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Abstract. We use bounds of mixed character sums modulo a
square-free integer q of a special structure to estimate the density
of integer points on the hypersurface

f1(x1) + . . . + fn(xn) = axk1
1 . . . xkn

n

for some polynomials fi ∈ Z[X] and nonzero integers a and ki,
i = 1, . . . , n. In the case of

f1(X) = . . . = fn(X) = X2 and k1 = . . . = kn = 1

the above hypersurface is known as the Markoff-Hurwitz hypersur-
face. Our results are substantially stronger than those known for
general hypersurfaces.

1. Introduction

Studying the density of integer and rational points (x1, . . . , xn) on
hypersurfaces has always been an active area of research, where many
rather involved methods have led to remarkable achievements, see [5,
6, 14, 15, 21, 22, 25, 26, 28] and references therein. More precisely,
given a hypersurface

F (x1, . . . , xn) = 0

defined by a polynomial F ∈ Z[X1, . . . , Xn] in n variables, the goal is
to estimate the number NF (B) of solutions (x1, . . . , xn) ∈ Zn that fall
in a hypercube B of the form

(1) B = [u1 + 1, u1 + h]× . . .× [un + 1, un + h].

Unfortunately, even in the most favourable situation, the currently
known general approaches lead only to a bound of the form NF (B) =
O (hn−2+ε) for any fixed ε > 0 or even weaker, see [6, 15, 25, 26].
For some special types of hypersurfaces the strongest known bounds
are due Heath-Brown [14] and Marmon [21, 22]. For example, for
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hypercubes around the origin, Marmon [22] gives a bound of the form
NF (B) = O

(
hn−4+δn

)
for a class of hypersurfaces, with some explicit

function δn such that δn ∼ 37/n as n→∞. Combining this bound with
some previous results and methods, for a certain class of hypersurfaces,
Marmon [22] also derives the bound NF (B) = O

(
hn−4+δn + hn−3+ε

)
which holds for an arbitrary hypercube B with any fixed ε > 0 and
the implied constant that depends only of degF , n and ε (note that
δn > 1 for n < 29).

Finally, we also recall that when the number of variables n is ex-
ponentially large compared to d and the highest degree form of F is
nonsingular, then the methods developed as the continuation of the
work of Birch [4] lead to much stronger bounds, of essentially optimal
order of magnitude.

Here, we show that in some interesting special cases, to which further
developments of [4] do not apply (as the highest degree form is singular
and the number of variables is not large enough) a modular approach
leads to stronger bounds where the saving actually grows with n (at a
logarithmic rate).

More precisely we concentrate on hypersurfaces of the form

(2) f1(x1) + . . .+ fn(xn) = axk11 . . . xknn

defined by some polynomials fi ∈ Z[X] and nonzero integers a and ki,
i = 1, . . . , n. In particular, we use Na,f ,k(B) to denote the number of
integer solutions to (2) with (x1, . . . , xn) ∈ B, where f = (f1, . . . , fn)
and k = (k1, . . . , kn).

In the case of

(3) f1(X) = . . . = fn(X) = X2 and k1 = . . . = kn = 1

the equation (2) defines the Markoff-Hurwitz hypersurface, see [1, 2,
3, 7], where various questions related to these hypersurfaces have been
investigated.

Furthermore, for

(4) f1(X) = . . . = fn(X) = Xn and k1 = . . . = kn = 1

the equation (2) is known as the Dwork hypersurface, which has been
intensively studied by various authors [12, 13, 18, 19, 30], in particular,
as an example of a Calabi–Yau variety .

We remark that solutions with at least one component xi = 0, i =
1, . . . , n, correspond to solutions of a diagonal equation

n∑
j=1
j 6=i

fj(xj) = −fi(0)
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to which one can apply the standard circle method.
To clarify our ideas and to make the exposition simpler we concen-

trate here on the solutions to (2) with x1 . . . xn 6= 0. In particular, we
use N∗a,f ,k(B) to denote the number of such solutions. Clearly for the
hypercubes B of the form (1) we have

N∗a,f ,k(B) = Na,f ,k(B).

Throughout the paper, the implied constants in the symbols “O”,
“�” and “�” may depend on the polynomials deg fi, the coefficient
a and the exponents ki in (2), i = 1, . . . , n, and also on the integer
positive parameters r and ν. We recall that the expressions A = O(B),
A� B and B � A are each equivalent to the statement that |A| ≤ cB
for some constant c.

Here, we use some ideas from [27], combined a new bound of mixed
character sums, that can be of independent interest, to derive the fol-
lowing result:

Theorem 1. Let f1(X), . . . , fn(X) ∈ Z[X] be n polynomials of degrees
at most d, and let k1, . . . , kn ≥ 1 be odd integers. For any fixed in-
teger r ≥ 1, there is a constant C(r) depending only on r, such that,
uniformly over all boxes B of the form (1) with

max
i=1,...,n

|ui| ≤ exp(C(r)h4/9)

for the solutions to the equation (2), we have

N∗a,f ,k(B)� hn−4r/9

provided that

n > (d+ 1)(d+ 2)2r max {2r, 3r − 9/2}+ 2.

