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Abstract

We prove the following mod p version of a case of the dynamical André-Oort conjecture ob-

tained in [GKN ].

Theorem. There are constants c1, c2 depending on d and h such that the following holds. For

almost all P, there is a finite subset T ⊂ F̄P , |T | ≤ c1 such that if t ∈ F̄P \ T at least one of the

sets {
f
(`)
t (0) : ` = 1, 2, · · · , [c2 logN ]

}
,
{
g
(`)
t (0) : ` = 1, 2, · · · , [c2 logN ]

}
(1)

consists of distinct elements. Here N = NK/Q(P).

§1. Introduction

Let d ≥ 2 be an integer and K/Q a number field. Let h(z) ∈ K[z] be non-constant and

not of the form h(z) = ξz, ξd−1 = 1. For P ⊂ OK a prime ideal of good reduction, we

consider h(z) ∈ FP [z], where FP is the residue field. Denote

ft(z) = zd + t (2)

and

gt(z) = zd + h(t). (3)
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The `-th iteration of a polynomial map F is denoted by F (`).

We prove the following theorem, which may be seen as a mod p version of [GKN].

Theorem. There are constants c1, c2 depending on d and h such that the following holds.

For almost all P, there is a finite subset T ⊂ F̄P , |T | ≤ c1 such that if t ∈ F̄P \ T at least

one of the sets{
f
(`)
t (0) : ` = 1, 2, · · · , [c2 logN ]

}
,
{
g
(`)
t (0) : ` = 1, 2, · · · , [c2 logN ]

}
(4)

consists of distinct elements. Here N = NK/Q(P).

This result is a sample of other work in similar spirit that will appear in a forthcoming

publication.

§2. The Proof

By Theorem 1.1 in [GKN], the subset of Q̄

S =
⋃

`′<`, m′<m

{
t : f

(`)
t (0) = f

(`′)
t (0) and g

(m)
t (0) = g

(m′)
t (0)

}
(5)

is finite.

Let F (t) ∈ Z[t] be a nontrivial polynomial vanishing on S. For any `′ < `,m′ < m, let

B(t) = f
(`)
t (0)− f (`′)

t (0), C(t) = g
(m)
t (0)− g(m

′)
t (0). (6)

We note that B(t) ∈ Z[t] is a polynomial of degree d ` and C(t) ∈ K[t] of degree ≤
(max(d, e))m, with e = deg h. Since F vanishes on the common zero set of B and C, the

Effective Nullstellensatz [BY] (particularly, the first remark after the proof of Theorem 5.1)

asserts that there is some A = A`,`′,m,m′ ∈ Z \ {0} and polynomials P (t), Q(t) ∈ O[t], O
being the ring of integers of K, such that

A F (t) = P (t)B(t) +Q(t)C(t). (7)

Let c3 refer to constants depending on d and h. Since the (logarithmic) heights of B and

C may be bounded by c`+m3 , the Effective Nullstellensatz asserts that there exist P,Q of

heights at most c`+m3 and A ∈ N, A < exp c`+m3 satisfying (7).
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Let X be a large integer and consider the prime ideals P , with N(P) < X. Assume

moreover, P of good reduction and t ∈ F̄P \ T , T = TP = zero set of F (t) ∈ FP [t].

Assume both sets{
f
(`)
t (0) : ` = 1, 2, · · · , [c2 logX]

}
,
{
g
(m)
t (0) : m = 1, 2, · · · , [c2 logX]

}
have repeated elements. Hence B(t) = 0 = C(t) with B,C defined by (6), for some

`′ < ` < [c2 logX],m′ < m < [c2 logX]. Since F (t) 6= 0, (7) implies πP(A`,`′,m,m′) = 0,

hence p|A, where p is the rational prime dividing N(P) and

A =
∏

`′<`<c2 logX, m′<m<c2 logX

A`,`′,m,m′ < exp
(
cc2 logX3 ·

(
c2 logX

)4)
. (8)

Choosing c2 small enough will ensure A < eX
τ

(τ > 0 any fixed constant) and hence A
with at most O(Xτ ) prime divisors. It remains to exclude those primes P below divisors.

Remark 1. The proof gives c2 log log p instead of c2 log p for any given P with N(P)

sufficiently large.

Remark 2. Our result is reminisent of the work of Silverman [S], which was improved

by Akbary and Ghioca [AG] by removing the ε in the exponent. It should be noted that

Silverman’s result is a statement for individual maps and does not seem to apply directly

to our problem. More specifically, the exceptional set of primes in [S] does depend on the

map while here one has to deal with a family of pairs of maps (f + a, f + b) with (a, b)

on the curve V . As in other related argument (cf [C]) the main ingredients in passing to

residue fields are height conditions and quantitative elimination theory.
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