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Abstract. We use bounds of mixed character sums modulo a
square-free integer q of a special structure to estimate the density
of integer points on the hypersurface

f1(x1) + . . . + fn(xn) = axk1
1 . . . xkn

n

for some polynomials fi ∈ Z[X] and nonzero integers a and ki,
i = 1, . . . , n. In the case of

f1(X) = . . . = fn(X) = X2 and k1 = . . . = kn = 1

the above hypersurface is known as the Markoff-Hurwitz hypersur-
face. Our results are substantially stronger than those known for
general hypersurfaces.

1. Introduction

Studying the density of integer and rational points (x1, . . . , xn) on
hypersurfaces has always been an active area of research, where many
rather involved methods have led to remarkable achievements, see [5,
6, 14, 15, 21, 22, 25, 26, 28] and references therein. More precisely,
given a hypersurface

F (x1, . . . , xn) = 0

defined by a polynomial F ∈ Z[X1, . . . , Xn] in n variables, the goal is
to estimate the number NF (B) of solutions (x1, . . . , xn) ∈ Zn that fall
in a hypercube B of the form

(1) B = [u1 + 1, u1 + h]× . . .× [un + 1, un + h].

Unfortunately, even in the most favourable situation, the currently
known general approaches lead only to a bound of the form NF (B) =
O (hn−2+ε) for any fixed ε > 0 or even weaker, see [6, 15, 25, 26].
For some special types of hypersurfaces the strongest known bounds
are due Heath-Brown [14] and Marmon [21, 22]. For example, for
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hypercubes around the origin, Marmon [22] gives a bound of the form
NF (B) = O

(
hn−4+δn

)
for a class of hypersurfaces, with some explicit

function δn such that δn ∼ 37/n as n→∞. Combining this bound with
some previous results and methods, for a certain class of hypersurfaces,
Marmon [22] also derives the bound NF (B) = O

(
hn−4+δn + hn−3+ε

)
which holds for an arbitrary hypercube B with any fixed ε > 0 and
the implied constant that depends only of degF , n and ε (note that
δn > 1 for n < 29).

Finally, we also recall that when the number of variables n is ex-
ponentially large compared to d and the highest degree form of F is
nonsingular, then the methods developed as the continuation of the
work of Birch [4] lead to much stronger bounds, of essentially optimal
order of magnitude.

Here, we show that in some interesting special cases, to which further
developments of [4] do not apply (as the highest degree form is singular
and the number of variables is not large enough) a modular approach
leads to stronger bounds where the saving actually grows with n (at a
logarithmic rate).

More precisely we concentrate on hypersurfaces of the form

(2) f1(x1) + . . .+ fn(xn) = axk11 . . . xknn

defined by some polynomials fi ∈ Z[X] and nonzero integers a and ki,
i = 1, . . . , n. In particular, we use Na,f ,k(B) to denote the number of
integer solutions to (2) with (x1, . . . , xn) ∈ B, where f = (f1, . . . , fn)
and k = (k1, . . . , kn).

In the case of

(3) f1(X) = . . . = fn(X) = X2 and k1 = . . . = kn = 1

the equation (2) defines the Markoff-Hurwitz hypersurface, see [1, 2,
3, 7], where various questions related to these hypersurfaces have been
investigated.

Furthermore, for

(4) f1(X) = . . . = fn(X) = Xn and k1 = . . . = kn = 1

the equation (2) is known as the Dwork hypersurface, which has been
intensively studied by various authors [12, 13, 18, 19, 30], in particular,
as an example of a Calabi–Yau variety .

We remark that solutions with at least one component xi = 0, i =
1, . . . , n, correspond to solutions of a diagonal equation

n∑
j=1
j 6=i

fj(xj) = −fi(0)
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to which one can apply the standard circle method.
To clarify our ideas and to make the exposition simpler we concen-

trate here on the solutions to (2) with x1 . . . xn 6= 0. In particular, we
use N∗a,f ,k(B) to denote the number of such solutions. Clearly for the
hypercubes B of the form (1) we have

N∗a,f ,k(B) = Na,f ,k(B).

Throughout the paper, the implied constants in the symbols “O”,
“�” and “�” may depend on the polynomials deg fi, the coefficient
a and the exponents ki in (2), i = 1, . . . , n, and also on the integer
positive parameters r and ν. We recall that the expressions A = O(B),
A� B and B � A are each equivalent to the statement that |A| ≤ cB
for some constant c.

Here, we use some ideas from [27], combined a new bound of mixed
character sums, that can be of independent interest, to derive the fol-
lowing result:

Theorem 1. Let f1(X), . . . , fn(X) ∈ Z[X] be n polynomials of degrees
at most d, and let k1, . . . , kn ≥ 1 be odd integers. For any fixed in-
teger r ≥ 1, there is a constant C(r) depending only on r, such that,
uniformly over all boxes B of the form (1) with

max
i=1,...,n

|ui| ≤ exp(C(r)h4/9)

for the solutions to the equation (2), we have

N∗a,f ,k(B)� hn−4r/9

provided that

n > (d+ 1)(d+ 2)2r max {2r, 3r − 9/2}+ 2.