The proof of Theorem 1 is based on a bound of mixed character sums
which combines the ideas from [9, 16].

Unfortunately Theorem 1 does not apply to the Dwork hypersurface
as the degrees of the polynomials in (4) are too large for our argu-
ment to work. So here apply an alternative approach that is based
on the method of Postnikov [23, 24] (see also [10] and the references
therein for further developments). This leads to a much more precise
bound which however applies only when the degree of the polynomials
f1(X), . . . , fn(X) are sufficiently large.

Theorem 2. Let f1(X), . . . , fn(X) ∈ Z[X] be n polynomials of degrees
at least d, and let k1, . . . , kn ≥ 1 be odd integers. There is an absolute
constant C such that, uniformly over all boxes B of the form (1) with

max
i=1,...,n

|ui| ≤ exp(Ch1/3)
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and any fixed integer r ≥ 1 with

r ≤ min
i=1,...,n

deg fi

for the solutions to the equation (2), we have

N∗a,f ,k(B)� hn−r/3

provided that

n > 2r3 + 1.

Finally, in some cases the arithmetic structure of the right hand side
of the equation (2) allows to derive a much stronger bound via the
result of [8]. We illustrate this in the special case of the equation

xd1 + . . .+ xdn = axk11 . . . xknn

and the box B aligned along the main diagonal, that is, of the form

(5) B = [u+ 1, u+ h]× . . .× [u+ 1, u+ h]

with some integers u and h.

Theorem 3. Let f1(X) = . . . = fn(X) = Xd and let a, k1, . . . , kn be
arbitrary nonzero integers. Then, uniformly over all boxes B of the
form (5), for the solutions to the equation (2) we have

N∗a,f ,k(B)� hd(d+1)/2+o(1).

2. Some Bounds of Classical Exponential and Character
Sums

We denote

e(z) = exp(2πiz).

We start with recording the following trivial implication of the or-
thogonality of exponential functions.

For quadratic polynomials, we see that [17, Theorem 8.1] implies

Lemma 4. For an integer q ≥ 1 and any linear polynomial

G(X) = aX ∈ Z[X]

with gcd(a, q) = 1 ∣∣∣∣∣
H∑
z=1

e(G(z)/q)

∣∣∣∣∣� q.

For quadratic polynomials, we see that [17, Theorem 8.1] yields:
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Lemma 5. For an integer q ≥ 1 and any quadratic polynomial

G(X) = aX2 + bX ∈ Z[X]

with gcd(a, q) = 1∣∣∣∣∣
H∑
z=1

e(G(z)/q)

∣∣∣∣∣� Hq−1/2 + q1/2 log q.

One of our main tools is the following very special case of a much
more general bound of Wooley [29], that applies to polynomials with
arbitrary real coefficients.

Lemma 6. For any polynomial

G(X) =
s∑
i=1

ai
qi
X i ∈ Q[X]

of degree s ≥ 3 with gcd(ai, qi) = 1 and positive integer H, for every
j = 2, . . . , s we have∣∣∣∣∣

H∑
z=1

e(G(z))

∣∣∣∣∣� H
(
q−1
j +H−1 + qjH

−j)σ
where

σ =
1

2(s− 1)(s− 2)
.

Let Xq be the set of ϕ(q) multiplicative characters modulo q, where
ϕ(q) is the Euler function. We also denote by let X ∗q = Xq \ {χ0} the
set of nonprincipal characters (we set χ(0) = 0 for all χ ∈ Xq). We
appeal to [17] for a background on the basic properties of multiplicative
characters and exponential functions, such as orthogonality.

We use the following well-know bound that is implied by the Weil
bound for mixed sums of additive and multiplicative characters, see [20,
Chapter 6, Theorem 3], and a reduction between complete and incom-
plete sums, see [17, Section 12.2], we also derive the following well-
known estimate:

Lemma 7. For any χ ∈ Xq, λ ∈ Fp, nonlinear polynomial F (X) ∈
Fp[X] and integers u and h ≥ p, we have

u+h∑
x=u+1

χ(x) e(λF (x))� p1/2 log p

provided that (χ, λ) 6= (χ0, 0).
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3. Character Sums with Square-free Moduli

For a real Q ≥ 3 and an integer r ≥ 1 we denote by Pr(Q) the set
of integers q of the form q = p1 . . . pr where p1, . . . pr ∈ [Q, 2Q] are
pairwise distinct primes with

(6) gcd(k1 . . . kn, pj − 1) = 1, j = 1, . . . , r.

Here we obtain a new bound of mixed character sums with multi-
plicative characters modulo q ∈ Pr(Q) which can be of independent
interest. We note that recently several bounds of such sums have been
obtained for prime q = p, see [9, 16]. However for our applications
moduli q ∈ Pr(Q) are more suitable. Our result is based on the bound
of [17, Theorem 12.10] and in fact can be considered as its generalisa-
tion.

As in Section 2, we use Xq for the set of ϕ(q) = (p1 − 1) . . . (pr −
1) multiplicative characters modulo q = p1 . . . pr ∈ Pr(Q) and also
let X ∗q = Xq \ {χ0}. Furthermore, we also continue to use e(z) =
exp(2πiz).

