≤ p1/3, we see that

(8) V2 � HLTp−1/2 +H1/2L1/2Tp−κ/2+o(1) ≤ H1/2L1/2Tp−κ/2+o(1)

(assuming that κ is small enough). Substituting (7) and (8) in (6),
leads us to the bound

U � HLT 2p−ε log p+HLT 2p−κ+o(1)

and the result follows. ut
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Let E(G) be the additive energy of a multiplicative subgroup G ⊆ F∗p,
that is

E(G) = #{(λ1, µ1, λ2, µ2) ∈ G4 : λ1 + µ1 = λ2 + µ2}.

By a result of Heath-Brown and Konyagin [19], if #G = T ≤ p2/3 we
have

E(G)� T 5/2.

Recently, Shkredov [28] has given an improvement which we present
in the following slightly less precise form (which supreses logarithmic
factors in po(1)).

Lemma 15. For T ≤ p2/3 we have

E(G) ≤

 T 32/13po(1), if T ≤ p1/2,
T 31/13p1/26+o(1), if p1/2 < T ≤ p29/48,
T 3p−1/3+o(1), if p29/48 < T ≤ p2/3.

.

3. Proofs of main results

3.1. Proof of Theorem 1. We have

(9) Sχ(a, I,G) =
1

T
W,

where

W =
∑
x∈I

∑
λ,µ∈G

χ(µ)χ(µx+ aλ).

(since χ(µ) = χ(µ−1) for µ ∈ F∗p). Hence

|W | ≤
∑
x∈I

∑
λ,µ∈G

∣∣∣∣∣∑
λ∈G

χ(xµ+ aλ)

∣∣∣∣∣ .
Collecting the products µx with the same value u ∈ Fp, we obtain

|W | ≤
∑
u∈Fp

R(u)

∣∣∣∣∣∑
λ∈G

χ(u+ aλ)

∣∣∣∣∣ ,
where

R(u) = #{(x, µ) ∈ I × G : µx = u}.
So, by the Cauchy inequality,

|W |2 ≤
∑
u∈Fp

R(u)2
∑
u∈Fp

∣∣∣∣∣∑
λ∈G

χ(u+ aλ)

∣∣∣∣∣
2

.
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Thus applying Lemma 7 we derive

W 2 ≤ pT
∑
u∈Fp

R(u)2.

Clearly ∑
u∈Fp

R(u)2 = Q,

where

Q = #{(x, y, λ, µ) ∈ I × I × G × G : λx = µy}.
Furthermore, it is clear that Q = TN(I,G), where N(I,G) is as
in Lemma 11. Putting everything together and using the bound of
Lemma 11, we see that for any fixed ν ≥ 1 we have

(10) W 2 ≤ pT 2
(
Ht(2ν+1)/2ν(ν+1)p−1/2(ν+1)+o(1) +H2t1/νp−1/ν+o(1)

)
,

where

t = max{T, p1/2}.
We can certainly assume that T ≤ p1/2+ε as otherwise the result follows
from the bound (2). Thus t ≤ p1/2+ε and we obtain

W 2 ≤ pT 2
(
Hp1/4ν(ν+1)+ε(2ν+1)/2ν(ν+1)+o(1) +H2p−1/2ν+ε/ν+o(1)

)
.

Since H ≥ pε, taking a sufficiently large ν we can achieve the inequality

Hp1/4ν(ν+1)+ε(2ν+1)/2ν(ν+1) ≤ H2p−1/2ν+ε/ν .

We can also assume that ε < 1/3 as otherwise the result follows from
the Burgess bound, see [20, Theorem 12.6], so the bound becomes

W 2 ≤ H2T 2p1−1/6ν+o(1) � H2T 2p1−1/7ν .

Recalling (9), we obtain

Sχ(a, I,G)� Hp1/2−1/7ν ≤ HTp−1/14ν

for T ≥ p1/2−1/14ν .

3.2. Proof of Theorem 2. Clearly we can assume that H < p1/3

as otherwise the Burgess bound, (see [20, Theorem 12.6]) implies the
desired result. We can also assume that ε > 0 is small enough, thus
the conditions of Lemma 14 are satisfied.

We set

γ = η/3,

where η is as in Lemma 14 (which we assume to e sufficiently small).
Let L = Hp−2γ, R = dpγe,and let L be the set of primes of the

interval [L, 2L].
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Clearly

(11) Sχ(f, I,G) =
1

#LR
Σ +O(LRT ) =

1

#LR
Σ +O(HTp−γ),

where

Σ =
∑
`∈L

R∑
r=1

∑
x∈I

∑
λ∈G

χ(x+ f(λ) + `r)

≤
∑
`∈L

∑
x∈I

∑
λ∈G

∣∣∣∣∣
R∑
r=1

χ

(
x+ f(λ)

`
+ r

)∣∣∣∣∣ =
∑
v∈Fp

U(v)

∣∣∣∣∣
R∑
r=1

χ (v + r)

∣∣∣∣∣ ,
where U(v) is given by (5). We now fix some integer ν ≥ 1 Writ-
ing U(v) = U(v)(ν−1)/ν(U(v)2)1/2ν and using the Hölder inequality, we
derive

Σ2ν =

∑
v∈Fp

U(v)

2ν−2 ∑
v∈Fp

U(v)2
∑
v∈Fp

∣∣∣∣∣
R∑
r=1

χ (v + r)

∣∣∣∣∣
2ν

.