The proof of Theorem 1 is based on a bound of mixed character sums
which combines the ideas from [9, 16].

Unfortunately Theorem 1 does not apply to the Dwork hypersurface
as the degrees of the polynomials in (4) are too large for our argu-
ment to work. So here apply an alternative approach that is based
on the method of Postnikov [23, 24] (see also [10] and the references
therein for further developments). This leads to a much more precise
bound which however applies only when the degree of the polynomials
f1(X), . . . , fn(X) are sufficiently large.

Theorem 2. Let f1(X), . . . , fn(X) ∈ Z[X] be n polynomials of degrees
at least d, and let k1, . . . , kn ≥ 1 be odd integers. There is an absolute
constant C such that, uniformly over all boxes B of the form (1) with

max
i=1,...,n

|ui| ≤ exp(Ch1/3)
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and any fixed integer r ≥ 1 with

r ≤ min
i=1,...,n

deg fi

for the solutions to the equation (2), we have

N∗a,f ,k(B)� hn−r/3

provided that

n > 2r3 + 1.

Finally, in some cases the arithmetic structure of the right hand side
of the equation (2) allows to derive a much stronger bound via the
result of [8]. We illustrate this in the special case of the equation

xd1 + . . .+ xdn = axk11 . . . xknn

and the box B aligned along the main diagonal, that is, of the form

(5) B = [u+ 1, u+ h]× . . .× [u+ 1, u+ h]

with some integers u and h.

Theorem 3. Let f1(X) = . . . = fn(X) = Xd and let a, k1, . . . , kn be
arbitrary nonzero integers. Then, uniformly over all boxes B of the
form (5), for the solutions to the equation (2) we have

N∗a,f ,k(B)� hd(d+1)/2+o(1).

2. Some Bounds of Classical Exponential and Character
Sums

We denote

e(z) = exp(2πiz).

We start with recording the following trivial implication of the or-
thogonality of exponential functions.

For quadratic polynomials, we see that [17, Theorem 8.1] implies

Lemma 4. For an integer q ≥ 1 and any linear polynomial

G(X) = aX ∈ Z[X]

with gcd(a, q) = 1 ∣∣∣∣∣
H∑
z=1

e(G(z)/q)

∣∣∣∣∣� q.

For quadratic polynomials, we see that [17, Theorem 8.1] yields:
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Lemma 5. For an integer q ≥ 1 and any quadratic polynomial

G(X) = aX2 + bX ∈ Z[X]

with gcd(a, q) = 1∣∣∣∣∣
H∑
z=1

e(G(z)/q)

∣∣∣∣∣� Hq−1/2 + q1/2 log q.

One of our main tools is the following very special case of a much
more general bound of Wooley [29], that applies to polynomials with
arbitrary real coefficients.

Lemma 6. For any polynomial

G(X) =
s∑
i=1

ai
qi
X i ∈ Q[X]

of degree s ≥ 3 with gcd(ai, qi) = 1 and positive integer H, for every
j = 2, . . . , s we have∣∣∣∣∣

H∑
z=1

e(G(z))

∣∣∣∣∣� H
(
q−1
j +H−1 + qjH

−j)σ
where

σ =
1

2(s− 1)(s− 2)
.

Let Xq be the set of ϕ(q) multiplicative characters modulo q, where
ϕ(q) is the Euler function. We also denote by let X ∗q = Xq \ {χ0} the
set of nonprincipal characters (we set χ(0) = 0 for all χ ∈ Xq). We
appeal to [17] for a background on the basic properties of multiplicative
characters and exponential functions, such as orthogonality.

We use the following well-know bound that is implied by the Weil
bound for mixed sums of additive and multiplicative characters, see [20,
Chapter 6, Theorem 3], and a reduction between complete and incom-
plete sums, see [17, Section 12.2], we also derive the following well-
known estimate:

Lemma 7. For any χ ∈ Xq, λ ∈ Fp, nonlinear polynomial F (X) ∈
Fp[X] and integers u and h ≥ p, we have

u+h∑
x=u+1

χ(x) e(λF (x))� p1/2 log p

provided that (χ, λ) 6= (χ0, 0).
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3. Character Sums with Square-free Moduli

For a real Q ≥ 3 and an integer r ≥ 1 we denote by Pr(Q) the set
of integers q of the form q = p1 . . . pr where p1, . . . pr ∈ [Q, 2Q] are
pairwise distinct primes with

(6) gcd(k1 . . . kn, pj − 1) = 1, j = 1, . . . , r.

Here we obtain a new bound of mixed character sums with multi-
plicative characters modulo q ∈ Pr(Q) which can be of independent
interest. We note that recently several bounds of such sums have been
obtained for prime q = p, see [9, 16]. However for our applications
moduli q ∈ Pr(Q) are more suitable. Our result is based on the bound
of [17, Theorem 12.10] and in fact can be considered as its generalisa-
tion.