We start with recalling the bound of [17, Theorem 12.10], which we
present in a somewhat simplified form adjusted to our applications. In
particular, some simplifications come from the fact that the modulus
q ∈ Ps(Q) is square-free.

Lemma 8. Let q = `1 . . . `s ∈ Ps(Q) for some primes `1, . . . , `s and
let ψ = χ1 . . . χs be a n multiplicative character of conductor q and of
order t, where χj are arbitrary multiplicative characters of modulo `j,
j = 1, . . . , s− 1, and χs is a nontrivial multiplicative character modulo
`s. Assume f(X) is a rational function that can be written as

f(X) =
m∏
i=1

(X − vi)di

with some arbitrary integers v1, . . . , vm and nonzero integer d1, . . . , dm
with

gcd(d1, . . . , dm, t) = 1,

for any integers u and h with h ≥ (2Q)9/4, we have∣∣∣∣∣
u+h∑
x=u+1

ψ(f(x))

∣∣∣∣∣ ≤ 4h
(
gcd(∆, `s)`

−1
s

)2−s

,

where

∆ =
∏

m≥i>j≥1

(vi − vj).



POINTS ON MARKOFF-HURWITZ HYPERSURFACES 7

We are now ready to present one of our main technical results which
can be of independent interest.

Lemma 9. For any r = 1, 2, . . ., a sufficiently large Q ≥ 1, a modulus
q ∈ Pr(Q), a polynomial F (X) ∈ R[X] of degree d and integers u and
h with h ≥ (2Q)9/4, we have

max
χ∈X ∗

q

∣∣∣∣∣
u+h∑
x=u+1

χ(x) e(F (x))

∣∣∣∣∣� hQ−γ

where

γ =
1

2r+1(d+ 1)(d+ 2)
.

Proof. Let us fix some χ ∈ X ∗q . Without loss of generality we can write
χ = χ1 . . . χr, where χj is a multiplicative character modulo a prime
pj, j = 1, . . . , r and χr is a nonprincipal character (as before, we write
q = p1 . . . pr for r distinct primes).

Set p = p1. Then for any positive integer M for the sum

S =
u+h∑
x=u+1

χ(x) e(F (x))

we have

S ≤ 1

M

∣∣∣∣∣
u+h∑
x=u+1

M−1∑
y=0

χ(x+ py) e(F (x+ py))

∣∣∣∣∣+ 2Mp

≤ 1

M

u+h∑
x=u+1

gcd(x,p)=1

∣∣∣∣∣
M−1∑
y=0

ψ(x+ py) e(F (x+ py))

∣∣∣∣∣+ 4MQ,

where ψ = χ2 . . . χr. We note that ψ is of conductor q/p rather that q,
so this explains the condition gcd(x, p) = 1 in the sum over x. We can
however not simply discard this condition and write

(7) S ≤ 1

M

u+h∑
x=u+1

∣∣∣∣∣
M−1∑
y=0

ψ(x+ py) e(F (x+ py))

∣∣∣∣∣+ 4MQ.

We divide the unit cube [0, 1]d+1 into

K = M (d+1)(d+2)/2

cells of the form

Ua =

[
a0

M
,
a0 + 1

M

]
× . . .×

[
ad

Md+1
,
ad + 1

Md+1

]
,
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where a = (a0, . . . , ad+1) ∈ Zd+1 runs through the set A of integer
vectors with components aν = 0, . . . ,M ν+1 − 1, ν = 0, . . . , d+ 1.

We now write

F (X + pY ) = F0(X) + F1(X)Y + . . .+ Fd(X)Y d

and define

Ωa = {x ∈ {u+ 1, . . . , u+ h} : (F0(x), . . . , Fd(x)) ∈ Ua}, a ∈ A.

It is easy to see that for x ∈ Ωa we have

e(F (x+ py)) = Ea(y) +O(M−1),

where

Ea(y) = e
( a0

M
+

a1

M2
y + . . .+

ad
Md+1

yd
)
.

Hence we see from (7) that

(8) S � 1

M
W + h/M +QM,

where

W =
∑
a∈A

∑
x∈Ωa

∣∣∣∣∣
M−1∑
y=0

ψ(x+ py)Ea(y)

∣∣∣∣∣ .
We now fix some integer k ≥ 1 and apply the Hölder inequality to W 2k,
getting

W 2k ≤

(∑
a∈A

∑
x∈Ωa

1

)2k−1∑
a∈A

∑
x∈Ωa

∣∣∣∣∣
M−1∑
y=0

ψ(x+ py)Ea(y)

∣∣∣∣∣
2k

= h2k−1
∑
a∈A

∑
x∈Ωa

∣∣∣∣∣
M−1∑
y=0

ψ(x+ py)Ea(y)

∣∣∣∣∣
2k

.