We obviously have ∑
v∈Fp

U(v) ≤ H#LT � HLT.

Hence, using Lemmas 6 and 14 we derive

Σ2ν � (HLT )2ν−2HLT 2
(
R2νp1/2 +Rνp

)
.

Taking ν sufficiently large (depending on γ), we arrive to the inequality

(12) Σ2ν � (HL)2ν−1T 2νR2νp1/2−η = (HLRT )2ν(HL)−1p1/2−η.

So taking δ = κ/4, we see that

(HL)−1p1/2−η = H−2p1/2−2η/3 ≤ p−η/6.

Hence we infer from (12) that Σ � (HLRT )p−η/12ν , which after sub-
stitution in (11) concludes the proof.

3.3. Proof of Theorem 3. We proceed as before and use that t, T =
p1/2+o(1), so (10) becomes

W 2 ≤ p2
(
p1/4+1/4ν(ν+1)+o(1) + p1/2−1/2ν+o(1)

)
.

Taking ν = 2 we obtain

W 2 ≤ p2
(
p1/4+1/24+o(1) + p1/4+o(1)

)
= p55/24+o(1),

which after substitution in (9) implies the result.
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3.4. Proof of Theorem 4. As before, we have

(13) Tχ(a,G) =
1

T
W,

where

W =
∑

λ,µ,ϑ∈G

χ(ϑ)χ(aϑ+ µ+ λ).

Hence

|W | ≤
∑
λ,µ∈G

∣∣∣∣∣∑
ϑ∈G

χ(ϑ)χ(aϑ+ λ+ µ)

∣∣∣∣∣ .
Collecting the sum λ+ µ with the same value u ∈ Fp, we obtain

|W | ≤
∑
u∈Fp

F (u)

∣∣∣∣∣∑
λ∈G

χ(aϑ+ λ+ µ)

∣∣∣∣∣ ,
where

F (u) = #{(λ, µ) ∈ G2 : λ+ µ = u}.
So, as in the proof of Theorem 1 we obtain

W 2 ≤ pT
∑
u∈Fp

R(u)2 = pTE(G).

Recalling Lemma 15 and using (13), we conclude the proof.

3.5. Proof of Theorem 5. Let us fix an arbitrary ε > 0. Let `p
denote the multiplicative order of 2 modulo p. We see from Theorem 4
that if for a sufficiently large prime p we have `p ≥ p13/33+ε then

∑
1≤k<m≤`p

χ(2m + 2k + 1) =

`p∑
k,m=1

χ(2m + 2k + 1) +O(`p) = O(`2−δp ).

Using a standard method of detecting primitive roots via multiplicative
charactes, we conclude that if for a sufficiently large prime p we have
`p ≥ p13/33+ε then up ≤ 3. It remains to estimate the number of primes
p ≤ Q with `p ≥ p13/33+ε. Let L = Q13/33+ε. Clearly for every such
prime we have p | W where

W =
∏
`≤L

(2` − 1) ≤ 2L(L+1)/2.

Since W has O(logW ) = O(L2) = O(Q26/33+2ε) prime divisors and
since ε is arbitrary, the result now follows.
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4. Comments

It is easy to see that the full analogues of Theorems 1 and 2 can also
be obtained for the sums∑

x∈I

∑
λ∈G

χ (λx+ a) , 1 ≤ a < p− 1,

without any changes in the proof. Using a version of Lemma 11 given
in [26, Lemma 9], one can also obtain analogues of our results for
sums over the consecutive powers g, . . . , gN of a fixed element g ∈ F∗p,
provided that N is smaller than the multiplicative order of g modulo
p and in the same ranges as T in Theorems 1 and 2.

Furthermore, without any changes in the proof, Theorem 2 can ex-
tended to the double sums∑

x∈I

∑
u∈U

χ (ax+ u) , 1 ≤ a < p− 1,

where U ⊆ Fp is an arbitrary set of cardinality U ≥ pε and an interval
I of length H ≤ p1/3, such that for some κ > 0 we have

#{u ∈ U : u ≡ b+ x (mod p), where x ∈ I} � U1−κ

(which replaces Lemma 10 in our argument).
It is also interesting to estimate sums

(14)
∑
x∈I

∑
λ∈G

χ (f(x) + λ) , 1 ≤ a < p− 1,

with a nontrivial polynomial f(X) ∈ Fp[X], for H > p1/2−η and #G >
p1/2−η for some fixed η > 0 (depending only on deg f). To estimate
these sums, one needs a nontrivial bound on the number of solutions
to the congruence

λf(x) ≡ f(y) (mod p), x, y ∈ I, λ ∈ G,
which is better than H2. In fact, using some ideas and results of [18, 30]
one can get such a bound, but not in a range in which the sums (14)
can be estimated nontrivially.

Finally, it is interesting to investigate whether one can estimate the
sums ∑

λ1,...,λν∈G

χ(a+ λ1 + . . .+ λν), 1 ≤ a < p− 1,

with ν ≥ 3 in a shorter range than that of Theorem 4 by using bounds
on the higher order additive energy of multiplicative subgroups, see [28,
29] for such bounds. Clearly, for any ε > 0 if #G > pε then for a
sufficiently large ν such a result follows instantly from [8], as if ν is
large enough, the sums λ1 + . . . + λν , λ1, . . . , λν ∈ G, represent each
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element of Fp with the asymptotically equal frequency. We however
hope that the approach via the higher order additive energy can lead
to better estimates for smaller values of ν and ε.
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