As in Section 2, we use Xq for the set of ϕ(q) = (p1 − 1) . . . (pr −
1) multiplicative characters modulo q = p1 . . . pr ∈ Pr(Q) and also
let X ∗q = Xq \ {χ0}. Furthermore, we also continue to use e(z) =
exp(2πiz).

We start with recalling the bound of [17, Theorem 12.10], which we
present in a somewhat simplified form adjusted to our applications. In
particular, some simplifications come from the fact that the modulus
q ∈ Ps(Q) is square-free.

Lemma 8. Let q = `1 . . . `s ∈ Ps(Q) for some primes `1, . . . , `s and
let ψ = χ1 . . . χs be a n multiplicative character of conductor q and of
order t, where χj are arbitrary multiplicative characters of modulo `j,
j = 1, . . . , s− 1, and χs is a nontrivial multiplicative character modulo
`s. Assume f(X) is a rational function that can be written as

f(X) =
m∏
i=1

(X − vi)di

with some arbitrary integers v1, . . . , vm and nonzero integer d1, . . . , dm
with

gcd(d1, . . . , dm, t) = 1,

for any integers u and h with h ≥ (2Q)9/4, we have∣∣∣∣∣
u+h∑
x=u+1

ψ(f(x))

∣∣∣∣∣ ≤ 4h
(
gcd(∆, `s)`

−1
s

)2−s

,

where

∆ =
∏

m≥i>j≥1

(vi − vj).
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We are now ready to present one of our main technical results which
can be of independent interest.

Lemma 9. For any r = 1, 2, . . ., a sufficiently large Q ≥ 1, a modulus
q ∈ Pr(Q), a polynomial F (X) ∈ R[X] of degree d and integers u and
h with h ≥ (2Q)9/4, we have

max
χ∈X ∗

q

∣∣∣∣∣
u+h∑
x=u+1

χ(x) e(F (x))

∣∣∣∣∣� hQ−γ

where

γ =
1

2r+1(d+ 1)(d+ 2)
.

Proof. Let us fix some χ ∈ X ∗q . Without loss of generality we can write
χ = χ1 . . . χr, where χj is a multiplicative character modulo a prime
pj, j = 1, . . . , r and χr is a nonprincipal character (as before, we write
q = p1 . . . pr for r distinct primes).

Set p = p1. Then for any positive integer M for the sum

S =
u+h∑
x=u+1

χ(x) e(F (x))

we have

S ≤ 1

M

∣∣∣∣∣
u+h∑
x=u+1

M−1∑
y=0

χ(x+ py) e(F (x+ py))

∣∣∣∣∣+ 2Mp

≤ 1

M

u+h∑
x=u+1

gcd(x,p)=1

∣∣∣∣∣
M−1∑
y=0

ψ(x+ py) e(F (x+ py))

∣∣∣∣∣+ 4MQ,

where ψ = χ2 . . . χr. We note that ψ is of conductor q/p rather that q,
so this explains the condition gcd(x, p) = 1 in the sum over x. We can
however not simply discard this condition and write

(7) S ≤ 1

M

u+h∑
x=u+1

∣∣∣∣∣
M−1∑
y=0

ψ(x+ py) e(F (x+ py))

∣∣∣∣∣+ 4MQ.

We divide the unit cube [0, 1]d+1 into

K = M (d+1)(d+2)/2

cells of the form

Ua =

[
a0

M
,
a0 + 1

M

]
× . . .×

[
ad

Md+1
,
ad + 1

Md+1

]
,
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where a = (a0, . . . , ad+1) ∈ Zd+1 runs through the set A of integer
vectors with components aν = 0, . . . ,M ν+1 − 1, ν = 0, . . . , d+ 1.

We now write

F (X + pY ) = F0(X) + F1(X)Y + . . .+ Fd(X)Y d

and define

Ωa = {x ∈ {u+ 1, . . . , u+ h} : (F0(x), . . . , Fd(x)) ∈ Ua}, a ∈ A.

It is easy to see that for x ∈ Ωa we have

e(F (x+ py)) = Ea(y) +O(M−1),

where

Ea(y) = e
( a0

M
+

a1

M2
y + . . .+

ad
Md+1

yd
)
.

Hence we see from (7) that

(8) S � 1

M
W + h/M +QM,

where

W =
∑
a∈A

∑
x∈Ωa

∣∣∣∣∣
M−1∑
y=0

ψ(x+ py)Ea(y)

∣∣∣∣∣ .
We now fix some integer k ≥ 1 and apply the Hölder inequality to W 2k,
getting

W 2k ≤

(∑
a∈A

∑
x∈Ωa

1

)2k−1∑
a∈A

∑
x∈Ωa

∣∣∣∣∣
M−1∑
y=0

ψ(x+ py)Ea(y)

∣∣∣∣∣
2k

= h2k−1
∑
a∈A

∑
x∈Ωa

∣∣∣∣∣
M−1∑
y=0

ψ(x+ py)Ea(y)

∣∣∣∣∣
2k

.