Next, we extend the inner summation over the integers x ∈ Ωa to all
x ∈ {u+1, . . . , u+h}. Opening up the 2kth power, changing the order
of summations and using that |Ea(y)| = 1, we derive

W 2k ≤ h2k−1
∑
a∈A

M−1∑
y1,...,y2k=0

∣∣∣∣∣
u+h∑
x=u+1

ψ

(
k∏
ν=1

x+ pyν
x+ pyk+ν

)∣∣∣∣∣
= h2k−1K

M−1∑
y1,...,y2k=0

∣∣∣∣∣
u+h∑
x=u+1

ψ

(
k∏
ν=1

x+ pyν
x+ pyk+ν

)∣∣∣∣∣ .
Now, for O(Mk) vectors (y1, . . . , y2k) where each value appears at

least twice we estimate the inner sum trivially as h.
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For the remaining O(M2k) vectors (y1, . . . , y2k) we apply Lemma 8.
More precisely, we use it for s = r − 1 with `i = pi+1. The rational
function f(X) after making all cancellation and combining equal terms
becomes of the form

f(X) =
m∏
i=1

(x+ pzi)
di ,

where 1 ≤ z1 < . . . < zm ≤ M and at least one di = ±1. We now
assume that

(9) M < Q.

Then we have gcd(zi − zj, pr) = 1 for m ≥ i > j ≥ 1. Hence, we also
see that

gcd

( ∏
m≥i>j≥1

(pzi − pzj), pr

)
= gcd

( ∏
m≥i>j≥1

(zi − zj), pr

)
= 1.

With the above simplifications, the bound of Lemma 8 becomes∣∣∣∣∣
u+h∑
x=u+1

ψ

(
k∏
ν=1

x+ pyν
x+ pyk+ν

)∣∣∣∣∣ ≤ 4hQ2−r+1

.

Therefore,

W 2k � h2k−1K
(
Mkh+M2khQ2−r+1

)
= h2kM (d+1)(d+2)/2

(
Mk +M2kQ2−r+1

)
,

which after the substitution in (8) implies

S � hM (d+1)(d+2)/4k
(
M−1/2 +Q2−r/k

)
+ h/M +QM

� hM (d+1)(d+2)/4k
(
M−1/2 +Q2−r/k

)
+ h8/9

(since by (9) we have QM ≤ Q2 � h8/9, provided that h ≥ (2Q)9/4).

We now choose M =
⌈
Q2−r+1/k

⌉
, so (9) holds, getting

S � hM (d+1)(d+2)/4kQ2−r/k + h8/9 = hQ((d+1)(d+2)/2k−1)2−r/k + h8/9.

Choosing k = (d+ 1)(d+ 2) we conclude the proof. �

We remark, that the idea of the proof also works with a simpler shift
F (x) → F (x + y), however using the shift F (x) → F (x + py) allows
to reduce the conductor (from q to q/p) and thus leads to a slightly
stronger bound as the conductor of ψ is now a product of only r − 1



10 M.-C. CHANG AND IGOR E. SHPARLINSKI

primes. This idea can be used in more generality leading to stronger
bounds for more limited ranges of parameters.

We note that we do not impose any conditions on the polynomial
F in Lemma 9, which, in particular can be a constant polynomial, in
which case, we have the bound of of [17, Theorem 12.10].

4. Character Sums with Prime-power Moduli

Let q = pr where r ≥ 1 is an integer and p ≥ 3 is a prime with

(10) gcd(k1 . . . kn, p− 1) = 1.

As in Section 2, we use Xq for the set of ϕ(q) = pr−1(p − 1) multi-
plicative characters modulo q and let X ∗q = Xq \{χ0}. We also continue
to use e(z) = exp(2πiz).

Since group of units modulo q is cyclic then so is Xq. So we now fix
a character χ ∈ Xq that generates this group, so that

X = {χµ : µ = 0, . . . , pr−1(p− 1)− 1}.
The following result is due to Postnikov [23, 24], see also [17, Equa-

tion (12.89)].

Lemma 10. Assume that q = pr for ana integer r ≥ 1 and a prime
p > max{2, r}. Then for any integers y and z with gcd(y, p) = 1, we
have

χ(y + pz) = χ(y) e (F (pwz)/q)

for some polynomial

F (Z) =
r−1∑
k=1

AkZ
k ∈ Z[Z]

of degree r − 1 and the coefficients satisfying gcd(Ak, p) = 1, k =
1, . . . , r − 1, where w is defined by

wy ≡ 1 (mod q) and 1 ≤ w < q.

Lemma 11. Assume that q = pr for an integer r ≥ 1 and a prime
p > max{2, r}. Then for a polynomial f(X) ∈ Z[X] of degree d ≥ r
with the leading coefficient ad satisfying gcd(ad, p) = 1 and integers u
and h with q ≥ h ≥ p3, uniformly over the integers

λ ∈ {0, . . . , pr − 1} and µ ∈ {0, . . . , (p− 1)pr−1 − 1}
with λ+ µ > 0, we have∣∣∣∣∣

u+h∑
x=u+1

χµ(x) e(λf(x)/q)

∣∣∣∣∣� h1−1/4r2 .
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Proof. Let H = bh/pc. Then

(11)
u+h∑
x=u+1

χµ(x) e(λf(x)/q) = S +O(H),

where

S =

u+p∑
y=u+1

H∑
z=0

χµ(y + pz) e(λf(y + pz)/q).