Next, we extend the inner summation over the integers x ∈ Ωa to all
x ∈ {u+1, . . . , u+h}. Opening up the 2kth power, changing the order
of summations and using that |Ea(y)| = 1, we derive

W 2k ≤ h2k−1
∑
a∈A

M−1∑
y1,...,y2k=0

∣∣∣∣∣
u+h∑
x=u+1

ψ

(
k∏
ν=1

x+ pyν
x+ pyk+ν

)∣∣∣∣∣
= h2k−1K

M−1∑
y1,...,y2k=0

∣∣∣∣∣
u+h∑
x=u+1

ψ

(
k∏
ν=1

x+ pyν
x+ pyk+ν

)∣∣∣∣∣ .
Now, for O(Mk) vectors (y1, . . . , y2k) where each value appears at

least twice we estimate the inner sum trivially as h.
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For the remaining O(M2k) vectors (y1, . . . , y2k) we apply Lemma 8.
More precisely, we use it for s = r − 1 with `i = pi+1. The rational
function f(X) after making all cancellation and combining equal terms
becomes of the form

f(X) =
m∏
i=1

(x+ pzi)
di ,

where 1 ≤ z1 < . . . < zm ≤ M and at least one di = ±1. We now
assume that

(9) M < Q.

Then we have gcd(zi − zj, pr) = 1 for m ≥ i > j ≥ 1. Hence, we also
see that

gcd

( ∏
m≥i>j≥1

(pzi − pzj), pr

)
= gcd

( ∏
m≥i>j≥1

(zi − zj), pr

)
= 1.

With the above simplifications, the bound of Lemma 8 becomes∣∣∣∣∣
u+h∑
x=u+1

ψ

(
k∏
ν=1

x+ pyν
x+ pyk+ν

)∣∣∣∣∣ ≤ 4hQ2−r+1

.

Therefore,

W 2k � h2k−1K
(
Mkh+M2khQ2−r+1

)
= h2kM (d+1)(d+2)/2

(
Mk +M2kQ2−r+1

)
,

which after the substitution in (8) implies

S � hM (d+1)(d+2)/4k
(
M−1/2 +Q2−r/k

)
+ h/M +QM

� hM (d+1)(d+2)/4k
(
M−1/2 +Q2−r/k

)
+ h8/9

(since by (9) we have QM ≤ Q2 � h8/9, provided that h ≥ (2Q)9/4).

We now choose M =
⌈
Q2−r+1/k

⌉
, so (9) holds, getting

S � hM (d+1)(d+2)/4kQ2−r/k + h8/9 = hQ((d+1)(d+2)/2k−1)2−r/k + h8/9.

Choosing k = (d+ 1)(d+ 2) we conclude the proof. �

We remark, that the idea of the proof also works with a simpler shift
F (x) → F (x + y), however using the shift F (x) → F (x + py) allows
to reduce the conductor (from q to q/p) and thus leads to a slightly
stronger bound as the conductor of ψ is now a product of only r − 1
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primes. This idea can be used in more generality leading to stronger
bounds for more limited ranges of parameters.

We note that we do not impose any conditions on the polynomial
F in Lemma 9, which, in particular can be a constant polynomial, in
which case, we have the bound of of [17, Theorem 12.10].

4. Character Sums with Prime-power Moduli

Let q = pr where r ≥ 1 is an integer and p ≥ 3 is a prime with

(10) gcd(k1 . . . kn, p− 1) = 1.

As in Section 2, we use Xq for the set of ϕ(q) = pr−1(p − 1) multi-
plicative characters modulo q and let X ∗q = Xq \{χ0}. We also continue
to use e(z) = exp(2πiz).

Since group of units modulo q is cyclic then so is Xq. So we now fix
a character χ ∈ Xq that generates this group, so that

X = {χµ : µ = 0, . . . , pr−1(p− 1)− 1}.
The following result is due to Postnikov [23, 24], see also [17, Equa-

tion (12.89)].

Lemma 10. Assume that q = pr for ana integer r ≥ 1 and a prime
p > max{2, r}. Then for any integers y and z with gcd(y, p) = 1, we
have

χ(y + pz) = χ(y) e (F (pwz)/q)

for some polynomial

F (Z) =
r−1∑
k=1

AkZ
k ∈ Z[Z]

of degree r − 1 and the coefficients satisfying gcd(Ak, p) = 1, k =
1, . . . , r − 1, where w is defined by

wy ≡ 1 (mod q) and 1 ≤ w < q.

Lemma 11. Assume that q = pr for an integer r ≥ 1 and a prime
p > max{2, r}. Then for a polynomial f(X) ∈ Z[X] of degree d ≥ r
with the leading coefficient ad satisfying gcd(ad, p) = 1 and integers u
and h with q ≥ h ≥ p3, uniformly over the integers

λ ∈ {0, . . . , pr − 1} and µ ∈ {0, . . . , (p− 1)pr−1 − 1}
with λ+ µ > 0, we have∣∣∣∣∣

u+h∑
x=u+1

χµ(x) e(λf(x)/q)

∣∣∣∣∣� h1−1/4r2 .
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Proof. Let H = bh/pc. Then

(11)
u+h∑
x=u+1

χµ(x) e(λf(x)/q) = S +O(H),

where

S =

u+p∑
y=u+1

H∑
z=0

χµ(y + pz) e(λf(y + pz)/q).