Therefore, using Lemma 10 we obtain

S =

u+p∑
y=u+1

gcd(y,p)=1

χµ(y) e (λf(y)/pr)

H∑
z=0

e

(
r−1∑
k=1

1

pr−k
(
µAky

−k − λf (k)(y)/k!
)
zk

)
.

(12)

Let ordp t denote the p-adic order of an integer t (where we formally
set ordp 0 =∞). We set m = min{ordp λ, ordp µ}.

In particular, for the inner sum over z in (12) we have

H∑
z=0

e

(
r−1∑
k=1

1

pr−k
(
µAky

−k − λf (k)(y)/k!
)
zk

)

=
H∑
z=0

e

(
r−m−1∑
k=1

1

pr−m−k
(
µ∗Aky

−k − λ∗f (k)(y)/k!
)
zk

)
,

.(13)

where µ∗ = µ/pm and λ∗ = λ/pm are integers.
We now consider three different cases.
If m = r− 1 then we see from (13) that the inner sum over z in (12)

is trivial. Note that if pr−1 | µ then χµ(y) becomes a character modulo
p, and it is either a nontrivial character modulo p or gcd(λ∗, p) = 1).

Thus, using Lemma 7, we derive for the sum S

S = H

u+p∑
y=u+1

gcd(y,p)=1

χµ(y) e (λ∗f(y)/p)� Hp1/2 log p

� hp−1/2 log h� h1−1/2r log h,

(14)

If r − 3 ≤ m ≤ r − 2 then we see that the sum (13) is a sum with
either linear or quadratic polynomial in z. Let Y be the set of solutions
the congruence

µ∗Ar−m−1y
−r+m+1 − λ∗f (r−m−1)(y)/(r −m− 1)! ≡ 0 (mod p)
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where

y = u+ 1, . . . , u+ p, gcd(y, p) = 1.

Recalling that gcd(Ar−m−1, p) = 1 and the condition on the leading
coefficient of f , we see that #Y ≤ d. Now, for y 6∈ Y , the sum (13) is

• either a sum with a linear polynomial and a denominator p
(when m = r − 2);
• or a sum with a quadratic polynomial and a denominator p2

(when m = r − 3).

Moreover, these polynomials have the leading coefficient which is rela-
tively prime to p. In the case of linear polynomial (that is, m = r− 2),
by Lemma 4 we bound this sum asO(p). In the case of a quadratic poly-
nomial (that is, m = r− 3), we bound this sums as O (Hp−1 + p log p),
which dominates the previous bound. Thus, estimating the sum (13)
trivially as H for y ∈ Y , we derive

S � H + p
(
Hp−1 + p log p

)
� H + p2 log p

� h/p+ h2/3 log h� h1−1/r log h.
(15)

Finally, assume that m ≤ r − 4. For

j =

⌈
r −m

2

⌉
≥ 2,

let Y be the set of solutions to the congruence

µ∗Ajy
−j − λ∗f (j)(y)/j! ≡ 0 (mod p),

where

y = u+ 1, . . . , u+ p, gcd(y, p) = 1.

Recalling that gcd(Aj, p) = 1 and the condition on the leading coeffi-
cient of f we see that #Y ≤ d. Furthermore, for y 6∈ Y , we estimate the
inner sum over z by Lemma 6 with s = r−m−1 ≥ 3 and qj = pr−m−j,
getting for the sum (13):

H∑
z=0

e

(
r−m−1∑
k=1

1

pr−m−k
(
µ∗Aky

−k − λ∗f (k)(y)/k!
)
zk

)
� H(p−r+m+j +H−1 + pr−m−jH−j)σ,

(16)

where

σ =
1

2(r −m− 2)(r −m− 3)
.

Since H ≥ p2 and j ≥ (r −m)/2 we have

pr−m−jH−j ≤ pr−m−3j ≤ p−(r−m)/2.
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On the other hand, since j ≤ (r −m+ 1)/2, we also have

p−r+m+j ≤ p−(r−m−1)/2.

Therefore, the bound (16) implies that

H∑
z=0

e

(
r−m−1∑
k=1

1

pr−m−k
(
µ∗Aky

−k − λ∗f (k)(y)/k!
)
zk

)
� H(p−(r−m−1)/2 +H−1)σ.

(17)

We now note that for m ≤ r − 4 we have

r −m− 1

2
σ =

r −m− 1

4(r −m− 2)(r −m− 3)
≥ 1

4r
.

and also
2

3
σ =

1

3(r −m− 2)(r −m− 3)
≥ 1

3r2
.

Since p ≥ h1/r and H � h/p ≥ h2/3, we finally obtain

H∑
z=0

e

(
r−m−1∑
k=1

1

pr−m−k
(
µ∗Aky

−k − λ∗f (k)(y)/k!
)
zk

)
� Hh−1/4r2 .

(18)

So, estimating the sum (13) trivially for y ∈ Y and using (18) for y 6∈ Y ,
we derive

(19) S � H + pHh−1/4r2 � h1−1/r + h1−1/4r2 � h1−1/4r2

Comparing (14), (15) and (19), we see that the bound (19) dominates,
and the result follows. �

5. Multiplicative Congruences and Equations

We also use the following result of Cochrane and Shi [11] which
generalises several previous results, which we present in the following
slightly less precise form.