Therefore, using Lemma 10 we obtain

S =

u+p∑
y=u+1

gcd(y,p)=1

χµ(y) e (λf(y)/pr)

H∑
z=0

e

(
r−1∑
k=1

1

pr−k
(
µAky

−k − λf (k)(y)/k!
)
zk

)
.

(12)

Let ordp t denote the p-adic order of an integer t (where we formally
set ordp 0 =∞). We set m = min{ordp λ, ordp µ}.

In particular, for the inner sum over z in (12) we have

H∑
z=0

e

(
r−1∑
k=1

1

pr−k
(
µAky

−k − λf (k)(y)/k!
)
zk

)

=
H∑
z=0

e

(
r−m−1∑
k=1

1

pr−m−k
(
µ∗Aky

−k − λ∗f (k)(y)/k!
)
zk

)
,

.(13)

where µ∗ = µ/pm and λ∗ = λ/pm are integers.
We now consider three different cases.
If m = r− 1 then we see from (13) that the inner sum over z in (12)

is trivial. Note that if pr−1 | µ then χµ(y) becomes a character modulo
p, and it is either a nontrivial character modulo p or gcd(λ∗, p) = 1).

Thus, using Lemma 7, we derive for the sum S

S = H

u+p∑
y=u+1

gcd(y,p)=1

χµ(y) e (λ∗f(y)/p)� Hp1/2 log p

� hp−1/2 log h� h1−1/2r log h,

(14)

If r − 3 ≤ m ≤ r − 2 then we see that the sum (13) is a sum with
either linear or quadratic polynomial in z. Let Y be the set of solutions
the congruence

µ∗Ar−m−1y
−r+m+1 − λ∗f (r−m−1)(y)/(r −m− 1)! ≡ 0 (mod p)
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where

y = u+ 1, . . . , u+ p, gcd(y, p) = 1.

Recalling that gcd(Ar−m−1, p) = 1 and the condition on the leading
coefficient of f , we see that #Y ≤ d. Now, for y 6∈ Y , the sum (13) is

• either a sum with a linear polynomial and a denominator p
(when m = r − 2);
• or a sum with a quadratic polynomial and a denominator p2

(when m = r − 3).

Moreover, these polynomials have the leading coefficient which is rela-
tively prime to p. In the case of linear polynomial (that is, m = r− 2),
by Lemma 4 we bound this sum asO(p). In the case of a quadratic poly-
nomial (that is, m = r− 3), we bound this sums as O (Hp−1 + p log p),
which dominates the previous bound. Thus, estimating the sum (13)
trivially as H for y ∈ Y , we derive

S � H + p
(
Hp−1 + p log p

)
� H + p2 log p

� h/p+ h2/3 log h� h1−1/r log h.
(15)

Finally, assume that m ≤ r − 4. For

j =

⌈
r −m

2

⌉
≥ 2,

let Y be the set of solutions to the congruence

µ∗Ajy
−j − λ∗f (j)(y)/j! ≡ 0 (mod p),

where

y = u+ 1, . . . , u+ p, gcd(y, p) = 1.

Recalling that gcd(Aj, p) = 1 and the condition on the leading coeffi-
cient of f we see that #Y ≤ d. Furthermore, for y 6∈ Y , we estimate the
inner sum over z by Lemma 6 with s = r−m−1 ≥ 3 and qj = pr−m−j,
getting for the sum (13):

H∑
z=0

e

(
r−m−1∑
k=1

1

pr−m−k
(
µ∗Aky

−k − λ∗f (k)(y)/k!
)
zk

)
� H(p−r+m+j +H−1 + pr−m−jH−j)σ,

(16)

where

σ =
1

2(r −m− 2)(r −m− 3)
.

Since H ≥ p2 and j ≥ (r −m)/2 we have

pr−m−jH−j ≤ pr−m−3j ≤ p−(r−m)/2.
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On the other hand, since j ≤ (r −m+ 1)/2, we also have

p−r+m+j ≤ p−(r−m−1)/2.

Therefore, the bound (16) implies that

H∑
z=0

e

(
r−m−1∑
k=1

1

pr−m−k
(
µ∗Aky

−k − λ∗f (k)(y)/k!
)
zk

)
� H(p−(r−m−1)/2 +H−1)σ.

(17)

We now note that for m ≤ r − 4 we have

r −m− 1

2
σ =

r −m− 1

4(r −m− 2)(r −m− 3)
≥ 1

4r
.

and also
2

3
σ =

1

3(r −m− 2)(r −m− 3)
≥ 1

3r2
.

Since p ≥ h1/r and H � h/p ≥ h2/3, we finally obtain

H∑
z=0

e

(
r−m−1∑
k=1

1

pr−m−k
(
µ∗Aky

−k − λ∗f (k)(y)/k!
)
zk

)
� Hh−1/4r2 .