Lemma 12. For arbitrary integers u and h ≤ q, the number of solu-
tions to

wx ≡ yz (mod q)

in variables

w, x, y, z ∈ {u+ 1, . . . , u+ h} and gcd(wxyz, q) = 1,

is bounded by h4q−1+o(1) + h2+o(1).
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Note that in Lemma 12 no assumptions on the modulus q is made
(although we apply it only for q ∈ Pr(Q)).

We also need a bound of [8, Proposition 3] on the number of divisors
in short intervals.

Lemma 13. For any integers h ≥ 0, u ≥ 1 and z ≥ 1

#{(x1, . . . , xn) ∈ In : z = x1 . . . xn} ≤ exp

(
Cn

log h

log log h

)
where Cn is some absolute constant depending only on n.

6. Sets in Reduced Residue Classes

We need the following simple statement

Lemma 14. Let H ≥ 3 be a real number and let S be arbitrary set of
nonzero integers with |s| ≤ H for s ∈ S. For any integer r ≥ 1 there
exists a constant c(r) depending only on r, such that for any sufficiently
large real Q ≥ c(r) logH, there exists q ∈ Pr(Q) with

#{s ∈ S : gcd(s, q) = 1} ≥ 1

2
#S.

Proof. We have∑
q∈Pr(Q)

#{s ∈ S : gcd(s, q) > 1}

≤
∑
s∈S

∑
q∈Pr(Q)

gcd(s,q)>1

1 ≤ r
∑
s∈S

ω(s)
∑

q∈Pr−1(Q)

1,

where as usual, ω(s) denotes the number of prime divisors of s 6= 0.
We now use that,

ω(s)� log |s|
log(2 + log |s|)

� logH

log logH

(since, trivially ω(s)! ≤ s) and also that by the asymptotic formula for
the number of primes in an arithmetic progression, we have(

Q

logQ

)ν
� #Pν(Q)�

(
Q

logQ

)ν
, ν = 1, 2, . . . .

Thus, we derive∑
q∈Pr(Q)

#{s ∈ S : gcd(s, q) > 1} � #S logH

log logH

(
Q

logQ

)r−1

.
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Therefore,

1

#Pr(Q)

∑
q∈Pr(Q)

#{s ∈ S : gcd(s, q) > 1} � #S logH

log logH
· logQ

Q

and the result now follows. �

7. Proof of Theorem 1

Take Q = 0.5h4/9. By the condition on B and Lemma 14 (applied
to the set of all coordinates of all N∗a,f ,k(B) solutions) there exists
q ∈ Pr(Q) such that we have

(20) N∗a,f ,k(B) ≤ 2T,

where T is the number of solutions to the congruence

(21) f1(x1) + . . .+ fn(xn) ≡ axk11 . . . xknn (mod q)

with
(x1, . . . , xn) ∈ B and gcd(x1 . . . xn, q) = 1.

Hence it is now sufficient to estimate T .
As before, we use Xq to denote the set of multiplicative characters

modulo q and also let X ∗q = Xq \ {χ0} be the set of nonprincipal char-
acters.

We now proceed as in the proof of [27, Theorem 3.2]. Let

Si(χ;λ) =

ui+h∑
x=ui+1

χki(x) e (λfi(x)/q) , i = 1, . . . , n.

We also introduce the Gauss sums

G(χ, λ) =

q∑
y=1

χ(y) e(λy/q), χ ∈ Xq, λ ∈ Z,

Clearly, we can assume that at least one of the polynomials f1, . . . , fn
is not a constant polynomial as otherwise the result is immediate.

Without loss of generality, we can now assume that deg f1 ≥ 1.
Furthermore, we can also assume that h is sufficiently large so that
gcd(a, q) = 1 and also the leading coefficients of the polynomial fn is
relatively prime to q (recall that q is composed out of primes in the
interval [Q, 2Q]).

We now introduce one more variable y that runs through the reduced
residue system modulo q and rewrite (21) as a system of congruences

f1(x1) + . . .+ fn(xn) ≡ y (mod q),

axk11 . . . xknn ≡ y (mod q).
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Then exactly as in [27, Equation (3.3)], we write

T =
1

qϕ(q)

q∑
λ=1

∑
χ∈Xq

G(χ, λ)
n∏
i=1

|Si(χ, λ)|,

where, as before, ϕ(q) is the Euler function and G(χ, λ) is the complex
conjugate of the Gauss sum.

As in the proof of [27, Theorem 3.2], we see that, under the condi-
tion (6), we have:

(22) T � 1

qϕ(q)
(R1 +R2) ,

where

R1 =

q∑
λ=1

∑
χ∈X ∗

q

|G(χ, λ)|
n∏
i=1

|Si(χ, λ)|,

R2 =

q∑
λ=1

|G(χ0, λ)|
n∏
i=1

|Si(χ0, λ)|,

To estimate R1 we first use Lemma 9 for n− 2 sums and infer that

(23) R1 � h(1−4γ/9)(n−2)

q∑
λ=1

∑
χ∈X ∗

q

|G(χ, λ)||S1(χ;λ)||S2(χ;λ)|,

where γ is as in Lemma 9.
Using the Hölder inequality, and then expanding the summation to

all χ ∈ Xq, we obtain

q∑
λ=1

∑
χ∈Xq

|G(χ, λ)||S1(χ;λ)||S2(χ;λ)|

≤
q∑

λ=1

∑
χ∈Xq

|G(χ, λ)|2
1/2

∑
χ∈Xq

|S1(χ;λ)|4
1/4∑

χ∈Xq

|S2(χ;λ)|4
1/4

.