(18)

So, estimating the sum (13) trivially for y ∈ Y and using (18) for y 6∈ Y ,
we derive

(19) S � H + pHh−1/4r2 � h1−1/r + h1−1/4r2 � h1−1/4r2

Comparing (14), (15) and (19), we see that the bound (19) dominates,
and the result follows. �

5. Multiplicative Congruences and Equations

We also use the following result of Cochrane and Shi [11] which
generalises several previous results, which we present in the following
slightly less precise form.

Lemma 12. For arbitrary integers u and h ≤ q, the number of solu-
tions to

wx ≡ yz (mod q)

in variables

w, x, y, z ∈ {u+ 1, . . . , u+ h} and gcd(wxyz, q) = 1,

is bounded by h4q−1+o(1) + h2+o(1).
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Note that in Lemma 12 no assumptions on the modulus q is made
(although we apply it only for q ∈ Pr(Q)).

We also need a bound of [8, Proposition 3] on the number of divisors
in short intervals.

Lemma 13. For any integers h ≥ 0, u ≥ 1 and z ≥ 1

#{(x1, . . . , xn) ∈ In : z = x1 . . . xn} ≤ exp

(
Cn

log h

log log h

)
where Cn is some absolute constant depending only on n.

6. Sets in Reduced Residue Classes

We need the following simple statement

Lemma 14. Let H ≥ 3 be a real number and let S be arbitrary set of
nonzero integers with |s| ≤ H for s ∈ S. For any integer r ≥ 1 there
exists a constant c(r) depending only on r, such that for any sufficiently
large real Q ≥ c(r) logH, there exists q ∈ Pr(Q) with

#{s ∈ S : gcd(s, q) = 1} ≥ 1

2
#S.

Proof. We have∑
q∈Pr(Q)

#{s ∈ S : gcd(s, q) > 1}

≤
∑
s∈S

∑
q∈Pr(Q)

gcd(s,q)>1

1 ≤ r
∑
s∈S

ω(s)
∑

q∈Pr−1(Q)

1,

where as usual, ω(s) denotes the number of prime divisors of s 6= 0.
We now use that,

ω(s)� log |s|
log(2 + log |s|)

� logH

log logH

(since, trivially ω(s)! ≤ s) and also that by the asymptotic formula for
the number of primes in an arithmetic progression, we have(

Q

logQ

)ν
� #Pν(Q)�

(
Q

logQ

)ν
, ν = 1, 2, . . . .

Thus, we derive∑
q∈Pr(Q)

#{s ∈ S : gcd(s, q) > 1} � #S logH

log logH

(
Q

logQ

)r−1

.
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Therefore,

1

#Pr(Q)

∑
q∈Pr(Q)

#{s ∈ S : gcd(s, q) > 1} � #S logH

log logH
· logQ

Q

and the result now follows. �

7. Proof of Theorem 1

Take Q = 0.5h4/9. By the condition on B and Lemma 14 (applied
to the set of all coordinates of all N∗a,f ,k(B) solutions) there exists
q ∈ Pr(Q) such that we have

(20) N∗a,f ,k(B) ≤ 2T,

where T is the number of solutions to the congruence

(21) f1(x1) + . . .+ fn(xn) ≡ axk11 . . . xknn (mod q)

with
(x1, . . . , xn) ∈ B and gcd(x1 . . . xn, q) = 1.

Hence it is now sufficient to estimate T .
As before, we use Xq to denote the set of multiplicative characters

modulo q and also let X ∗q = Xq \ {χ0} be the set of nonprincipal char-
acters.

We now proceed as in the proof of [27, Theorem 3.2]. Let

Si(χ;λ) =

ui+h∑
x=ui+1

χki(x) e (λfi(x)/q) , i = 1, . . . , n.

We also introduce the Gauss sums

G(χ, λ) =

q∑
y=1

χ(y) e(λy/q), χ ∈ Xq, λ ∈ Z,

Clearly, we can assume that at least one of the polynomials f1, . . . , fn
is not a constant polynomial as otherwise the result is immediate.

Without loss of generality, we can now assume that deg f1 ≥ 1.
Furthermore, we can also assume that h is sufficiently large so that
gcd(a, q) = 1 and also the leading coefficients of the polynomial fn is
relatively prime to q (recall that q is composed out of primes in the
interval [Q, 2Q]).

We now introduce one more variable y that runs through the reduced
residue system modulo q and rewrite (21) as a system of congruences

f1(x1) + . . .+ fn(xn) ≡ y (mod q),

axk11 . . . xknn ≡ y (mod q).
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Then exactly as in [27, Equation (3.3)], we write

T =
1

qϕ(q)

q∑
λ=1

∑
χ∈Xq

G(χ, λ)
n∏
i=1

|Si(χ, λ)|,

where, as before, ϕ(q) is the Euler function and G(χ, λ) is the complex
conjugate of the Gauss sum.