(24)
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Using the orthogonality of multiplicative characters we see that∑
χ∈Xq

|S1(χ;λ)|4

= q

u1+h∑
w,x,y,z=u1+1
gcd(wxyz,q)=1
wx≡yz (mod q)

e

(
λ

q
(f1(w) + f1(x)− f1(y)− f1(z))

)
≤ qW,

where W is the number of solutions to

wx ≡ yz (mod q)

in variables

w, x, y, z ∈ {u1 + 1, . . . , u1 + h} and gcd(wxyz, q) = 1.

Using Lemma 12, we obtain∑
χ∈Xq

|S1(χ;λ)|4 ≤ h4qo(1) + h2+o(1)q.

Similarly we obtain the same inequality for the 4th moment of the sums
S2(χ;λ), and also ∑

χ∈Xq

|G(χ, λ)|2 � q2.

Thus, collecting these bounds together which together with (23)
and (24), we derive

R1 � h(1−4γ/9)(n−2)q2
(
h2qo(1) + h1+o(1)q1/2

)
= hn−4γ(n−2)/9−1

(
hq2+o(1) + q5/2+o(1)

)
.

(25)

For R2, using the trivial bound

|Si(χ0;λ)| ≤ h, i = 1, . . . , n− 1,

we write

R2 ≤ hn−1

q∑
λ=1

|G(χ0;λ)||S1(χ0;λ)|.

We remark that

G(χ0;λ) =

q∑
y=1

gcd(y,q)=1

e(λy/q)

is the Ramanujan sum and thus for a square-free q we obtain

|G(χ0;λ)| = ϕ(gcd(λ, q))
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see [17, Section 3.2]. Collecting together the values of λ with the same
gcd(λ, q) = q/s, where s runs over all 2r divisors of q, and then using
the Cauchy inequality, we obtain

R2 ≤ hn−1q
∑
s|q

1

s

s∑
µ=1

|S1(χ0;µq/s)|

≤ hn−1q
∑
s|q

1

s

s∑
µ=1

∣∣∣∣∣∣∣∣
u1+h∑
x=u1+1

gcd(x,q)=1

e (µf1(x)/s)

∣∣∣∣∣∣∣∣
≤ hn−1q

∑
s|q

1

s1/2

 s∑
µ=1

∣∣∣∣∣∣∣∣
u1+h∑
x=u1+1

gcd(x,q)=1

e (µf1(x)/s)

∣∣∣∣∣∣∣∣
2

1/2

.

By the orthogonality of exponential functions,

s∑
µ=1

∣∣∣∣∣∣∣∣
u1+h∑
x=u1+1

gcd(x,q)=1

e (µf1(x)/s)

∣∣∣∣∣∣∣∣
2

≤ sUs.

Where Us is the number of solutions to the congruence

f1(x) ≡ f1(y) (mod s), x, y ∈ {u1 + 1, . . . , u1 + h}.

Since the leading coefficient of f1(X) is relatively prime to q, using the
Chinese Remainder Theorem we obtain

Us � h2/s+ h.

Collecting the above inequalities, yields the bound

(26) R2 � hn−1q
∑
s|q

1

s1/2

(
h2 + hs

)1/2 ≤ hnq.

Substituting the bounds (25) and (26) in (22) and using that ϕ(q)�
q for q ∈ Pr(Q) and also that q � h4r/9 we obtain

T � hn−4γ(n−2)/9−1
(
h+ q1/2

)
qo(1) + hnq−1

�
(
hn−4γ(n−2)/9 + hn−4γ(n−2)/9−1+2r/9

)
qo(1) + hn−4r/9.

(27)

Clearly, if

−4γ(n− 2)/9 < −4r/9 and − 4γ(n− 2)/9− 1 < −2r/3
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or, equivalently

n > max
{

2r+1(d+ 1)(d+ 2)r, 2r+1(d+ 1)(d+ 2)(3r/2− 9/4)
}

+ 2,

then the last term dominates in (27). Using (20) we conclude the proof.

8. Proof of Theorem 2

Take Q =
⌊
0.5h1/3

⌋
. By the condition on B and Lemma 14 (applied

to the set of all coordinates of all N∗a,f ,k(B) solutions and the set P1(Q))
there exists a prime p ∈ [Q, 2Q] such that we have the bound (20) where
now T is the number of solutions to the congruence

(28) f1(x1) + . . .+ fn(xn) ≡ axk11 . . . xknn (mod pr)

with
(x1, . . . , xn) ∈ B and gcd(x1 . . . xn, p) = 1.

Hence it is now sufficient to estimate T .
As before, we use Xpr to denote the set of multiplicative characters

modulo pr and also let X ∗pr = Xpr \ {χ0} be the set of nonprincipal
characters.