As in the proof of [27, Theorem 3.2], we see that, under the condi-
tion (6), we have:

(22) T � 1

qϕ(q)
(R1 +R2) ,

where

R1 =

q∑
λ=1

∑
χ∈X ∗

q

|G(χ, λ)|
n∏
i=1

|Si(χ, λ)|,

R2 =

q∑
λ=1

|G(χ0, λ)|
n∏
i=1

|Si(χ0, λ)|,

To estimate R1 we first use Lemma 9 for n− 2 sums and infer that

(23) R1 � h(1−4γ/9)(n−2)

q∑
λ=1

∑
χ∈X ∗

q

|G(χ, λ)||S1(χ;λ)||S2(χ;λ)|,

where γ is as in Lemma 9.
Using the Hölder inequality, and then expanding the summation to

all χ ∈ Xq, we obtain

q∑
λ=1

∑
χ∈Xq

|G(χ, λ)||S1(χ;λ)||S2(χ;λ)|

≤
q∑

λ=1

∑
χ∈Xq

|G(χ, λ)|2
1/2

∑
χ∈Xq

|S1(χ;λ)|4
1/4∑

χ∈Xq

|S2(χ;λ)|4
1/4

.

(24)
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Using the orthogonality of multiplicative characters we see that∑
χ∈Xq

|S1(χ;λ)|4

= q

u1+h∑
w,x,y,z=u1+1
gcd(wxyz,q)=1
wx≡yz (mod q)

e

(
λ

q
(f1(w) + f1(x)− f1(y)− f1(z))

)
≤ qW,

where W is the number of solutions to

wx ≡ yz (mod q)

in variables

w, x, y, z ∈ {u1 + 1, . . . , u1 + h} and gcd(wxyz, q) = 1.

Using Lemma 12, we obtain∑
χ∈Xq

|S1(χ;λ)|4 ≤ h4qo(1) + h2+o(1)q.

Similarly we obtain the same inequality for the 4th moment of the sums
S2(χ;λ), and also ∑

χ∈Xq

|G(χ, λ)|2 � q2.

Thus, collecting these bounds together which together with (23)
and (24), we derive

R1 � h(1−4γ/9)(n−2)q2
(
h2qo(1) + h1+o(1)q1/2

)
= hn−4γ(n−2)/9−1

(
hq2+o(1) + q5/2+o(1)

)
.

(25)

For R2, using the trivial bound

|Si(χ0;λ)| ≤ h, i = 1, . . . , n− 1,

we write

R2 ≤ hn−1

q∑
λ=1

|G(χ0;λ)||S1(χ0;λ)|.

We remark that

G(χ0;λ) =

q∑
y=1

gcd(y,q)=1

e(λy/q)

is the Ramanujan sum and thus for a square-free q we obtain

|G(χ0;λ)| = ϕ(gcd(λ, q))
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see [17, Section 3.2]. Collecting together the values of λ with the same
gcd(λ, q) = q/s, where s runs over all 2r divisors of q, and then using
the Cauchy inequality, we obtain

R2 ≤ hn−1q
∑
s|q

1

s

s∑
µ=1

|S1(χ0;µq/s)|

≤ hn−1q
∑
s|q

1

s

s∑
µ=1

∣∣∣∣∣∣∣∣
u1+h∑
x=u1+1

gcd(x,q)=1

e (µf1(x)/s)

∣∣∣∣∣∣∣∣
≤ hn−1q

∑
s|q

1

s1/2

 s∑
µ=1

∣∣∣∣∣∣∣∣
u1+h∑
x=u1+1

gcd(x,q)=1

e (µf1(x)/s)

∣∣∣∣∣∣∣∣
2

1/2

.

By the orthogonality of exponential functions,

s∑
µ=1

∣∣∣∣∣∣∣∣
u1+h∑
x=u1+1

gcd(x,q)=1

e (µf1(x)/s)

∣∣∣∣∣∣∣∣
2

≤ sUs.

Where Us is the number of solutions to the congruence

f1(x) ≡ f1(y) (mod s), x, y ∈ {u1 + 1, . . . , u1 + h}.

Since the leading coefficient of f1(X) is relatively prime to q, using the
Chinese Remainder Theorem we obtain

Us � h2/s+ h.

Collecting the above inequalities, yields the bound

(26) R2 � hn−1q
∑
s|q

1

s1/2

(
h2 + hs

)1/2 ≤ hnq.

Substituting the bounds (25) and (26) in (22) and using that ϕ(q)�
q for q ∈ Pr(Q) and also that q � h4r/9 we obtain

T � hn−4γ(n−2)/9−1
(
h+ q1/2

)
qo(1) + hnq−1

�
(
hn−4γ(n−2)/9 + hn−4γ(n−2)/9−1+2r/9

)
qo(1) + hn−4r/9.

(27)

Clearly, if

−4γ(n− 2)/9 < −4r/9 and − 4γ(n− 2)/9− 1 < −2r/3
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or, equivalently

n > max
{

2r+1(d+ 1)(d+ 2)r, 2r+1(d+ 1)(d+ 2)(3r/2− 9/4)
}

+ 2,

then the last term dominates in (27). Using (20) we conclude the proof.

8. Proof of Theorem 2

Take Q =
⌊
0.5h1/3

⌋
. By the condition on B and Lemma 14 (applied

to the set of all coordinates of all N∗a,f ,k(B) solutions and the set P1(Q))
there exists a prime p ∈ [Q, 2Q] such that we have the bound (20) where
now T is the number of solutions to the congruence

(28) f1(x1) + . . .+ fn(xn) ≡ axk11 . . . xknn (mod pr)

with
(x1, . . . , xn) ∈ B and gcd(x1 . . . xn, p) = 1.

Hence it is now sufficient to estimate T .
As before, we use Xpr to denote the set of multiplicative characters

modulo pr and also let X ∗pr = Xpr \ {χ0} be the set of nonprincipal
characters.

We now proceed as in the proof of [27, Theorem 3.2]. Let

Si(χ;λ) =

ui+h∑
x=ui+1

χki(x) e (λfi(x)/pr) , i = 1, . . . , n.

We also introduce the Gauss sums

G(χ, λ) =

pr∑
y=1

χ(y) e(λy/pr), χ ∈ X r
p , λ ∈ Z,

Clearly, we can assume that at least one of the polynomials f1, . . . , fn
is not a constant polynomial as otherwise the result is immediate.

Without loss of generality, we can now assume that deg f1 ≥ 1.
Furthermore, we can also assume that h is sufficiently large so that
gcd(a, p) = 1 and also the leading coefficients of the polynomial fn is
relatively prime to p (recall that p ∈ [Q, 2Q]).

We now introduce one more variable y that runs through the reduced
residue system modulo q and rewrite (28) as a system of congruences

f1(x1) + . . .+ fn(xn) ≡ y (mod pr),

axk11 . . . xknn ≡ y (mod pr).

Then exactly as in [27, Equation (3.3)], we write

T =
1

prϕ(pr)

pr∑
λ=1

∑
χ∈Xpr

G(χ, λ)
n∏
i=1

|Si(χ, λ)|,
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where, as before, ϕ(q) is the Euler function and G(χ, λ) is the complex
conjugate of the Gauss sum.

We see that the contribution from the term corresponding to λ = pr

and the principal character χ = χ0 is O(hn/pr). so the under the
condition (10), we have:

(29) T � hn/pr +
1

prϕ(pr)
R

where

R =
∑∑

1≤λ≤pr, χ∈Xpr

(λ,χ) 6=(pr,χ0)

|G(χ, λ)|
n∏
i=1

|Si(χ, λ)|

To estimate R we first use Lemma 11 for n− 2 sums and infer that

R� h(1−1/4r2)(n−2)

q∑
λ=1

∑
χ∈X ∗

q

|G(χ, λ)||S1(χ;λ)||S2(χ;λ)|.

We now proceed exactly as in estimating R1 in the proof of Theorem 1,
getting instead of (25) the bound

R� h(1−1/4r2)(n−2)p2r
(
h2po(1) + h1+o(1)pr/2

)
.

Since h1/3 � p� h1/3 and r ≥ 6, this simplifies as

(30) R� h(1−1/4r2)(n−2)+1+o(1)p5r/2

Substituting the bound (30) in (29), we obtain

T � hn−1−(n−2)/4r2+o(1)pr/2 + hn/pr

� hn−1−(n−2)/4r2+r/6+o(1) + hn−r/3.
(31)

Clearly, if

r3 ≤ n− 2

2
or, equivalently

n ≥ 2r3 + 2

then the last term dominates in (31). Using (20) we conclude the proof.

9. Proof of Theorem 3

Clearly for (x1, . . . , xn) ∈ B where B is of the form (5) we have

xd1 + . . .+ xdn ∈ Z,
where

Z =

{
d∑

ν=0

(
d

ν

)
zνu

d−ν : zν ∈ [0, nhν ], ν = 0, . . . , d

}
.
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In particular, #Z � hd(d+1)/2. Applying Lemma 13 to every z ∈ Z,
we obtain the result.

10. Comments

We remark that Theorem 1 applies to the Markoff-Hurwitz hyper-
surface corresponding to (3). in which case the condition on n becomes

n > 12 · 2r max {2r, 3r − 9/2}+ 2.

We note that the condition of Theorem 1 requires n to be only qua-
dratic in d, while the saving grows with n as

4 log n

9 log 2
> 0.64 log n,

when d is fixed and n tends to infinity.
On the other hand, Theorem 1 does not apply to the Dwork hy-

persurface, but Theorem 2 and leads to the saving that grows with n
as

(n/2)1/3

3
> 0.26n1/3.

It is also easy to see that our methods also works for a more general
form of (2), namely for the equation

(f1(x1) + . . .+ fn(xn))m = axk11 . . . xknn

with a nonzero integer m.
One can easily remove the condition on the parity of k1, . . . , kn at

the cost of essentially only typographical changes. Indeed, if some of
k1, . . . , kn are even that we take all our primes p to satisfy

p ≡ 3 (mod 2k1 . . . kn)

instead of (6) and (10), and then we deal with contribution from char-
acters or order 2 as we have done for the principal character.

Finally, we note that using the bounds of mixed sums from [16] within
our method leads to weaker estimates, but makes them fully uniform
with respect to the box B. That is, the conditions on maxi=1,...,n |ui|
in Theorems 1 and 2 can be removed at the cost of weakening the final
bound.
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