We now proceed as in the proof of [27, Theorem 3.2]. Let

Si(χ;λ) =

ui+h∑
x=ui+1

χki(x) e (λfi(x)/pr) , i = 1, . . . , n.

We also introduce the Gauss sums

G(χ, λ) =

pr∑
y=1

χ(y) e(λy/pr), χ ∈ X r
p , λ ∈ Z,

Clearly, we can assume that at least one of the polynomials f1, . . . , fn
is not a constant polynomial as otherwise the result is immediate.

Without loss of generality, we can now assume that deg f1 ≥ 1.
Furthermore, we can also assume that h is sufficiently large so that
gcd(a, p) = 1 and also the leading coefficients of the polynomial fn is
relatively prime to p (recall that p ∈ [Q, 2Q]).

We now introduce one more variable y that runs through the reduced
residue system modulo q and rewrite (28) as a system of congruences

f1(x1) + . . .+ fn(xn) ≡ y (mod pr),

axk11 . . . xknn ≡ y (mod pr).

Then exactly as in [27, Equation (3.3)], we write

T =
1

prϕ(pr)

pr∑
λ=1

∑
χ∈Xpr

G(χ, λ)
n∏
i=1

|Si(χ, λ)|,
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where, as before, ϕ(q) is the Euler function and G(χ, λ) is the complex
conjugate of the Gauss sum.

We see that the contribution from the term corresponding to λ = pr

and the principal character χ = χ0 is O(hn/pr). so the under the
condition (10), we have:

(29) T � hn/pr +
1

prϕ(pr)
R

where

R =
∑∑

1≤λ≤pr, χ∈Xpr

(λ,χ) 6=(pr,χ0)

|G(χ, λ)|
n∏
i=1

|Si(χ, λ)|

To estimate R we first use Lemma 11 for n− 2 sums and infer that

R� h(1−1/4r2)(n−2)

q∑
λ=1

∑
χ∈X ∗

q

|G(χ, λ)||S1(χ;λ)||S2(χ;λ)|.

We now proceed exactly as in estimating R1 in the proof of Theorem 1,
getting instead of (25) the bound

R� h(1−1/4r2)(n−2)p2r
(
h2po(1) + h1+o(1)pr/2

)
.

Since h1/3 � p� h1/3 and r ≥ 6, this simplifies as

(30) R� h(1−1/4r2)(n−2)+1+o(1)p5r/2

Substituting the bound (30) in (29), we obtain

T � hn−1−(n−2)/4r2+o(1)pr/2 + hn/pr

� hn−1−(n−2)/4r2+r/6+o(1) + hn−r/3.
(31)

Clearly, if

r3 ≤ n− 2

2
or, equivalently

n ≥ 2r3 + 2

then the last term dominates in (31). Using (20) we conclude the proof.

9. Proof of Theorem 3

Clearly for (x1, . . . , xn) ∈ B where B is of the form (5) we have

xd1 + . . .+ xdn ∈ Z,
where

Z =

{
d∑

ν=0

(
d

ν

)
zνu

d−ν : zν ∈ [0, nhν ], ν = 0, . . . , d

}
.
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In particular, #Z � hd(d+1)/2. Applying Lemma 13 to every z ∈ Z,
we obtain the result.

10. Comments

We remark that Theorem 1 applies to the Markoff-Hurwitz hyper-
surface corresponding to (3). in which case the condition on n becomes

n > 12 · 2r max {2r, 3r − 9/2}+ 2.

We note that the condition of Theorem 1 requires n to be only qua-
dratic in d, while the saving grows with n as

4 log n

9 log 2
> 0.64 log n,

when d is fixed and n tends to infinity.
On the other hand, Theorem 1 does not apply to the Dwork hy-

persurface, but Theorem 2 and leads to the saving that grows with n
as

(n/2)1/3

3
> 0.26n1/3.

It is also easy to see that our methods also works for a more general
form of (2), namely for the equation

(f1(x1) + . . .+ fn(xn))m = axk11 . . . xknn

with a nonzero integer m.
One can easily remove the condition on the parity of k1, . . . , kn at

the cost of essentially only typographical changes. Indeed, if some of
k1, . . . , kn are even that we take all our primes p to satisfy

p ≡ 3 (mod 2k1 . . . kn)

instead of (6) and (10), and then we deal with contribution from char-
acters or order 2 as we have done for the principal character.

Finally, we note that using the bounds of mixed sums from [16] within
our method leads to weaker estimates, but makes them fully uniform
with respect to the box B. That is, the conditions on maxi=1,...,n |ui|
in Theorems 1 and 2 can be removed at the cost of weakening the final
bound.
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Mathem., vol. 277. Birkhäuser Verlag, Basel, 2009.

[6] T. D. Browning, R. Heath-Brown and P. Salberger, ‘Counting rational points
on algebraic varieties’, Duke Math. J., 132 (2006), 545–578.

[7] W. Cao, ‘On generalized Markoff-Hurwitz-type equations over finite fields’, Acta
Appl. Math., 112 (2010), 275–281.

[8] M.-C. Chang, ‘Factorization in generalized arithmetic progressions and applica-
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